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Outline
• Why do we analyze sequences? What are we looking for?
• Annotation of DNA sequences I (and HMMs)
• Alignment
• Annotation of DNA sequences II
• Protein sequences



The Human genome



• The genomic landscape shows marked variation in the distribution of a number
of features…for example, the developmentally important HOX gene clusters 
are the most repeat-poor regions of the human genome.

• There appear to be about 30,000-40,000 genes in the human genome- only
about twice as many as in the worm or fly

• The full set of proteins encoded in the human is more complex than those of 
invertebrates….due in part to vertebrate specific protein domains and motifs.

• The pericentromeric and subtelomeric regions of the chromosomes are filled
with large recent segmental duiplications of sequence….much more frequent 
than in yeast, fly or worm.

• More than 1.4 million single nucleotide polymorphisms have been identified.

From the introduction to the Nature human genome paper:

“

”



DNA - - - - agacgagataaatcgattacagtca - - - -

Transcription

RNA - - - - agacgagauaaaucgauuacaguca - - - -

Translation

Protein - - - - - DEI - - - -

Protein Folding
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Gene Structure II
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Gene Structure III

5’ 3’

DNA
Exon 1 Exon 2 Exon 3 Exon 4

Intron 1 Intron 2 Intron 3

polyA signalPyrimidine
tract

Branchpoint
CTGAC

Splice site
CAG

Splice site
GGTGAG

Translation
Initiation
ATG

Stop codon
TAG/TGA/TAA

Promoter
TATA



Finding genes

Start codon
ATG

5’ 3’
Exon 1 Exon 2 Exon 3Intron 1 Intron 2

Stop codon
TAG/TGA/TAA

Splice sites



Splice site detection
5’ 3’

Donor site

Position

% -8 … -2 -1 0 1 2 … 17
A 26 … 60 9 0 1 54 … 21
C 26 … 15 5 0 1 2 … 27
G 25 … 12 78 99 0 41 … 27
T 23 … 13 8 1 98 3 … 25



How Difficult is the 
Problem?

n = number of acceptor splice sites
m = number of donor splice sites

Number of parses = Fn+m+1 n+m+1 (Fibonacci)(Fibonacci)



A simple HMM

bA( i) = 1 / 6

bB(i) = 1/ 4

π = (π A,π B)
Initial distribution:

A B

PAB

PBA

PBB

PAA



A lattice view

A

B

1 4 3 6 6 4
Observed sequence:

BA A ABB

Hidden sequence:



Observed:
1,4,3,6,6,4...A B

Questions:
1. What is the most likely die sequence?
2. What is the probability of the observed 

sequence?
3. What is the probability that the 3rd state 

is B, given the observed sequence?



The HMM algorithms

Questions:
1. What is the most likely die sequence?
2. What is the probability of the observed sequence?
3. What is the probability that the 3rd state is B, given the 

observed sequence?

Forward:
α (i) = P(observed sequence, ending in state i at base t)

Backward:
 β  (i) = P(obs. after t | ending in state i at base t)

 Viterbi:
 δ  (i) = max P(obs., ending in state i at base t)

t

t

t

Viterbi
Forward

Backward



A lattice view

A

B

1 4 3 6 6 4
Observed sequence:

BA A ABB

Hidden sequence:



Hidden Markov Models (HMMs)
• Underlying generates a sequence of states.

Markov chain = distribution of next state depends 
only on present

Hidden = the state sequence

Observed = outputs from the states

GTCAGAGTAGCAAAGTAGACACTCCAGTAACGC

exon exon exonintronintronintergene intergene



Approaches to Gene recognition

• Homology
– BLAST, Procrustes

• De Novo
– GRAIL, FGENEH, GENSCAN, Genie, Glimmer

• Hybrids
– GenomeScan, Genie

• Comparative
– Rosetta, Twinscan



Ab-initio gene finding: 
Generalized HMMs



Example: Glimmer
Gene Finding in Microbial DNA

• No introns
• 90% coding 
• Shorter genomes (less than 10 million 

bp)
• Lots of data



Translation
Initiation
ATG

Stop codon
TAG/TGA/TAA

ORF

Gene Structure in Prokaryotes



Bacteriomaker 
(Walmart $3.95)

Intergene

ATG TAA

Coding

A  0.25
C  0.25
G  0.25
T  0.25

A  0.9
C  0.03
G  0.04
T  0.03

1

1
0.9

0.1

0.1

0.9



HMM state duration times

p

duration

• Pr(leaving state) = p
• Pr(staying in state) = 1 - p
• Pr(output of exactly r in state) = (1-p)  p

• Geometric distribution

r

A
1-p

p



Observed duration times



The Gene Finding Problem

5’ 3’

DNA
Exon 1 Exon 2 Exon 3 Exon 4

Intron 1 Intron 2 Intron 3

polyA signalPyrimidine
tract

Branchpoint
CTGAC

Splice site
CAG

Splice site
GGTGAG

Translation
Initiation
ATG

Stop codon
TAG/TGA/TAA

Promoter
TATA



TAAT ATGTCCACGG TTGTACACGGCA G GTATTGAGGTATTGAG ATGTAAC TGAA



Using GHMMs for ab-initio gene 
finding

In practice, have observed sequence

Predict genes by estimating hidden state sequence

Usual solution: single most likely sequence 
of hidden states (Viterbi).

