

Experimental Design For Microarray Experiments

Robert Gentleman, Denise Scholtens Arden Miller, Sandrine Dudoit

© Copyright 2002

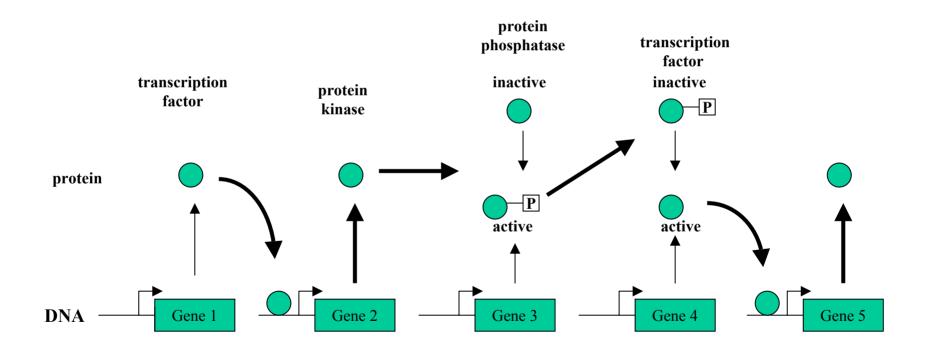
Complexity of Genomic data

- the functioning of cells is a complex and highly structured process
- tools are being developed that allow us to explore this functioning in a multitude of different ways
- these include expression of RNA, expression of proteins and many other processes

Complexity of Genomic Data

- in the next slide we show a stylized biochemical pathway (adapted from Wagner, 2001)
- there are transcription factors, protein kinase and protein phosphatase reactions

An example of the interactions between some genes (adapted from Wagner 2001)



Overview

- Wagner (2001) suggests that the holy grail of functional genomics is the reconstruction of genetic networks
- in this tutorial we examine some methods for doing this in factorial genome wide RNA expression experiments
- such experiments are easy to carry out and are becoming widespread, tools for analyzing them are badly needed

Overview

- while much of the early microarray data have been observational there are many different experiments that can be carried out
- we consider some simple factorial experiments and their analysis
- we assume that there are two factors of interest, F₁ and F₂

- we can obtain expression data on the balanced application of the factors, under the four conditions
 - nothing
 - $-F_1$ alone
 - $-F_2$ alone
 - $-F_1$ and F_2

- if more factors are of interest then fractionally replicated factorial designs should be considered
- biological replication, while not essential is certainly helpful

- the observed data consist of measured levels of mRNA at each of these conditions on patients or model organisms such as cell lines, yeast or mice
- the questions of interest are typically which genes are directly affected by the two factors F_1 and F_2

- we do not just observe changes in the genes that have been directly affected by the factors (primary targets)
- we also observe changes in any other genes whose expression levels are affected by changes in the primary targets (secondary targets)

Gene Effects

- a factor can either inhibit or enhance the production of mRNA for any gene
- the inhibition or enhancement of mRNA production for any given gene can affect mRNA production for other genes either through inhibition or enhancement

Targets

- we define a *target* of a factor to be a gene whose expression of mRNA is altered by the presence of the factor
- a *primary* target is a target that is directly affected by the factor
- a *secondary* target is a target whose expression is altered only via the effects of some other gene (can be traced back to one or more primary targets)

- these experiments can be contrasted with those proposed by Wagner (2001)
- he proposed perturbing each gene in the genome of interest and observing the gene specific effects
- in our experiments we observe genome wide changes and hence less specific information

- here we consider carrying out very few experiments
- the two methods can be complimentary since the results of the genome wide study could be used to design several single gene experiments

Some Examples of Experiments

- methylation: inhibits transcription of specific genes
- if a factor that demethylates the genome were available then one could, in principle determine which genes were methylated (or affected by mythylated genes)
- however we could not determine which genes were primary and which were secondary targets

Some Examples

- many cellular reactions are carried out using energy that is provided by the ADP-ATP phosphorylation mechanism
- if a simple mechanism was available for halting this mechanism then that could be used as a factor in these experiments and information on genes whose transcription is affected by phosphorylation could be identified

Some Examples

- the addition of a second factor (say one such as cyclohexamide, CX, that inhibits translation) will often allow us to isolate the primary factors from the secondary factors
- a simple (but not quite accurate) way to think of the data is as follows

