
Pre-processing: spotted 
DNA microarrays



Terminology
• Target: DNA hybridized to the array, mobile 

substrate.
• Probe: DNA spotted on the array, 

aka. spot, immobile substrate.
• Sector: collection of spots printed using the same 

print-tip (or pin),
aka. print-tip-group, pin-group, spot matrix, grid.

• The terms slide and array are often used to refer to 
the printed microarray.

• Batch: collection of microarrays with the same 
probe layout.

• Cy3 = Cyanine 3 = green dye. 
• Cy5 = Cyanine 5 = red dye.



Image analysis

• The raw data from a cDNA microarray
experiment consist of pairs of image files, 
16-bit TIFFs, one for each of the dyes.

• Image analysis is required to extract 
measures of the red and green 
fluorescence intensities, R and G, for each 
spot on the array.



Image analysis

1. Addressing. Estimate location 
of spot centers.

2. Segmentation. Classify pixels as 
foreground (signal) or background.
3. Information extraction. For 
each spot on the array and each 
dye

• foreground intensities;
• background intensities; 
• quality measures.

R and G for each spot on the array.



Local background

---- GenePix

---- QuantArray

---- ScanAnalyze
Spot uses Morphological opening



Single-slide data display
• Usually:  R vs. G

log2R vs. log2G.
• Preferred 

M  = log2R - log2G
vs.   A  = (log2R + log2G)/2.

• An MA-plot amounts to a 45o clockwise 
rotation of a 
log2R vs. log2G plot followed by scaling.
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Background matters
Morphological opening Local background

M = log2R - log2G   vs.  A = (log2R + log2G)/2



Diagnostic plots
• Diagnostics plots of spot statistics

E.g. red and green log-intensities, intensity log-
ratios M, average log-intensities A, spot area.
– Boxplots;
– 2D spatial images;
– Scatter-plots, e.g. MA-plots;
– Density plots.

• Stratify plots according to layout 
parameters, e.g. print-tip-group, plate.



Boxplots by print-tip-group

Intensity 
log-ratio, M



MA-plot by print-tip-group

Intensity 
log-ratio, M

Average 
log-intensity, A

M = log2R - log2G,   A = (log2R + log2G)/2



2D spatial images

Cy3 background intensity Cy5 background intensity



2D spatial images

Intensity 
log-ratio, M



Normalization



Normalization

• After image processing, we have measures of the red 
and green fluorescence intensities, R and G, for each 
spot on the array.

• Normalization is needed to ensure that differences in 
intensities are indeed due to differential expression, and 
not some printing, hybridization, or scanning artifact.

• Normalization is necessary before any analysis which 
involves within or between slides comparisons of 
intensities, e.g., clustering, testing.



Normalization
• Identify and remove the effects of systematic 

variation in the measured fluorescence 
intensities, other than differential expression, for 
example 
– different labeling efficiencies of the dyes;
– different amounts of Cy3- and Cy5-labeled 

mRNA;
– different scanning parameters;
– print-tip, spatial, or plate effects, etc.



Normalization
• The need for normalization can be seen most 

clearly in self-self hybridizations, where the 
same mRNA sample is labeled with the Cy3 and 
Cy5 dyes.

• The imbalance in the red and green intensities is 
usually not constant across the spots within and 
between arrays, and can vary according to 
overall spot intensity, location, plate origin, etc.

• These factors should be considered in the 
normalization.



Self-self hybridization

log2 R vs. log2 G M vs. A

M = log2R - log2G,   A = (log2R + log2G)/2

M vs. A



Self-self hybridization

Robust local regression
within sectors 
(print-tip-groups)
of intensity log-ratio M
on average log-intensity 
A.

M = log2R - log2G,   A = (log2R + log2G)/2

M vs. A



Example of Normalization
log2R/G  log2R/G – L(intensity, sector, …)

• Constant normalization: L is constant
• Adaptive normalization: L depends on a  

number of predictor variables, such as spot 
intensity A, sector, plate origin.
– Intensity-dependent normalization.
– Intensity and sector-dependent normalization.
– 2D spatial normalization. 
– Other variables: time of printing, plate, etc.
– Composite normalization. Weighted average of 

several normalization functions.



