

Lior Pachter

Outline

-Why do we analyze sequences? What are we looking for?

- Annotation of DNA sequences I (and HMMs)
- Alignment
- Annotation of DNA sequences II
- Protein sequences

The Human genome

From the introduction to the Nature human genome paper:

- The genomic landscape shows marked variation in the distribution of a number of features...for example, the developmentally important HOX gene clusters are the most repeat-poor regions of the human genome.
- There appear to be about $30,000-40,000$ genes in the human genome- only about twice as many as in the worm or fly
- The full set of proteins encoded in the human is more complex than those of invertebrates....due in part to vertebrate specific protein domains and motifs.
- The pericentromeric and subtelomeric regions of the chromosomes are filled with large recent segmental duiplications of sequence....much more frequent than in yeast, fly or worm.
- More than 1.4 million single nucleotide polymorphisms have been identified.

Gene Structure I

Gene Structure II

Gene Structure III

Finding genes

Splice site detection

How Difficult is the Problem?

O $\mathrm{n}=$ number of acceptor splice sites

- $\mathrm{m}=$ number of donor splice sites

Number of parses $=F_{n+m+1}($ Fibonacci $)$

A simple HMM

Initial distribution:

$$
\pi=\left(\pi_{A}, \pi_{B}\right)
$$

A lattice view

Observed sequence:
(1) \rightarrow (4) \rightarrow (3) \rightarrow (6) \rightarrow (6) $\rightarrow(4) \rightarrow$

Hidden sequence:

Observed: 1,4,3,6,6,4...

Questions:

1. What is the most likely die sequence?
2. What is the probability of the observed sequence?
3. What is the probability that the $3^{\text {rd }}$ state is B, given the observed sequence?

The HMM algorithms

Forward:
$\alpha_{t}(i)=P$ (observed sequence, ending in state i at base $\left.t\right)$ Backward:
$\beta_{t}(i)=P$ (obs. after $\dagger \mid$ ending in state i at base t)
Viterbi:
$\delta_{t}(i)=\max \mathrm{P}$ (obs., ending in state i at base t)
Questions:

1. What is the most likely die sequence? Viterbi
2. What is the probability of the observed sequence? Forward
3. What is the probability that the $3^{\text {rd }}$ state is B, given the observed sequence? Backward

A lattice view

Observed sequence:
(1) \rightarrow (4) \rightarrow (3) \rightarrow (6) \rightarrow (6) $\rightarrow(4) \rightarrow$

Hidden sequence:

Hidden Markov Models (HMMs)

- Underlying generates a sequence of states.

Markov chain = distribution of next state depends only on present
Hidden = the state sequence

Observed = outputs from the states

GTCAGAGTAGCAAAGTAGACACTCCAGTAACGC

Approaches to Gene recognition

- Homology
- BLAST, Procrustes
- De Novo
- GRAIL, FGENEH, GENSCAN, Genie, Glimmer
- Hybrids
- GenomeScan, Genie
- Comparative
- Rosetta, Twinscan

Ab-initio gene finding: Generalized HMMs

Example: Glimmer
 Gene Finding in Microbial DNA

- No introns
- 90\% coding
- Shorter genomes (less than 10 million bp)
- Lots of data

Gene Structure in Prokaryotes

Bacteriomaker (Walmart \$3.95)

HMM state duration times

- $\operatorname{Pr}($ leaving state $)=p$
- $\operatorname{Pr}($ staying in state $)=1-p$

- Pr (output of exactly r in state) $=(1-p)^{r} p$
- Geometric distribution

Observed duration times

The Gene Finding Problem

TAAT ATGTCCACGG GTATTGAG CATTGTACACGGG GTATTGAG CATGTAA TGAA

Using GHMMs for ab-initio gene finding

In practice, have observed sequence

TAATATGTCCACGGGTATTGAGCATTGTACACGGGGTATTGAGCATGTAA TGAA

Predict genes by estimating hidden state sequence TAAT ATGTCCACGG GTATTGAG CATTGTACACGGG GTATTGAG CATGTAA TGAA

Usual solution: single most likely sequence of hidden states (Viterbi).

