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1. Aims 

This case study illustrates more advanced linear modeling with Affymetrix single-channel 
microarrays. The popular 2x2 factorial design is considered. Use of Bioconductor annotation for 
Affymetrix arrays is illustrated. The case study goes on to consider significance tests using gene 
sets. 

2. Required data 

The estrogen data set is required for this lab and can be obtained from Data/estrogen.zip. You 
should create a clean directory, unpack this file into that directory, then set that directory as your 
working directory for your R session using setwd() or otherwise. By typing dir() you should see 
eight .CEL files and three text files. On my computer, I see: 

> setwd("C:/Gordon/www/bioinf/marray/bioc2005/_src/estrogen") 
> dir() 
 [1] "estrogen.txt"         "high10-1.cel"         "high10-2.cel"         
 [4] "high48-1.cel"         "high48-2.cel"         "knownERgenes.txt"     
 [7] "low10-1.cel"          "low10-2.cel"          "low48-1.cel"          
[10] "low48-2.cel"          "predictedERgenes.txt" 

To repeat this case study in full you will need to have the R packages affy, hgu95av2cdf, 
hgu95av2 and xtable installed.  

3. Estrogen experiment 

The data gives results from a 2x2 factorial experiment on MCF7 breast cancer cells using 
Affymetrix HGU95av2 arrays. The factors in this experiment were estrogen (present or absent) 
and length of exposure (10 or 48 hours). The aim of the study is the identify genes which respond 
to estrogen and to classify these into early and late responders. Genes which respond early are 
putative direct-target genes while those which respond late are probably downstream targets in 
the molecular pathway. 

This data is from the estrogen data package on the Bioconductor website 
http://www.bioconductor.org/data/experimental.html. Rather than loading the data package here 
we simply using the nine basic data files from that package, in order to save storage space and to 
more closely mimic a real data analysis situation. The data set is discussed further by Scholtens 
[1,2] and in the Limma User's Guide. 



4. Read the data 

The first step in most analyses is to read the targets file which describes what RNA target has 
been hybridized to each array and, equally importantly, gives the names of the corresponding 
data files. The targets file is usually tab-delimited, but here it is white-space delimited. 

 library(limma) 
 targets <- readTargets("estrogen.txt", sep="") 
 targets 

You should see 

> targets 
      filename estrogen time.h 
1  low10-1.cel   absent     10 
2  low10-2.cel   absent     10 
3 high10-1.cel  present     10 
4 high10-2.cel  present     10 
5  low48-1.cel   absent     48 
6  low48-2.cel   absent     48 
7 high48-1.cel  present     48 
8 high48-2.cel  present     48 

Now read the CEL file data into an AffyBatch object and normalize using RMA: 

 library(affy) 
 library(hgu95av2cdf) 
 abatch <- ReadAffy(filenames=targets$filename) 
 eset <- rma(abatch) 

Here eset is a data object of class exprSet. 

It is usual and appropriate to check data quality before continuing your analysis. Due to brevity 
we will skip over this in this lab. A full set of quality assessment plots can be found at 
http://www.stat.berkeley.edu/~bolstad/PLMImageGallery/ under the title "estrogen". These plots 
show no significant quality problems with any arrays in this dataset. 

5. Create a design matrix 

We have four pairs of replicate arrays so we should estimate four parameters in the linear model. 
There are many valid ways to choose a design matrix, but perhaps the simplest is to make each 
column correspond to a particular treatment combination:. 



 

The four columns of the matrix correspond to absent10, present10, absent48 and present48, 
respectively. Another way to specify the design matrix is described in the Limma User's Guide. 

This design matrix given above can be computed in R as follows: 

 f <- paste(targets$estrogen,targets$time.h,sep="") 
 f <- factor(f) 
 f 
 design <- model.matrix(~0+f) 
 colnames(design) <- levels(f) 
 design 

6. Fit the linear model 

Now that we have defined our design matrix, fitting a linear model is as simple as: 

 fit <- lmFit(eset, design) 

fit is an object of class MArrayLM. 

 names(fit) 

The fitted coefficents fit$coef from the model fit are just the mean log-expression for each 
treatment combination for each probe set. For this reason, this choice of design matrix is called 
the group means parametrization in the Limma User's Guide. 

7. Define a contrast matrix 

The idea now is to use contrasts to make any comparisons of interest between the four treatment 
combination. Contrasts are linear combinations of parameters from the linear model fit. 

 

where is a vector of contrasts for gene , is the contrasts matrix, and is a vector of 
coefficients (estimated log fold changes), obtained from a linear model fit. 