2D images of L values

Global median
normalization

Global loess
normalization

Within-print-tip-
group loess
normalization

2D spatial
normalization



2D images of normalized M-L

Global median
normalization

Global loess
normalization

Within-print-tip-
group loess
normalization

2D spatial
normalization



Boxplots of normalized M-L

Global median
normalization

Global loess
normalization

Within-print-tip-
group loess
normalization

2D spatial
normalization



MA-plots of normalized M-L

Global median
normalization

Global loess
normalization

Within-print-tip-
group loess
normalization

2D spatial
normalization



Some References

• Dudoit, Yang, Callow, and Speed: Statistica
Sinica (2002)

• Dudoit and Yang (2002) Chap 2 in The Analysis 
of Gene Expression Data

• Yang, Buckley, Dudoit, and Speed: JCGS (2002)
• Kerr and Churchill: Biostatistics (2001)
• Colantuoni, Henry, Zeger, and Pevsner: 

Bioinformatics (2002)



marray: Pre-processing spotted 
DNA microarray data

• marrayClasses: 
– class definitions for cDNA microarray data (MIAME);
– basic methods for manipulating microarray objects: printing, 

plotting, subsetting, class conversions, etc.
• marrayInput: 

– reading in intensity data and textual data describing probes and
targets;

– automatic generation of microarray data objects;
– widgets for point & click interface.

• marrayPlots: diagnostic plots.
• marrayNorm: robust adaptive location and scale normalization 

procedures.



Pre-processing: 
oligonucleotide chips



Probe-pair set



Before Hybridization

Array 1 Array 2

Sample 1 Sample 2



More Realistic

Array 1 Array 2

Sample 1 Sample 2



Non-specific Hybridization

Array 1 Array 2





Terminology
• Each gene or portion of a gene is represented by 16 to 20 

oligonucleotides of 25 base-pairs.

• Probe: an oligonucleotide of 25 base-pairs, i.e., a 25-mer.
• Perfect match (PM): A 25-mer complementary to a reference 

sequence of interest (e.g., part of a gene).
• Mismatch (MM): same as PM but with a single homomeric base 

change for the middle (13th) base (transversion purine <-> 
pyrimidine, G <->C, A <->T) . 

• Probe-pair: a (PM,MM) pair.
• Probe-pair set: a collection of probe-pairs (11 to 20) related to a 

common gene or fraction of a gene. 
• Affy ID: an identifier for a probe-pair set.
• The purpose of the MM probe design is to measure non-specific 

binding and background noise.



Why Analyze Probe Level Data?

• Quality control
– Spatial Effects
– RNA degradation (Leslie Cope)

• Detection of defective probes
• Transcript sequence “estimates” change
• Ways to reduce to expression measure 

keep improving



QC



QC



Statistical Problem
• Each gene is represented by 20 pairs                     

(PM and MM) of probe intensities

• Each array has 8K-20K genes

• Usually there are various arrays

• Obtain measure for each gene on each array: 

• Background correction and normalization are issues
Summarize 20 pairs



Default until 2002 (MAS 4.0)
• GeneChip® software used Avg.diff

• with A a set of  “suitable” pairs chosen by 
software.

• Obvious Problems:
– Many negative expression values
– No log transform

∑
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Why use log?

Original Scale Log Scale



Current default (MAS 5.0)

• GeneChip® new version uses something else

• with MM* a version of MM that is never bigger 
than PM.

• Ad-hoc background procedure and scale 
normalization are used.

)}{log( *
jj MMPMghtTukeyBiweisignal −=



Can this be improved?



Use Spike-In Experiment



Use Spike-In Experiment



Why background correct?

100 100

100

Concentration of 0 pM

Concentration of 1.0 pM

Concentration of 0.5 pM



Why normalize?

Compliments of Ben Bolstad



Why fit statistical models to obtain summaries?



Example of use of statistical 
models

• Instead of subtracting MM
• Assume PM = B + S
• To estimate S, use expectation: E[S|B+S]
• After normalization, assume:                   

log2Sij = Ei + Pj + εij
• Estimate Ei using robust procedure
• We call this procedure RMA
• Does it make a difference?   



