
Parallel R Practical

M. T. Morgan∗

Fred Hutchinson Cancer Research Center
Seattle, WA

4 August, 2006

Part 1: getting going

We have two objectives in the first part of this practical: to orient you on using
our ‘cluster’, and to expose you to some of the basic functionality of the Rmpi
package.

Connecting to our ‘cluster’

We’ve set up a small ‘cluster’ of computers to use as a parallel environment.
The cluster is very minimalist in some senses (just three nodes), and the linux
environment might be unfamiliar to some of you. We’ll try to walk through the
very basics here.

If you’re familiar with ssh, then feel free to connect immediately to the
ip address available at the front of the room. Otherwise, follow instructions
available at the start of the lab. All of us will use the same username knoppix
and password bioc.

Once connected

Congratulations! You are now at a linux command line. You’ve all logged in as
the same user. To avoid stepping on each other’s toes too much, please change
to your assigned directory immediately. Do this by typing

[% user0 %] cd ~/user0

where user0 is the user id assigned to you at the start of the practical. This
will be the directory to use for storing any files you might create, and will be
the home directory for your R session. An (initially identical) directory exists
on each of the other nodes in our cluster.

Here are some linux commands that you might find useful:
∗mtmorgan@fhcrc.org

1

mtmorgan@fhcrc.org

ls list contents of directory; ls list current directory contents, ls mydir list
contents of directory mydir located in current directory, ls ~/mydir list
contents of directory mydir in the ‘home’ (~) directory.

cd change directory. cd .. – change up a level, cd mydir to change to directory
mydir in the current directory; cd to change to ‘home’ directory.

pwd list the path to the current directory.

R launch R, with the ‘working directory’ set to the current directory.

logout logout of the session.

You are actually in a fairly full-featured linux environment, so if you’re familiar
with this feel free to launch the editor of your choice, etc. Since we’re all
sharing the same computer, please don’t be too resource greedy, and please do
not modify files such as .bashrc that will influence other users.

As a simple test that things are going well, try launching the ‘command line’
version of R. Do this by typing

[% user0 %] R

at the prompt. You should be greeted by the familiar welcome information
screen, and be presented by the > prompt. Try typing some of your favorite R
commands, and loading a few packages. Everything should work as expected.

> x <- 10:1

> y <- 1:10

> x + y

[1] 11 11 11 11 11 11 11 11 11 11

> hist(runif(1000))

> sessionInfo()

Version 2.3.1 Patched (2006-07-25 r38701)
x86_64-unknown-linux-gnu

attached base packages:
[1] "methods" "stats" "graphics" "grDevices" "utils"
[6] "datasets" "base"

> library(Biobase)

Loading required package: tools

> search()

[1] ".GlobalEnv" "package:Biobase" "package:tools"
[4] "package:methods" "package:stats" "package:graphics"
[7] "package:grDevices" "package:utils" "package:datasets"
[10] "Autoloads" "package:base"

2

If there are problems, let’s try to work them out now before carrying on.
A couple of quick things about R in command-line mode. You might find

it useful to use the keys ctrl-p and ctrl-n to recall commands that you’ve
already entered. Some commands make use of other programs that can be
confusing, and in particular the command

> f <- function(x) x

> fix(f)

will open the vi editor to edit the function f. Unless you’re familiar with vi,
probably the best thing to do is to exit immediately by typing :q followed by
the return key. We’ll try to stick with simple input and output, to avoid having
to make complex editing changes. Another confusing command can result from
searching for help

> library(help = Rmpi)
> ?mpi.bcast.cmd
> help.search("bcast")

Each of these commands opens the less ‘pager’. You can scroll through the
resulting display by typing f and b to move forward and backward a page at a
time, and type q to stop displaying the help information.

Launching and exploring Rmpi

The objective of this section is to familiarize you with the basic functionality of
the Rmpi package. We won’t really do any useful work, but hopefully spur some
thoughts about how to use parallel programming.