We will estimate three contrasts (so our contrasts matrix will have three columns). The first 
contrast is an estrogen effect at time 10 hours, the second as an estrogen effect at time 48 hours 
and the third is the time effect in the absence of estrogen. These are not all the comparisons 
which might have been made. 

 
 cont.matrix <- makeContrasts(E10="present10-absent10",E48="present48-
absent48",Time="absent48-absent10",levels=design) 
 cont.matrix 

8. Extract the linear model fit for the contrasts 
 fit2  <- contrasts.fit(fit, cont.matrix) 
 fit2  <- eBayes(fit2) 

9. Assessing differential expression 

We now use the function topTable to obtain a list genes differentially expressed between 
Estrogen-Present and Estrogen-Absent at time 10 hours, followed by a list of genes differentially 
expressed between Estrogen-Present and Estrogen-Absent at time 48 hours.  

 colnames(fit2) 
 topTable(fit2,coef=1) 
 topTable(fit2,coef=2,adjust="fdr") 
 topTable(fit2,coef=2) 
 topTable(fit2,coef=2,adjust="fdr") 

The function decideTests() provides a variety of ways to assign statistical significance to the 
contrasts while controlling for multiple testing. 

 results <- decideTests(fit2) 
 summary(results) 
 vennDiagram(results) 

10. Linking the gene lists to annotation information on 
the Internet 

This section was prepared by James Wettenhall. 

If the genes int the topTable have standard IDs (e.g. UniGene or GenBank), then they can be 
linked with external annotation information on the Internet. Load the annotation package 
hgu95av2, which can be obtained from http://www.bioconductor.org/data/metaData.html. 

 library(hgu95av2cdf) 
 library(hgu95av2) 



Now we obtain: 

• the gene (probe-set) IDs (from the AffyBatch object, ab), 
• the gene symbols (from the hgu95av2SYMBOL environment in the hgu95av2 annotation 

package),  
• the gene names (from the hgu95av2GENENAME environment in the hgu95av2 annotation 

package), and  
• the UniGene IDs (from the hgu95av2UNIGENE environment in the hgu95av2 annotation 

package).  

 
 geneIDs <- ls(hgu95av2cdf) 

It is possible to extract the annotation information from the appropriate R environments within 
the annotation package (hgu95av2), and store it in simple R data structures as follows: 

 
 # geneSymbols <- unlist(as.list(hgu95av2SYMBOL)) 
 # geneNames <- unlist(as.list(hgu95av2GENENAME)) 
 # unigene <- unlist(as.list(hgu95av2UNIGENE)) 

However we must be very careful, because in recent versions of Bioconductor annotation 
packages, some gene IDs can map to multiple gene names, multiple symbols and/or multiple 
unigene clusters. The method above, while appearing simple, also does not allow for the 
possibility that the gene names are stored in a different order in the annotation package from the 
gene IDs. We will therefore use some rather complicated-looking R code to extract the gene 
symbols, names and unigene IDs from the hgu95av2 environment. Multiple entries will be 
collapsed and separated by semicolons, e.g. if geneID 001 corresponds to gene names "Name1" 
and "Name2", these will be collapsed into "Name1; Name2". 

 
 geneSymbols <- as.character(unlist(lapply(mget(geneIDs,env=hgu95av2SYMBOL), 
     function (symbol) { return(paste(symbol,collapse="; ")) } ))) 
 geneNames <- as.character(unlist(lapply(mget(geneIDs,env=hgu95av2GENENAME), 
     function (name) { return(paste(name,collapse="; ")) } ))) 
 unigene <- as.character(unlist(lapply(mget(geneIDs,env=hgu95av2UNIGENE), 
     function (unigeneID) { return(paste(unigeneID,collapse="; ")) } ))) 

The key functions to note in the code above are mget which extracts multiple annotation strings 
from the appropriate annotation environmentand lapply which applies our multiple-entry-
collapsing function to every element in a list of annotation strings. 

Now we abbreviate the gene names to a maximum length of 40 characters, for neat formatting in 
a table, and we extract the unigene ID from the string which contains "Hs" (for Homo sapiens) as 
well as the unigene ID. 

 
 geneNames <- substring(geneNames,1,40) 
 unigene <- gsub("Hs\\.","",unigene) 
 
 genelist <- 
data.frame(GeneID=geneIDs,GeneSymbol=geneSymbols,GeneName=geneNames, 



   UniGeneHsID=paste("<a 
href=http://www.ncbi.nlm.nih.gov/UniGene/clust.cgi?ORG=Hs&CID=", 
   unigene,">",unigene,"</a>",sep="")) 

Now we recreate the toptable for the two contrasts considered earlier, E10="present10-absent10" 
and E48="present48-absent48" this time providing a hyperlink to the UniGene website for each 
gene in the toptable. 