MAS 5.0
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Some References

• Li and Wong: PNAS (2001)
• Irizarry et al: Biostatistics (2003)
• Irizarry et al: NAR (2003)
• Bolstad et al: Bioinformatics (2003)



Differential gene expression



Data Reduction in Microarray Experiments

Images

↓

Intensities (normalization)

↓

Expression measures (normalization)

↓

Score

↓

Choose a cut off: report a list of differentially

expressed genes and error rate

2



Differential gene expression

• Identify genes whose expression levels are associated with a

response or covariate of interest

– clinical outcome such as survival, response to treatment,

tumor class;

– covariate such as treatment, dose, time.

• Estimation: In a statistical framework, assigning a score can

be viewed as estimating an effects of interest (e.g. difference in

means, slope, interaction). We can also take the variability of

these estimates into account.

• Testing: In a statistical framework, deciding on a cut-off

can be viewed as an assessment of the statistical significance

of the observed associations.
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Example: Two populations

A common problem is to find genes that are differentially

expressed in two populations.

Many method papers appear in both statistical and

molecular biology literature.

The proposed scores range from:

• ad-hoc summaries of fold-change,

• variantes on the t-test,

• and posterior means obtained from Bayesian or

empircal Bayes methods.

What’s the difference? Mainly the way in which the

variation within population is incorporated

4



Should we consider variability of estimate?
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Should we consider variability of estimate?
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Should we consider variability of estimate?
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Volcano Plots
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Some Examples

Notation: log expression, population i, gene j, array k:

Yjk(i), j = 1, . . . , J, k = 1, . . . , K = K1 + K2, i = 1, 2.

• log fold-change: Ȳj(2) − Ȳj(1).

• t-statistic:
Ȳj(2)−Ȳj(1)

sj

• SAM shrunken-t:
Ȳj(2)−Ȳj(1)

sj+s0
.

• Wilcoxon rank-sum

• Bayesian (e.g., Baldi and Long):
Ȳj(2)−Ȳj(1)√
(1−w)s2

j
+ws2

0

.
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Does it make a difference?

• Data:

Spike-in data from Affymetrix, 16 spike-in genes with known

spikein concentrations

• Properties of “good method”

– rank truely differentially expressed genes higher than

non-differential ones −→ sensitivity, specificity

ROC curves
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Hypothesis testing

Once you have a score for each gene, how do you decide on a

cut-off? p-values are popular. Are they appropriate?

• Test for each gene null hypothesis: no differential expression.

Hg : the expression level of gene g

is not associated with the covariate or response.

Two types of errors can be committed

• Type I error or false positive

say that a gene is differentially expressed when it is not, i.e.,

reject a true null hypothesis.

• Type II error or false negative

fail to identify a truly differentially expressed gene, i.e.,

fail to reject a false null hypothesis.
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Multiple hypothesis testing

• Large multiplicity problem: thousands of hypotheses are tested

simultaneously!

– Increased chance of false positives.

– E.g. chance of at least one p–value < α for G independent

tests is 1− (1− α)G and converges to one as G increases.

For G = 1, 000 and α = 0.01, this chance is 0.9999568!

– Individual p–values of 0.01 no longer correspond to

significant findings.

• Need to adjust for multiple testing when assessing the

statistical significance of the observed associations.
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Multiple hypothesis testing

• Define an appropriate Type I error or false positive rate.

• Develop multiple testing procedures that

– provide strong control of this error rate,

– are powerful (few false negatives),

– take into account the joint distribution of the test

statistics.

• Report adjusted p–values for each gene which reflect the

overall Type I error rate for the experiment.

• Resampling methods are useful tools to deal with the

unknown joint distribution of the test statistics.
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Multiple hypothesis testing

# non–rejected # rejected

hypotheses hypotheses

# true null hypotheses U V G0

Type I error

# false null hypotheses T S G1

Type II error

G−R R G

From Benjamini & Hochberg (1995).
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Three Examples

FWER(Family-Wise Error Rate)

Probability of including at least one non-differentially expressed

genes into your list: p(V > 0)

False discovery rate (FDR). The FDR of Benjamini &

Hochberg (1995) is the expected proportion of Type I errors among

the rejected hypotheses, i.e.,

FDR = E(Q),

Q ≡







V/R, if R > 0,

0, if R = 0.

pFDR. Expected proportion of false discoveries among the genes

in your list conditioning on “at least one gene is included in the

differential list”: E(Q|R > 0)
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Does it make a difference?