Lattice view

Life is complicated

- Alternative splicing

- Pseudo genes

Alignment

Chromosome Comparison

Human

Mouse

Total mapped in both species: 3313
mouse, laboratory

MEF2C

Alignment 1 Seq1: human Seq2: mouse Reg id: 80 Reg length: 100 Plot min: 50 Regions: 103

X-axis: human Resolution: 39 Window size: 100 Min gap: 100

* Contig
- Gene
- Exon

UTR
CNS

- Gap in seq1

Repeats:

- LINE
- LTR

SINE
RNA
DNA
Other

Pair HMMs

```
5 0
2 4 7 \text { GGTGAGGTCGAGGACCCTGCA CGGAGCTGTATGGAGGGCA AGAGC}
    |: || ||||: ||||--:|| ||| |::| |||---||||
```

368 GAGTCGGGGGAGGGGGCTGCTGTTGGCTCTGGACAGCTTGCATTGAGAGG

418 тTСТGGCTAСGСТСТСССТTAGGGACTGAGCAGAGGGCT CAGGTCGCGG
150
332

467 TGGGAGATGAGGCCAATGTCGAGGGGAAGACATCATTTGGGATGTCAGTG
200
367 TTСААССТСАGCAATGCCATCATGGGCAGCGGCATCCTGGGACTCGCCTA

517 TTCAATCTCAGCAACGCCATCATGGGCAGTGGAATTCTGGGGCTCGCCTA

Alignment Formalization

"...consider a pair of strings on a finite alphabet...
"...an alignment is a string of match/mismatch/indel symbols..."
"...we show how to find the optimal alignment where the scoring function is given by..."

Want to take into account that the sequences are genome sequences:

Example: a pair of syntenic genomic regions

Question: How do we align sequences so that the alignments are biologically meaningful?

The Gene Finding Problem

Example: a human/mouse ortholog

Proliferating cell nuclear antigen (PCNA)
Human Locus

Mouse Locus
\square coding exons
\square noncoding exons
\square introns
intergenic regions

Suggestion: In order to find genes in two syntenic regions, first align them and then use the alignment to assist in the gene finding.

$$
\text { Reg id: } 75
$$

$$
\text { Reg length: } 100
$$

$$
\text { Plot min: } 50
$$

$$
\text { Regions: } 7
$$

Alignment 2 Seq1: human Seq2: pig Reg id: 75 Reg length: 100 Plot min: 50 Regions: 6

Alignment Seql: human Seq2: human Seq2: rabbit Reg id: 75 Reg length: 100 Regions: 4

Alignment 4 Seql: human Seq2: mouse Reg id: 75 Reg length: 100
Plot min: 50
Regions: 5
Alignment 5 Seq1: human seq1: human Seq2: rat Reg id: 75
Reg length: 100 Reg length: 1 Plot min: 50 Regions: 5

Alignment 6 Seq1: human Seq2: chicken Reg id: 75 Reg length: 100 Plot min: 50
Regions: 0
Resolution: 4 Window size: 100 Start: 1

Exon

- ExOn
- CNS
human vs macaque, pig, rabbit, mouse, rat, chicken
...

Comparison of 1196 orthologous genes (Makalowski et al., 1996)

- Sequence identity:
- exons: 84.6\%
- protein: 85.4\%
- introns: 35\%
- $\mathbf{5}^{\prime}$ UTRs: 67\%
- 3' UTRs: 69\%
- 27 proteins were 100% identical.

Observation:

- Finding the genes will help to find biologically meaningful alignments. -Finding a good alignment will help in finding the genes.

Which came first, the chicken or the egg?