 $-N-F_1$ (N forms a baseline for just F_1)

 $-F_2 - F_1 + F_2$ (F₂ forms a baseline for F₁+F₂)

Inference

- if the effect of F₁ is the same in the presence and absence of F₂ then it is possibly a primary candidate
- this is especially true in the case of CX (since it has halted most translation)
- we can similarly find potential primary targets of F_2 by reversing the argument

Limitations

- while we may identify genes that are potentially primary targets and those that are potentially secondary targets we cannot identify specific gene gene interactions
- the experiments proposed by Wagner could do that
- the use of relevant meta-data, biological and publication, seems pertinent and could help resolve some of the interactions

Limitations

- a direct corollary of the preceding limitations is the fact that we cannot identify feed back loops
- that is genes, or sets of genes whose regulation is self—controlled
- we can observe the effects but not attribute them

Complications

- complications include the fact that the both
 F₁ and F₂ will have effects on the cells and their functioning other than those we are interested in
- we could see effects due to either of them because of chemical interactions etc.
- for simplicity we will assume this does not happen

An Experiment

• we now consider a two factor experiment involving CX in detail

The Experiment

- there are two factors, E is known affect transcription of various genes (some known, some unknown)
- CX is known to stop all translation (with very few exceptions)
- the design is a classical factorial design with two factors and we are interested in the main effects and interactions

The Experiment

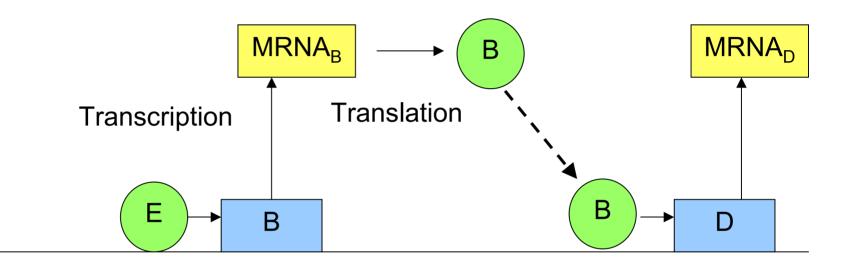
- we identify as targets all genes whose expression of mRNA is affected by the application of E
- a target can be either primary or secondary
 - primary if E directly affects expression of mRNA
 - secondary if mRNA production is affected by some other gene (can be traced back to a primary target)

Scenario 1

- assume that there are two related genes, B and D
- neither is expressed initially, but E causes B to be expressed and this in turn causes D to be expressed
- the addition of CX by itself may not affect expression of either B or D
- conditions with CX and E present will have elevated levels of $mRNA_B$ and low levels of $mRNA_D$

No Factors applied

E only



B is a Primary Target of E D is a Secondary Target of E

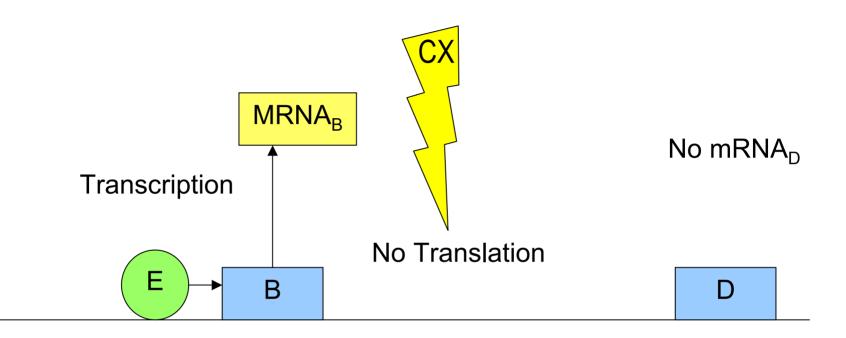
Production of $mRNA_B$ is enhanced by E

Production of $mRNA_D$ is enhanced by B

Interpretation: Scenario 1

- for both genes B and D we expect to see significant regression coefficients for the presence of E
- note that while we show a direct relationship between the expression of B and of D we cannot detect such a relationship from these data (its purpose is purely pedagogical)

E and CX both present



B is a Primary Target

Production of mRNA_B is enhanced by E

Production of mRNA_D is decreased (prevented)