TAATATGTCCACGG TTGTACACGGCA GGTATTGAGGTATTGAG ATGTAAC TGAA

TAAT ATGTCCACGG TTGTACACGGCA G GTATTGAGGTATTGAG ATGTAAC TGAA
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Lattice view



Life is complicated
• Alternative splicing

SPLICING

TRANSLATION

pre-mRNA

• Pseudo genes

ALTERNATIVE 
SPLICING

TRANSLATION

Protein IIProtein I

mRNA

DNA



Alignment



Chromosome Comparison
Human Mouse









50     .    :    .    :    .    :    .    :    .    :
247 GGTGAGGTCGAGGACCCTGCA  CGGAGCTGTATGGAGGGCA   AGAGC

|:   ||  ||||:  |||| --:||  ||| |::|   |||---||||
368 GAGTCGGGGGAGGGGGCTGCTGTTGGCTCTGGACAGCTTGCATTGAGAGG

100     .    :    .    :    .    :    .    :    .    :
292 TTC          CTACAGAAAAGTCCCAGCAAGGAGCCACACTTCACTG

|||----------|| |   |::| |: ||||::|:||:-||  ||:| |
418 TTCTGGCTACGCTCTCCCTTAGGGACTGAGCAGAGGGCT CAGGTCGCGG

150     .    :    .    :    .    :    .    :    .    :
332                ATGTCGAGGGGAAGACATCATTCGGGATGTCAGTG

---------------||||||||||||||||||||||:||||||||||||
467 TGGGAGATGAGGCCAATGTCGAGGGGAAGACATCATTTGGGATGTCAGTG

200     .    :    .    :    .    :    .    :    .    :
367 TTCAACCTCAGCAATGCCATCATGGGCAGCGGCATCCTGGGACTCGCCTA

|||||:||||||||:||||||||||||||:|| ||:|||||:||||||||
517 TTCAATCTCAGCAACGCCATCATGGGCAGTGGAATTCTGGGGCTCGCCTA

Pair HMMs



Alignment Formalization

“…consider a pair of strings on a finite alphabet…

“…an alignment is a string of match/mismatch/indel
symbols…”

“…we show how to find the optimal alignment where
the scoring function is given by…”

∑



Want to take into account that the sequences
are genome sequences:

Example: a pair of syntenic genomic regions



5’ 3’

Exon 1 Exon 2 Exon 3 Exon 4
Intron 1 Intron 2 Intron 3

Branchpoint
CTGAC

Splice site
CAG

Splice site
GGTGAG

Translation
Initiation
ATG

Stop codon
TAG/TGA/TAA



Question: How do we align sequences so that the alignments 
are biologically meaningful?



5’ 3’

Exon 1 Exon 2 Exon 3 Exon 4
Intron 1 Intron 2 Intron 3

Splice site
CAG

Splice site
GGTGAG

Translation
Initiation
ATG

Stop codon
TAG/TGA/TAA



The Gene Finding Problem

5’ 3’

DNA
Exon 1 Exon 2 Exon 3 Exon 4

Intron 1 Intron 2 Intron 3

polyA signalPyrimidine
tract

Branchpoint
CTGAC

Splice site
CAG

Splice site
GGTGAG

Translation
Initiation
ATG

Stop codon
TAG/TGA/TAA

Promoter
TATA



Example: a human/mouse ortholog

Human Locus

Mouse Locus

Alignment: CDS

coding exons

noncoding exons

introns

intergenic regions

strong alignment

weak alignment

intergenic regions

Proliferating cell nuclear antigen (PCNA)



Suggestion: In order to find genes in two syntenic 
regions, first align them and then use the alignment
to assist in the gene finding.





Comparison of 1196 orthologous genes
(Makalowski et al., 1996)

• Sequence identity:
– exons: 84.6%
– protein: 85.4%
– introns: 35%
– 5’ UTRs: 67%
– 3’ UTRs: 69%

• 27 proteins were 100% identical.



Observation: 
- Finding the genes will help to find 
biologically meaningful alignments.
-Finding a good alignment will help in
finding the genes.