• Data:

Spike-in data from Affymetrix, 14 spike-in genes with known

concentrations

• Properties of “good method”: reported error rate close to true

error rate

log

(

predicted error rate

observed error rate

)

≈ 0
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Log ratio of predicted and observed error rates
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Demo

• We will demonstrate how to go from a 
probel level data from two samples 
hybridized to six Affymetrix arrays to a list 
of candidate genes

• Bioconductor packages used:
– affy: Preprocessing probe level data
– Biobase: organizes expression level data
– multtest: functions for multiple testing 



Affymetrix files

• Main software from Affymetrix company, 
MicroArray Suite - MAS, now version 5.

• DAT file: Image file, ~10^7 pixels, ~50 MB.
• CEL file: Cell intensity file, probe level PM and 

MM values.
• CDF file: Chip Description File. Describes 

which probes go in which probe sets and the 
location of probe-pair sets (genes, gene 
fragments, ESTs).



affy: Pre-processing 
Affymetrix data

• Class definitions for probe-level data: 
AffyBatch, ProbSet, Cdf, Cel.

• Basic methods for manipulating microarray
objects: printing, plotting, subsetting.

• Functions and widgets for data input from CEL
and CDF files, and automatic generation of 
microarray data objects.

• Diagnostic plots: 2D spatial images, density 
plots, boxplots, MA-plots, etc.



affy classes: AffyBatch

cdfName

exprs

nrow ncol

Probe-level intensity data for a batch of arrays (same CDF)

Dimensions of the array 

Matrices of probe-level intensities and SEs
rows probe cells, columns arrays.

Name of CDF file for arrays in the batch

se.exprs

description

annotation

phenoData

Any notes

Sample level covariates, instance of class phenoData

Name of annotation data 

MIAME information

notes



CDF data packages
• Data packages containing necessary CDF

information are available at 
www.bioconductor.org.

• Packages contain environment objects, which 
provide mappings between AffyIDs and matrices 
of probe locations,
rows probe-pairs, columns PM, MM (e.g., 
20X2 matrix for hu6800). 

• cdfName slot of AffyBatch.
• HGU95Av2 and HGU133A provided in affy

package.



Expression meassures: 
expresso

expresso(widget=TRUE)
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Diagnostic plots
• See demo(affy).
• Diagnostic plots of probe-level intensities, PM 

and MM.
– image: 2D spatial color images of log intensities 

(AffyBatch, Cel).
– boxplot: boxplots of log intensities 

(AffyBatch).
– mva.pairs: scatter-plots with fitted curves (apply 
exprs, pm, or mm to AffyBatch object).

– hist: density plots of log intensities 
(AffyBatch).



image



hist

hist(Dilution,col=1:4,type="l",lty=1,lwd=3)



boxplot

boxplot(Dilution,col=1:4)



mva.pairs



Expression measures
• expresso: Choice of common methods for 

– background correction: bgcorrect.methods
– normalization: normalize.AffyBatch.methods
– probe specific corrections: pmcorrect.methods
– expression measures: express.summary.stat.methods.

• rma: Fast implementation of RMA (Irizarry et al., 2003): 
model-based background correction, quantile
normalization, median polish expression measures.

• express: Implementing your own method for computing 
expression measures.

• normalize: Normalization procedures in 
normalize.AffyBatch.methods or 
normalize.methods(object).



Probe sequence analysis

• Examine probe intensity based on location 
relative to 5’ end of RNA sequence of 
interest.

• Expect probe intensities to be lower at 5’
end compared to 3’ of mRNA.

• E.g.
deg<-AffyRNAdeg(Dilution)
plotAffyRNAdeg(deg)



multtest package

• Multiple testing procedures for controlling
– Family-Wise Error Rate - FWER: Bonferroni, Holm (1979), 

Hochberg (1986), Westfall & Young (1993) maxT and minP;
– False Discovery Rate - FDR: Benjamini & Hochberg (1995), 

Benjamini & Yekutieli (2001).
• Tests based on t- or F-statistics for one- and two-factor 

designs.
• Permutation procedures for estimating adjusted p-

values. 
• Fast permutation algorithm for minP adjusted p-values.
• Documentation: tutorial on multiple testing.