Start by loading the Rmpi package, starting and stopping a collection of
nodes, and executing a few simple commands:

> library(Rmpi)

> mpi.spawn.Rslaves()

1 slaves are spawned successfully. 0 failed.
master (rank 0, comm 1) of size 2 is running on: gladstone
slave1 (rank 1, comm 1) of size 2 is running on: gladstone

> mpi.remote.exec(search())

$slave1
[1] ".GlobalEnv" "package:Rmpi" "package:methods"
[4] "package:stats" "package:graphics" "package:grDevices"
[7] "package:utils" "package:datasets" "Autoloads"
[10] "package:base"

> x <- 1:5

> mpi.bcast.Robj2slave(x)

> rm(x)

> mpi.remote.exec(x^2)

3

out
1 1
2 4
3 9
4 16
5 25

> mpi.remote.exec(x <- x^2)

out
1 1
2 4
3 9
4 16
5 25

> mpi.remote.exec(x <- x * mpi.comm.rank())

out
1 1
2 2
3 3
4 4
5 5

> mpi.close.Rslaves()

[1] 1

Now let’s get a more comprehensive feeling for the functionality of the pack-
age. Look at the overview of functions provided by

> library(help = Rmpi)

Remember that you can scroll forward and backward with the commands f, b,
and that you can stop reading with q.

There are three groups of functions. We’ll find those toward the end, in the
section ‘MPI Extensions specifically to slavedaemon.R’ most useful (slavedae-
mon.R refers to a script in the Rmpi package used to launch nodes when we
use the command mpi.spawn.Rslaves). Explore the help pages for specific
functions that look particularly relevant, e.g.,

> ?mpi.remote.exec
> ?mpi.parLapply
> ?mpi.setup.rngstream
> ?mpi.close.Rslaves

Think about how these functions might be helpful in parallel analysis.
The functions in the section ‘MPI Extensions in R Environment’ are useful

in conjunction with the mpi.spawn.Rslaves function, as well as in more general
parallel programming contexts. Scan the help pages for a few of these

4

> ?mpi.spawn.Rslaves
> ?mpi.bcast.Robj

How would you launch a cluster with, say, 6 slaves? Any ideas about when
would you want a cluster with more or fewer slaves than there are compute
nodes in the cluster?

The functions in the section ‘MPI APIs’ are the core of Rmpi. If you have
used MPI in other programming languages, then you’ll recognize that Rmpi has
an interface to some but not all of the functionality of MPI. Rmpi provides the
common point-to-point (e.g., send and recv data between two nodes), collective
(e.g., bcast, scatter and gather data efficiently to collections of nodes), and
non-blocking operations. We will not emphasize these functions, though they
are actually used in many of the functions we have already executed.

A first example: mad about Golub

Many Bioconductor packages summarize gene expression data in ExpressionSet
objects. Type the following

> library(golubEsets)

> data(golubMerge)

> golubMerge

Expression Set (exprSet) with
7129 genes
72 samples

phenoData object with 11 variables and 72 cases
varLabels

Samples: Sample index
ALL.AML: Factor, indicating ALL or AML
BM.PB: Factor, sample from marrow or peripheral blood
T.B.cell: Factor, T cell or B cell leuk.
FAB: Factor, FAB classification
Date: Date sample obtained
Gender: Factor, gender of patient
pctBlasts: pct of cells that are blasts
Treatment: response to treatment
PS: Prediction strength
Source: Source of sample

and view the help page (?golubMerge) about this data set to get a feel for what
it represents.

The R function mad calculates the median average deviation of a sample.
The mad is a non-parametric statistic like the standard deviation, describing
variability in the sample. As an exploratory step, we might be interested in
identifying genes with large variability, thinking perhaps that these are going to
be most useful in distinguishing between samples (this is naive!). Here is how

5

we might extract the matrix of expression values from golubMerge, calculate
the mad for each gene, and view the top 10 most variable genes in golubMerge:

> exprSet <- exprs(golubMerge)

> res <- apply(exprSet, 1, mad)

> sort(res, decreasing = TRUE)[1:10]

M25079_s_at HG1428-HT1428_s_at D86974_at
14824.517 9648.020 9335.191

D49824_s_at hum_alu_at Z84721_cds2_at
8434.511 8326.282 8065.344

X57351_s_at Z19554_s_at L06499_at
7864.452 7701.366 7590.912

HG2887-HT3031_at
7032.713

See the help pages (?exprs, ?apply, etc.) for information on R functions you
do not recognize, or to learn more about arguments provided to functions.