They were both generated by a generalized pair hidden Markov model

Hidden Markov models

- Sequence alignment with Pair HMMs
- Gene Prediction with Generalized HMMs
- Both simultaneously with GPHMMs

HMMs for sequence alignment:
 Pair HMMs

Pair HMMs

Simple sequence-alignment PHMM

$$
\begin{aligned}
& M=(\text { mis }) \text { match } \\
& X=\text { insert seq1 } \\
& Y=\text { insert seq2 }
\end{aligned}
$$

Pair HMMs

Hidden sequence:

Hidden alignment:

$$
\begin{aligned}
& \text { ATCG--G } \\
& \text { AC-GTCA }
\end{aligned}
$$

Observed sequence:

ATCGG
 ACGTCA

Using the Pair HMM

In practice, we have observed sequence

ATCGG ACGTCA

for which we wish to infer the underlying hidden states

$$
\begin{aligned}
& \frac{M M X M Y Y M}{A T C G--G} \\
& A C-G T C A
\end{aligned}
$$

One solution: among all possible sequences of hidden states, determine the most likely (Viterbi algorithm).

Viterbi in PHMM = Needleman Wunsch

The Gene Finding Problem

Using GHMMs for ab-initio gene finding

In practice, have observed sequence

TAATATGTCCACGGGTATTGAGCATTGTACACGGGGTATTGAGCATGTAA TGAA

Predict genes by estimating hidden state sequence TAAT ATGTCCACGG GTATTGAG CATTGTACACGGG GTATTGAG CATGTAA TGAA

Usual solution: single most likely sequence of hidden states (Viterbi).

TAAT ATGTCCACGG GTATTGAG CATTGTACACGGG GTATTGAG CATGTAA TGAA

HMMs for simultaneous alignment and gene finding: Generalized Pair HMMs

Using GPHMMs for cross-species gene finding

given a pair of syntenic sequences

TAATATGTCCACGGGTATTGAGCATTGTACACGGGGTATTGAGCCATGTAATGAA CTGATGTACACTGGTTGGTCCTCAGCTTTGACGGGGTGCCATGTAATGTC
predict genes by estimating hidden state sequence
TAAT ATGTCCACGG GTATTGAG CATTGTACACGGG GTATTGAG CCATGTAA TGAA

CTG ATGTACACTG GTTGGTCCTCAG CTTTGACGGG GTG CCATGTAA TGTC
Predict exon-pairs using single most likely sequence of hidden states (Viterbi).

Computational Complexity

$N=\#$ HMM states $T=$ length seq1 $D=\max$ duration $\quad U=$ length seq2

Model	Time	Space
HMM	$N^{2} T$	$N T$
PHMM	$N^{2} T U$	$N T U$
GHMM	$D^{2} N^{2} T$	$N T$
GPHMM	$D^{4} N^{2} T U$	$N T U$

lattice view

Approximate alignment

Reduces
from $O(T U)$ to $O(\max (T, U))$

A GPHMM implementation SLAM

- SLAM components
- Splice sites (Variable length Markov models).
- Introns and Intergenic regions (2nd order Markov models, independent geometric lengths, CNS states).
- Coding sequences (3-periodic Markov models, generalized length distributions, protein-based pairHMM.)
- Input
- Pair of syntenic genomic sequences.
- Approximate alignment.
- Output
- CDS predictions in both sequences.

Approximate alignment

Currently generated by running AVID and then "relaxing"

GPHMM applications

- Ideally suited for alignment/feature finding problems
- DNA/DNA
- DNA/cDNA
- DNA/protein
- Extension to more than 2 sequences computationally challenging.
"Its difficult to predict, in particular the future"- GB Shaw
- SLAM improvements
- modeling more features in pairs
- states for untranslated regions
- frameshifts
- Limitations
- genomic rearrangements
- overlapping genes

Allowing for inserted exons

Analysis of Protein Sequences

Examples of Super-secondary Structure

Geometry of Coiled Coil

7 repeating positions ($a--g$) in a coiled coil:
side view:

top view:

Beta Helices

Thanks

- Marina Alexandersson
- Simon Cawley
- CCSF HIV page
- Inna Dubchak
- Eddy Rubin
- Bonnie Berger
- Ethan Wolf
- Serafim Batzoglou
- Robert Gentleman
- Sandrine Dutoit