marrayLayout class

maNspots

maNgr maNgc

maNsr maNsc

maSub

maPlate

maControls

maNotes

Array layout parameters

Total number of spots

Dimensions of spot matrices

Dimensions of grid matrix

Current subset of spots

Plate IDs for each spot

Control status labels for each spot

Any notes



marrayRaw class

maRf

maW

maRb maGb

maGf

Pre-normalization intensity data for a batch of arrays

Matrix of red and green foreground intensities

Matrix of red and green background intensities

Matrix of spot quality weights

maNotes

maGnames

maTargets

maLayout Array layout parameters - marrayLayout

Description of spotted probe sequences
- marrayInfo
Description of target samples - marrayInfo

Any notes



marrayNorm class

maA

maW

maMloc maMscale

maM

Post-normalization intensity data for a batch of arrays

Matrix of normalized intensity log ratios, M

Matrix of location and scale normalization values

Matrix of spot quality weights

maNotes

maGnames

maTargets

maLayout Array layout parameters - marrayLayout

Description of spotted probe sequences 
- marrayInfo
Description of target samples - marrayInfo

Any notes

Matrix of average log intensities, A

maNormCall Function call



marrayInput package

• marrayInput provides functions for reading  
microarray data into R and creating microarray
objects of class marrayLayout, marrayInfo, and 
marrayRaw.

• Input
– Image quantitation data, i.e., output files from 

image analysis software.
E.g. .gpr for GenePix, .spot for Spot. 

– Textual description of probe sequences and target 
samples.
E.g. gal files, god lists.



marrayInput package
• Widgets for graphical user 

interface
widget.marrayLayout,
widget.marrayInfo,
widget.marrayRaw.



marrayPlots package
• See demo(marrayPlots).
• Diagnostic plots of spot statistics. 

E.g. red and green log intensities, intensity log 
ratios M, average log intensities A, spot area.
– maImage: 2D spatial color images. 
– maBoxplot: boxplots.
– maPlot: scatter-plots with fitted curves and 

text highlighted. 
• Stratify plots according to layout 

parameters such as print-tip-group, plate.
E.g. MA-plots with loess fits by print-tip-
group.



marrayNorm package
• maNormMain: main normalization function, 

allows robust adaptive location and scale 
normalization for a batch of arrays
– intensity or A-dependent location normalization 

(maNormLoess);
– 2D spatial location normalization (maNorm2D);
– median location normalization (maNormMed);
– scale normalization using MAD (maNormMAD);
– composite normalization;
– your own normalization function.

• maNorm: simple wrapper function. 
maNormScale: simple wrapper function 
for scale normalization.



marrayTools package

• The marrayTools package provides 
additional functions for handling two-color 
spotted microarray data (see devel. version).

• The spotTools and gpTools functions start 
from Spot  and GenePix image analysis 
output files, respectively, and automatically 
– read in these data into R, 
– perform standard normalization (within print-tip-

group loess), 
– create a directory with a standard set of diagnostic 

plots (jpeg format), excel files of quality measures, 
and tab delimited files of normalized log ratios M 
and average log intensities A. 



swirl dataset
• Microrrays: 

– 8,448 probes (768 controls);
– 4 x 4 grid matrix; 
– 22 x 24 spot matrices.

• 4 hybridizations: swirl mutant and wild type mRNA.
• Data stored in object of class marrayRaw: data(swirl).
• > maInfo(maTargets(swirl))[,3:4]
experiment Cy3 experiment Cy5
1          swirl      wild type
2      wild type          swirl
3          swirl      wild type
4      wild type          swirl



Scale normalization
• For print-tip-group scale normalization, assume 

all print-tip-groups have the same spread in M.
• Denote true and observed log-ratio by µij and 

Mij, resp., where Mij = ai µij, and i indexes print-
tip-groups and j spots. Robust estimate of ai is

where MADi is MAD of Mij in print-tip-group i.
• Similarly for between-slides scale normalization.

I
I

i i

i
i

MAD

MADa
∏ =

=

1

ˆ



Microarray sample pool

MSP
Rank invariant
Housekeeping

Tubulin, GAPDH



MA-plot by print-tip-group
maPlot

Intensity 
log ratio, M

Average 
log intensity, A

M = log2R - log2G,   A = (log2R + log2G)/2