Interpretation: Scenario 1

- in the presence of both CX and E we see increased expression of $mRNA_B$ but not of $mRNA_D$
- this will be one of the principles we can use to differentiate between primary targets of E (such as B) and secondary targets of E (such as D)

Interpretation: Scenario 1

	mRNA _B	mRNA _D
Nothing	Low	Low
Е	High	High
CX	Low(?)	Low (?)
E and CX	High	Low

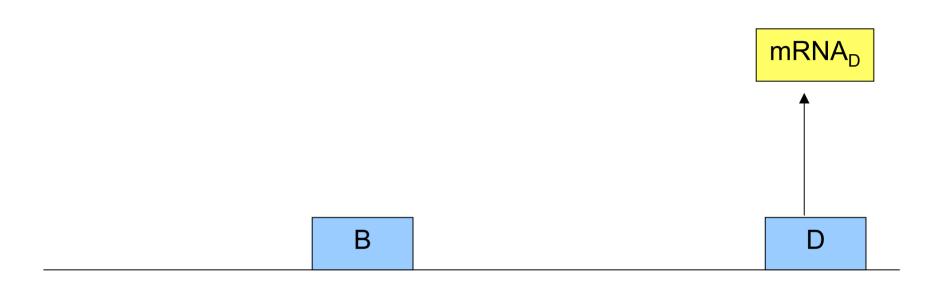
Suppressors: Scenario 2

- we now consider a similar setting where the effect of the gene being enhanced by E is to suppress the other gene D
- initially $mRNA_D$ is being produced and $mRNA_B$ is not
- the addition of E causes the production of mRNA_B and hence the inhibition of mRNA_D

Suppressors: Scenario 2

- CX by itself may reduce production of mRNA_D
- CX and E together will yield levels of mRNA_B that are high, and levels of mRNA_D that are the same as those observed with CX alone

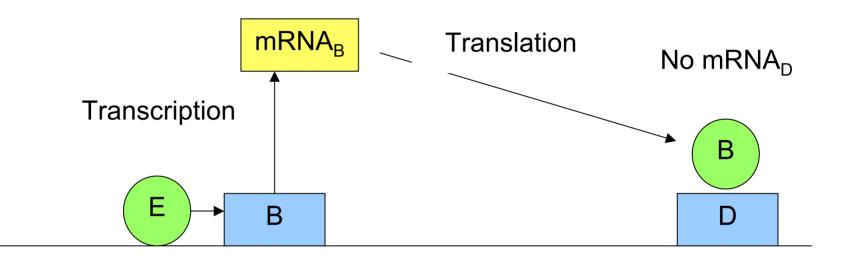
Normal Conditions



B is not active

Production of mRNA_D

Introduction of E

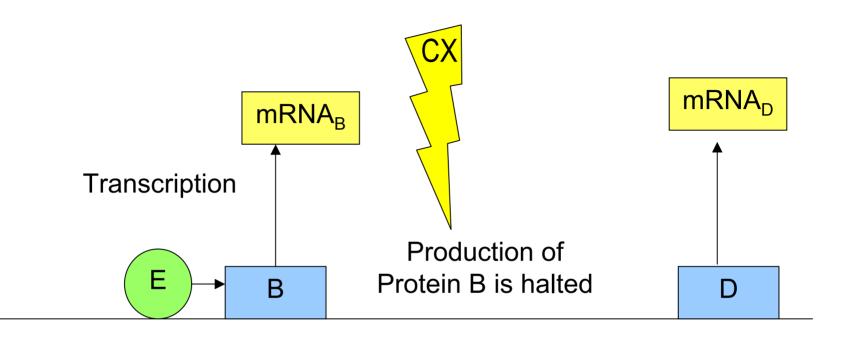


B is a Primary Target of E D is a Secondary Target of E

Production of $mRNA_B$ is enhanced by E

Production of $mRNA_D$ is suppressed by B

Both E and CX present



B is a Primary Target of E D is a Secondary Target of E

Production of $mRNA_B$ is enhanced by E

Production of $mRNA_D$ is restored

Interpretation: Scenario 2

	mRNA _B	mRNA _D
Nothing	Low	High
Е	High	Low
CX	Low (a)	High(b)
E and CX	High	High(b)