 unigeneTopTableEst10 <- topTable(fit2,coef=1,n=20,genelist=genelist) 
 unigeneTopTableEst48 <- topTable(fit2,coef=2,n=20,genelist=genelist) 
 library(xtable) 
 xtableUnigeneEst10 <- 
xtable(unigeneTopTableEst10,display=c("d","s","s","s","s","g","g","g","e","g")
) 
 xtableUnigeneEst48 <- 
xtable(unigeneTopTableEst48,display=c("d","s","s","s","s","g","g","g","e","g")
) 
 
 cat(file="estrogenUniGeneE10.html","<html>\n<body>") 
 
print.xtable(xtableUnigeneEst10,type="html",file="estrogenUniGeneE10.html",app
end=TRUE) 
 cat(file="estrogenUniGeneE10.html","</body>\n</html>",append=TRUE) 
 
 cat(file="estrogenUniGeneE48.html","<html>\n<body>") 
 
print.xtable(xtableUnigeneEst48,type="html",file="estrogenUniGeneE48.html",app
end=TRUE) 
 cat(file="estrogenUniGeneE48.html","</body>\n</html>",append=TRUE) 

The display argument to the xtable function is used to specify the format of text or numbers 
displayed in cells of the HTML table: 

Format code Meaning 
d Decimal (base ten) integer, e.g. 48 

s Character string, e.g. "Block" 

g General real floating-point number, e.g. 8.25 

e Floating point number in exponent format, e.g. 1.02E-05 

11. Gene Set Enrichment 

This section was prepared by James Wettenhall. 

11.1 Introduction to Gene Set Analysis 

In this lab, we move beyond the analysis of individual genes, and consider sets of genes in 
microarray experiments. Another approach is to form gene sets based on a priori knowledge of 
common biological features shared by the genes. We consider a particular approach called gene 
set enrichment. We begin with a known set of genes and then test whether this set as a whole is 
differentially expressed in a microarray experiment. This type of test is useful when comparing 
one's microarray data with that of previous authors who have performed similar microarray 
experiments, because the lists of most differentially expressed genes reported by the previous 



authors can be regarded as a "gene set" and tested to determine whether the genes are also 
differentially expressed in the current context.  

Gene set testing was introduced by Mootha et al [5] and Lamb et al [6] in 2003. Mootha et al 
define the concept of a gene set enrichment test. For a given set of genes, one can test whether the 
set as a whole is up-regulated, down-regulated or differentially expressed with individual genes 
possibly going in either direction. Sometimes performing the traditional differential expression 
analysis of individual genes will yield no statistically significant results, but there may be 
stronger evidence for differential expression of gene sets.  

Now we turn our attention to tests for differential expression involving a set of genes. Mootha et 
al. [5] and Lamb et al. [6] made this methods popular in 2003. We will use a "gene set 
enrichment test", which is closely based on the one defined by Mootha et al. The gene set test can 
be used to test whether previous author's lists of differentially expressed genes are also 
differentially expressed in a current experiment similar to that of the previous authors. Another 
possible application is to try to find differential expression in microarray experiments which 
show no strong differential expression when testing for individual differentially expressed genes, 
but they might show more evidence of differential expression when testing a predefined set of 
genes. Defining a useful gene set for this sort of analysis is not always trivial. One possibility is 
to use a set of genes which share common gene ontologies, i.e. choose a set of genes which are 
all associated with GOs below a certain node in the GO DAG (Directed Acyclic Graph). We will 
begin with some artificial examples to illustrate the concept of gene set tests with a small number 
of made-up t-statistics. Then we will use two sets of genes thought to be regulated by the 
Estrogen Receptor (ERalpha) to demonstrate testing for differential expression of gene sets in the 
Estrogen data set.  

The geneSetTest function in the limma package [8] is described in its help file, reproduced 
below: 

This is essentially a stream-lined approach to Gene Set Enrichment Analysis introduced by 
Mootha et al (2003). Usually, 'statistics' is intended to hold t-like statistics, meaning that the 
genewise null hypotheses would be rejected for large positive or large negative values. Then 
'alternative="greater"' can be used to test whether genes in the set tend to be up-regulated, 

'alternative="less"' can be used to test whether the gene set is down-regulated, while 
'alternative="two.sided"' tests whether the gene set holds highly ranked genes without regard to 
direction of change. Important note: if 'statistics' is an F-like statistic for which only large values 

are relevant for rejecting the null hypothesis, then you must use 'alternative="greater"' to get 
meaningful results.  

We now demonstrate the use of the geneSetTest function in limma using a miniscule set of 
artifical made-up t-statistics, where as usual, a positive t statistic means that a gene is up-
regulated (i.e. expressed more highly in a condition of interest), whilst a negative value means 
that the gene is down-regulated. A t-statistic close to zero means that the gene is not differentially 
expressed.  