We’ll now walk through a couple of different ways in which we could use
a parallel environment to perform these calculations. The first method is to
replace apply with mpi.parApply. To do this, evaluate commands like the
following:

> library(Rmpi)

> mpi.spawn.Rslaves(nslaves = 3)

3 slaves are spawned successfully. 0 failed.
master (rank 0, comm 1) of size 4 is running on: gladstone
slave1 (rank 1, comm 1) of size 4 is running on: gladstone
slave2 (rank 2, comm 1) of size 4 is running on: gladstone
slave3 (rank 3, comm 1) of size 4 is running on: gladstone

> res <- mpi.parApply(exprSet, 1, mad)

> sort(res, decreasing = TRUE)[1:10]

M25079_s_at HG1428-HT1428_s_at D86974_at
14824.517 9648.020 9335.191

D49824_s_at hum_alu_at Z84721_cds2_at
8434.511 8326.282 8065.344

X57351_s_at Z19554_s_at L06499_at
7864.452 7701.366 7590.912

HG2887-HT3031_at
7032.713

> mpi.close.Rslaves()

[1] 1

6

(It is not necessary to use mpi.spawn.Rslaves and mpi.close.Rslaves for
every calculation, just once for each R session.)

� Hopefully the results of the two different ways of calculating res are the
same. Use identical to confirm this. Are there situations when results
might not be exactly identical, but ‘close enough’?

Use system.time to get a sense for how long calculations are taking:

> mpi.spawn.Rslaves(nslaves = 3)

3 slaves are spawned successfully. 0 failed.
master (rank 0, comm 1) of size 4 is running on: gladstone
slave1 (rank 1, comm 1) of size 4 is running on: gladstone
slave2 (rank 2, comm 1) of size 4 is running on: gladstone
slave3 (rank 3, comm 1) of size 4 is running on: gladstone

> system.time(res1 <- apply(exprSet, 1, mad))

[1] 1.532 0.000 1.531 0.000 0.000

> system.time(res2 <- mpi.parApply(exprSet, 1, mad))

[1] 0.544 0.248 1.738 0.000 0.000

> identical(res1, res2)

[1] TRUE

This is very approximate, especially with the setup in the lab!

� How does the system time for parallel evaluation compare with that for
evaluation on a single node (pay particular attention to the first and third
numbers reported by system.time, and use the help page for system.time
to help you interpret the results)?

� Does system.time offer any evidence that calculations are actually occur-
ring on remote nodes?

In my trials, this command took only slightly longer or was even faster on one
node as on several nodes.

� What sorts of factors might influence parallel evaluation time?

� If evaluating this type of command really is about as time-efficient on one
as on several nodes, does this mean that parallelization is pointless? Would
it be better to dissect the calculation into smaller pieces (e.g., figuring out
where mad spends most of its time) and try to parallelize those parts, or
to look for ways of combining the mad calculation with additional steps
of analysis? How would you go about each of these steps (dissection, or
combining analyses)?

7

Let’s explore a second way of performing our calculation in parallel. The
previous example sends portions of the exprSet ‘over the wire’ to each node.
But actually, each node has access to a copy of golubMerge on its own disk. So
let’s just send the commands over the wire, and see what happens. The single
node code we will try to emulate uses sapply:

> ff <- function(i) mad(exprSet[i,])

> res1 <- sapply(1:nrow(exprSet), ff)

To execute in parallel, we have to load the required data:

> mpi.bcast.cmd(library(golubEsets))

> mpi.bcast.cmd(data(golubMerge))

> mpi.bcast.cmd(exprSet <- exprs(golubMerge))

We can then do our parallel evaluation sending only our function ff to the
remote nodes:

> system.time(res1 <- sapply(1:nrow(exprSet), ff))

[1] 1.536 0.004 1.541 0.000 0.000

> system.time(res2 <- mpi.parSapply(1:nrow(exprSet), ff))

[1] 0.036 0.004 0.527 0.000 0.000

> identical(res1, res2)

[1] TRUE

On a real cluster, this calculation seems to scale very well, almost inversely
proportional to the number of nodes performing calculations.