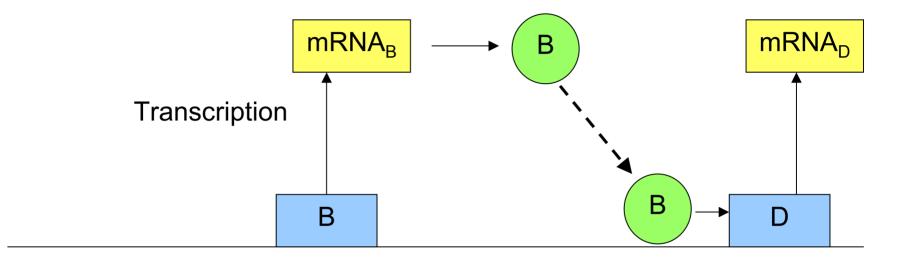
Interpretation: Scenario 2

- the level of mRNA_D when both CX and E are present should be the same as the amount that is present when CX alone is present
- this could be different than the amount when both factors are absent
- mRNA_D could be translationally controlled and so it will be affected by CX

One more example: Scenario 3

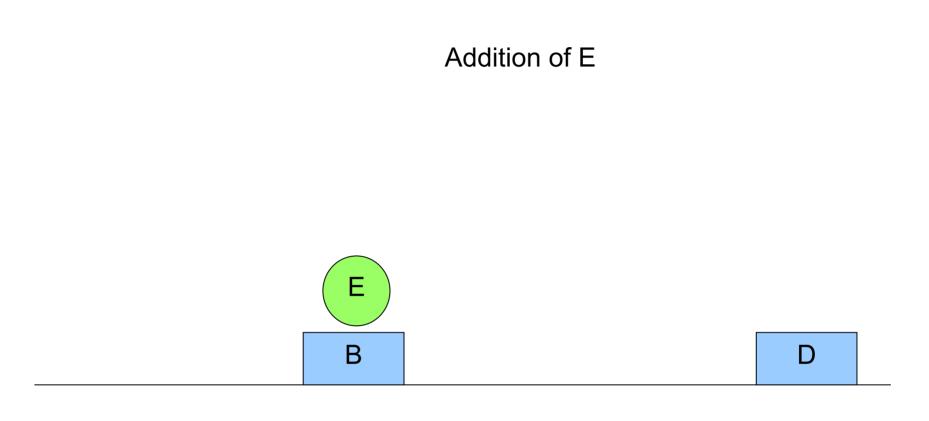
- here genes B and D are active, protein B is enhancing production of D
- E inhibits production of mRNA_B, which in turn affects production of D
- CX alone decreases production of mRNA_D, B may be unchanged
- CX and E together will result in decreases in the levels of both $mRNA_B$ and $mRNA_D$