In the first example we use, the artificial t-statistics will range from -9 to 9, and we will select a 
set of three genes for the test, those with t-statistics of -8, -6 and -5, i.e. we will use the 2nd, 4th 
and 5th t-statistics from our vector of artificial t-statistics. If these t-statistics represented real 



genes, all three genes would show strong evidence of differential expression (down-regulation) 
individually, so they should certainly show strong evidence of differential expression as a set as 
well. The value returned by limma's geneSetTest function is a p-value.  

 
 library(limma) 
 sel <- c(2,4,5) 
 stat <- -9:9 
 stat[sel] 
 geneSetTest(sel,stat,nsim=100) 
 geneSetTest(sel,stat,ranks.only=TRUE) 

If we did a test for up-regulation of the set, we would expect a large p-value (low evidence of up-
regulation): 

 
 geneSetTest(sel,stat,alternative="greater",nsim=100) 

On the otherhand, a test for down-regulation should give a small p-value: 

 
 geneSetTest(sel,stat,alternative="less",nsim=100) 

11.2 Gene Set Analysis Example 

We will again use the Estrogen data set through the fit2 linear model fit object.  

We will use two sets of genes which are thought to be ER-regulated, i.e. regulated by the 
Estrogen Receptor alpha. The first set (Jin et al [4]) contains genes which have been 
experimentally verified to be ER-regulated and the second set (O'lone et al [7]) contains a large 
list of genes which are predicted to be ER-regulated by a model (so they may or may not be ER-
regulated).  

These gene sets (particularly the first one) should be differentially expressed between the breast 
cancer cells with estrogen reintroduced and the serum-starved breast cancer cells with no 
estrogen, because in the cells reintroduced to estrogen, the estrogen receptors (ERs) will bind the 
estrogen and as a result become activated, gaining the ability to regulate gene expression in the 
cells, hence resulting in differential expression between the cells with and without estrogen.  

The data required for this exercise is available from knownERgenes.txt and 
predictedERgenes.txt. Read the gene lists into R: 

 
 known <- read.delim("knownERgenes.txt",as.is=TRUE) 
 knownERgenes <- known$UGCluster 
 predicted <- read.delim("predictedERgenes.txt",as.is=TRUE) 
 predictedERgenes <- predicted$UGCluster 
 library(hgu95av2) 
 unigene <- unlist(as.list(hgu95av2UNIGENE)) 
 knownERgenesOnChip <- match(knownERgenes,unigene) 
 knownERgenesOnChip <- knownERgenesOnChip[!is.na(knownERgenesOnChip)] 
 predictedERgenesOnChip <- match(predictedERgenes,unigene) 
 predictedERgenesOnChip <- 
predictedERgenesOnChip[!is.na(predictedERgenesOnChip)] 



Now we will use the moderated t-statistics calculated previously for the comparison of estrogen 
present and estrogen absent 10 hours after the estrogen was reintroduced into the cells. We try all 
three types of tests - "two-sided", "greater" (for genes up-regulated in the sample with estrogen 
present), and "less" (for genes down-regulated in the sample with estrogen present). We expect to 
get better (smaller) p-values for the known ER-regulated genes than for the predicted ER-
regulated genes. The recent review of Estrogen-repressed genes in breast cancer cells by Zubairy 
and Oesterreich [9] suggests that the majority of genes regulated by estrogen receptors are 
actually repressed (down-regulated), so we should expect a lower p-value for the "less" test (at 
least for the known ER-regulated genes).  

 
geneSetTest(knownERgenesOnChip,fit2$t[,1],"two.sided") 
geneSetTest(knownERgenesOnChip,fit2$t[,1],"greater") 
geneSetTest(knownERgenesOnChip,fit2$t[,1],"less") 
 
set.seed(0) 
geneSet <- sample(predictedERgenesOnChip,length(knownERgenesOnChip)) 
geneSetTest(geneSet,fit2$t[,1],"two.sided") 
geneSetTest(geneSet,fit2$t[,1],"greater") 
geneSetTest(geneSet,fit2$t[,1],"less") 
 
geneSet <- sample(predictedERgenesOnChip,length(knownERgenesOnChip)) 
geneSetTest(geneSet,fit2$t[,1],"two.sided") 
geneSetTest(geneSet,fit2$t[,1],"greater") 
geneSetTest(geneSet,fit2$t[,1],"less") 
 
geneSet <- sample(predictedERgenesOnChip,length(knownERgenesOnChip)) 
geneSetTest(geneSet,fit2$t[,1],"two.sided") 
geneSetTest(geneSet,fit2$t[,1],"greater") 
geneSetTest(geneSet,fit2$t[,1],"less") 
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