Which came first, the chicken or the egg?

They were both generated by a 
generalized pair hidden Markov model



Hidden Markov models
– Sequence alignment with Pair HMMs
– Gene Prediction with Generalized HMMs
– Both simultaneously with GPHMMs



HMMs for sequence 
alignment:
Pair HMMs



M

X

Y

M = (mis)match
X = insert seq1
Y = insert seq2

Pair HMMs
Simple sequence-alignment PHMM 



M X YM M Y M
Hidden sequence:

A
A

T
C

C
-

G
G

-
T

-
C

G
A

Observed sequence:

ATCGG
ACGTCA

Hidden alignment:

ATCG--G
AC-GTCA

Pair HMMs



Using the Pair HMM
In practice, we have observed sequence

ATCGG
ACGTCA

for  which we wish to infer the underlying hidden states

One solution: among all possible sequences of hidden
states, determine the most likely (Viterbi algorithm).

ATCG--G
AC-GTCA

MMXMYYM



Viterbi in PHMM = Needleman Wunsch



The Gene Finding Problem

5’ 3’

DNA
Exon 1 Exon 2 Exon 3 Exon 4

Intron 1 Intron 2 Intron 3

polyA signalPyrimidine
tract

Branchpoint
CTGAC

Splice site
CAG

Splice site
GGTGAG

Translation
Initiation
ATG

Stop codon
TAG/TGA/TAA

Promoter
TATA



Using GHMMs for ab-initio gene 
finding

In practice, have observed sequence

Predict genes by estimating hidden state sequence

Usual solution: single most likely sequence 
of hidden states (Viterbi).

TAATATGTCCACGG TTGTACACGGCA GGTATTGAGGTATTGAG ATGTAAC TGAA

TAAT ATGTCCACGG TTGTACACGGCA G GTATTGAGGTATTGAG ATGTAAC TGAA



TAAT ATGTCCACGG TTGTACACGGCA G GTATTGAGGTATTGAG ATGTAAC TGAA



HMMs for simultaneous 
alignment and gene finding: 

Generalized Pair HMMs



TAAT GTATTGAGGTATTGAG TGAA

CTG GTTGGTCCTCAG GTG TGTC

ATGTCCACGG

GA GT TACA TC

TTGTACACGGCA G

T GT ACGCT GG

ATGTAAC

ACATGTA



Using GPHMMs for cross-species 
gene finding

given a pair of syntenic sequences

predict genes by estimating hidden state sequence

Predict exon-pairs using single most likely 
sequence of hidden states (Viterbi).

TAAT GTATTGAGGTATTGAG TGAA

CTG GTTGGTCCTCAG GTG TGTC

ATGTCCACGG

GA GT TACA TC

TTGTACACGGCA G

T GT ACGCT GG

ATGTAACC

ACC ATGTA

TAAT GTATTGAGGTATTGAG TGAA

CTG GTTGGTCCTCAG GTG TGTC

ATGTCCACGG

GA GT TACA TC
TTGTACACGGCA G

T GT ACGCT GG
ATGTAACC

ACC ATGTA



Computational Complexity

Model Time Space
HMM N2T NT
PHMM N2TU NTU
GHMM D2N 2T NT
GPHMM D4N 2TU NTU

N = # HMM states
D = max duration

T = length seq1
U = length seq2



lattice view

Introns
Exons



Approximate alignment

Reduces
from O(TU)

to O(max(T,U))



A GPHMM implementation
SLAM

• SLAM components
– Splice sites (Variable length Markov models).
– Introns and Intergenic regions (2nd order Markov 

models, independent geometric lengths, CNS states). 
– Coding sequences (3-periodic Markov models, generalized 

length distributions, protein-based pairHMM.)
• Input

– Pair of syntenic genomic sequences.
– Approximate alignment.

• Output
– CDS predictions in both sequences.



Y
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Z
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Approximate alignment

Currently 
generated by 

running AVID and 
then “relaxing”







GPHMM applications

• Ideally suited for alignment/feature 
finding problems
– DNA/DNA
– DNA/cDNA
– DNA/protein

• Extension to more than 2 sequences 
computationally challenging.



“Its difficult to predict, in particular the 
future”- GB Shaw

• SLAM improvements
– modeling more features in pairs
– states for untranslated regions
– frameshifts

• Limitations
– genomic rearrangements
– overlapping genes



Allowing for inserted exons



Analysis of Protein 
Sequences





Examples of Super-secondary Structure
beta-helixcoiled coil



7 repeating positions (a--g) in a coiled coil:

Geometry of Coiled Coil

a

b
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d

e

f
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b
side view:

top view:

g

eb

d

a

c

f

e

g c

a

d

b

f

g



Beta Helices
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