Normal State



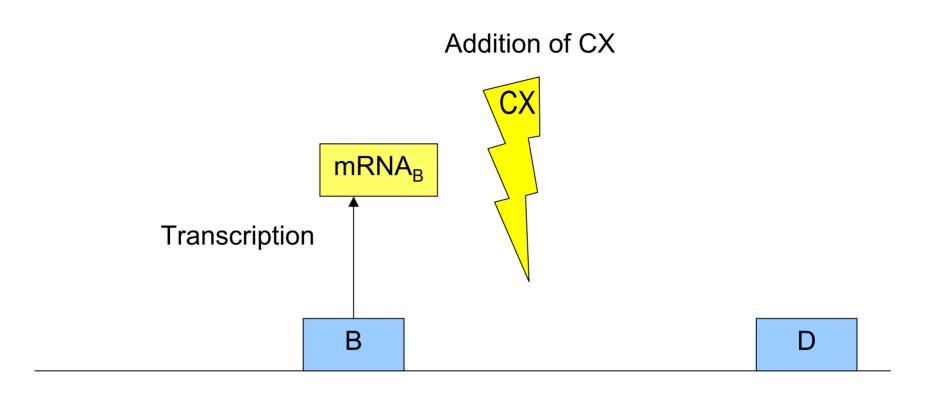
B is active

Production of $mRNA_D$ is enhanced by B



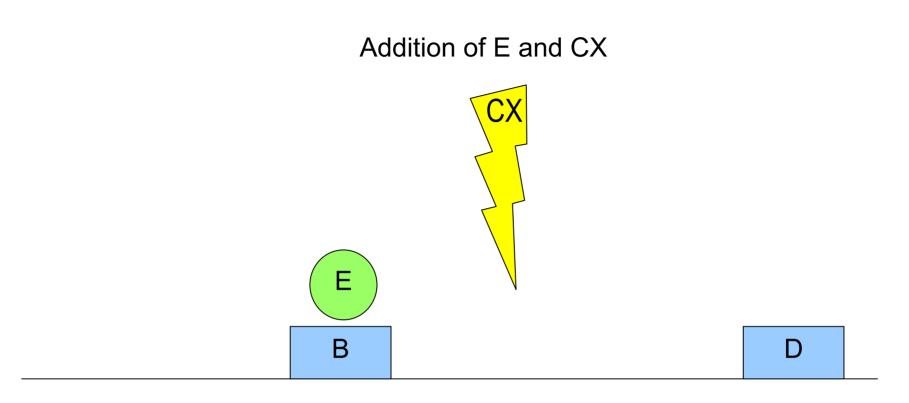
B is suppressed by E

Production of $mRNA_D$ is also suppressed



Production of mRNA_B

Production of $mRNA_D$ is halted



Production of $mRNA_B$ is halted

Production of $mRNA_{D}$ is halted

Interpretation: Scenario 3

	mRNA _B	mRNA _D
Nothing	High	High
Е	Low	Low
CX	High	Low
E and CX	Low	Low

- a microarray experiment can detect changes in the level of mRNA and for both mRNA_B and mRNA_D
- but there is a difference, B is a primary target of E, while D is a secondary target of E

Inference

- we are experimenting with a closed, functioning system
- there is no true baseline
- these two facts complicate the analysis and inference in many ways

Inference

- if gene X is any target for E the level of mRNA_X might not change when E is added
- mRNA_X might already be being made as fast as possible, so addition of E has no effect (if we had a true baseline we could eliminate this)
- production of mRNA_X might already be suppressed by some other compound

Inference

- the introduction of CX provides a form of baseline
- since (among other things) CX halts translation we should be able to use the presence or absence of CX to find out about primary versus secondary targets

• if we assume that there is a linear model for the observed expression value (possibly on transformed data) it is:

$$y_{ig} = \mu_g + \beta_{Eg} x_{1i} + \beta_{CXg} x_{2i} + \beta_{E:CX,g} x_{1i} x_{2i} + \mathcal{E}_{ig}$$

- where *i* indexes chips and *g* indexes genes
- x_1 indicates the presence of E and x_2 indicates the presence of CX

- for any gene we can interpret the coefficients in the linear model as follows
- the parameter β_E can be interpreted as the effect of E
- genes for which β_E is different from zero are potential *targets*
- as noted previously not all targets will have β_E different from zero

- the parameter β_{CX} can be interpreted as the effect due to CX
- if β_{CX} is different from zero indicates that production of mRNA is translationally regulated
- the interpretation of $\beta_{E:CX}$ is more difficult

• we now refer back to the preceding scenarios to determine sets of conditions that will allow us to identify both primary and secondary targets

Scenario 1

	Primary	Secondary
β_1	> 0	> 0
β ₂	= 0	= 0
β ₃	= 0	- β ₁

Scenario 2

	Primary	Secondary
β_1	> 0	< 0
β2	= 0	= 0
β ₃	= 0	- β ₁

Scenario 3

	Primary	Secondary
β_1	< 0	< 0
β ₂	= 0	$<0(\approx\beta_1)$
β ₃	= 0	- β ₁

- consider the case where we have only CX and CX+E
- since CX halts all translation then any differences between the condition where CX alone is present and CX+E is present should indicate primary targets of E

- this is equivalent to testing the hypothesis: $H_0: \mu + \beta_E + \beta_{CX} + \beta_{E:CX} = \mu + \beta_{CX}$
- another equivalent hypothesis is $H_0: \mu + \beta_E + \beta_{CX} + \beta_{E:CX} = \mu + \beta_{CX}$

- genes for which the hypothesis
 H₀: μ+β_E+β_{CX}+β_{E:CX} = μ+β_{CX}
 is rejected are candidates for primary targets
- those with β_E different from zero but for which we do not reject H_0 are secondary targets
- this holds for all Scenarios discussed above

- we can identify primary targets in at least two different ways
 - fold change, look at ratio of the means of the CX arrays with the CX+E arrays
 - use a linear model and estimate the contrasts (possibly then estimate the ratio)

Secondary Targets

- a secondary target should have the property that β_1 is not zero
- this means that E had some observed effect on expression of the gene
- and that we did not determine that it was a primary target

Other information

- what other information is available from the experiment?
- it seems likely that some inference may be drawn from the relationship between β_E and $\beta_{E:CX}$, their signs and their significance levels

Limitations

- while we can identify primary and secondary targets there is no way to determine the relationship between any two genes
- a corollary of this is that it is not possible to identify feedback loops using these data

Gene Filtering

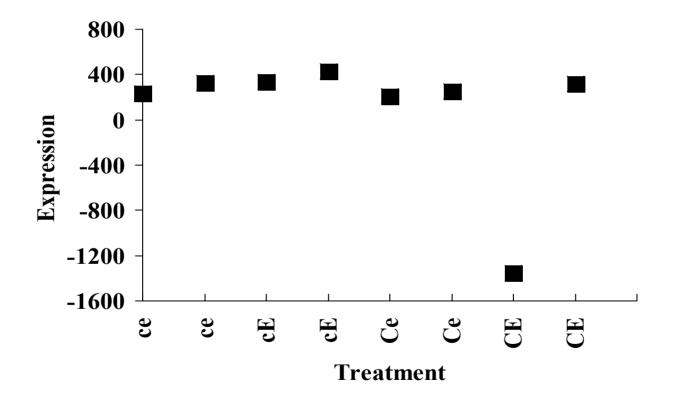
- some reduction by filtering out genes that are not expressed or that are not affected by the factors will help reduce the computation
- this is problematic since we have only 2 observations at each level of the factors
- our approach was to compute an average for each data pair

Gene Filtering

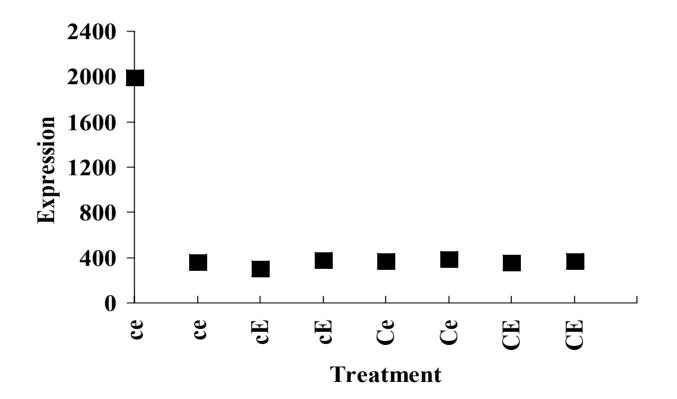
- thus for any gene we have four averages (a_i)
- if the maximum of the four averages for a given gene was less than 100 the gene was filtered and not analysed further

- the detection of outliers in factorial experiments is difficult
- the residuals from the fit of the linear model must satisfy a number of constraints and hence are not suitable for outlier detection
- however, outlier detection is important since the presence of outliers will inflate the estimated variance and hence decrease our ability to detect significant effects

Examples of single outliers



Examples of single outliers



- when there are replicate chips a simple but effective procedure can be employed
- Miller and Scholtens (xxxx) propose using the following process
- put in some pictures of the outliers/etc
- tables indicating the preliminary results

- we presume that the expression at some set of experimental conditions is Normally distributed with mean μ and variance σ^2
- so that the difference $d_i = x_{i1} x_{i2}$, is N(μ , 2 σ^2)
- then the ratio, $\frac{d_i^2}{\sum_{j \neq i} d_j^2 / 3}$, is $F_{1,3}$ and we

 we use a p-value of 4*P(F_{1,3}>f) to adjust for the fact that we have used the maximum of the d_i's in our calculation

Relevance

- in most cases there is some literature on genes that are likely to be affected by the different factors
- it is prudent to obtain this information and examine its consistency with the experimental data

Relevance

- there is a great deal of metadata available
- this includes references in published literature
- relationships through protein—protein interactions
- known promoter inhibitor relationships
- these data can all be used to further explore and understand the experimental data

References

 How to reconstruct a large genetic network in fewer than n² easy steps, Wagner, A., Bioinformatics, 2001, 1183—1197.