� Is it ‘fair’ to only include the time spent in mpi.parSapply? Or should
we also include the time for sending the additional command? Or even
distributing the golubEsets library to the nodes in the first place?

� Suppose the calculation really does scale inversely to the number of nodes.
Sketch a graph, the x-axis indicating number of nodes in a cluster and the
y axis time. Sketch a curve reflecting the total ’computation’ time as a
function of node number. How much do I gain by adding a constant num-
ber of nodes, say 1, to a small cluster, compared to a large cluster? Sketch
a second curve reflecting communication time. If there were no network
issues, communication time might increase close to logarithmically with
number of nodes. Combine computation plus communication time into
a single, overall computation, time. What does this say about limits to
parallelization?

8

Reproducibility

As a final introductory exploration of Rmpi, and as an introduction to a thorny
issue in parallel programming, let’s explore generating random numbers. Here
are some things to try:

� Start a cluster of slaves.

� Use runif and mpi.remote.exec to generate 15 random numbers on each
node. Why does each node generate supposedly random numbers that are
all in the same sequence?

� Figure out how to use mpi.setup.rngstream to generate streams of ran-
dom numbers that are different on each node.

� Figure out how to use mpi.setup.rngstream so that each node produces
a different stream of random numbers (different on each node – call the
streams ‘A’), but that two separate invocations of the same random num-
ber call again produces the streams ‘A’.

� Now arrange to start the cluster, generate a sequence of random numbers
(stream ‘A’), stop the cluster, and start the cluster again (with the same
number of nodes) and generate the sequence of random numbers ‘A’ again.

� Try stopping your cluster, and staring with a different number of nodes
(remember that each node starts up a new instance of R, and that we only
have three actual nodes available, so don’t be too ambitious about your
cluster size). Can you generate the sequence of random numbers ‘A’? If
you wanted to be able to repeat exactly the same sequence of random
numbers regardless of cluster size, what might you do?

Part 2: cross-validation, bootstrap, and ‘SPMD’
processing

This portion of the lab tackles some useful work, in the form of an analysis (xval)
that can require substantial computational time. We also explore a model of
parallel computation in R, where each node executes the same programming,
performing some redundant calculation before or after a parallel section where
work is divided between nodes.

Cross-validation

The serial version of the analysis we want to do is

> library(MLInterfaces)

> library(golubEsets)

> data(golubMerge)

> smallG <- golubMerge[200:250,]

9

> lk1 <- xval(smallG, "ALL.AML", knnB, xvalMethod = "LOO",

+ group = as.integer(0))

> table(lk1, smallG$ALL.AML)

lk1 ALL AML
ALL 37 10
AML 10 15

This takes a subset of the golubMerge data set, devises an algorithm to classify
gene expresssion profiles into tumor types (acute lymphoblastic leukemia, ALL,
or acute myeloid leukemia, AML) using the k-nearest neighbor machine learning
algorithm and leave-one-out cross-validation. The table summarizes how the
cross-validations performed: diagonal elements represent correct classifications.

If the next paragraph becomes too complicated, use the command

> source("~/rsrcs/xval-setup.R")

to read the required set-up into your R session.
The xval provides provides a ‘hook’ that allows users to reach into the

function and parallelize the computationally intensive section of code. We’ll
access the hook by creating a class that serves as a ‘predicate’ to influence code
execution, and then create an object of that class:

> setClass("RmpiXval", representation("list"))

[1] "RmpiXval"

> cluster <- new("RmpiXval")

The documentation for xval suggests that we can define a method xvalLoop
that will be executed in place of the lapply loop that performs the computa-
tionally important and parallelizeable parts of the calculation. The following
method makes it possible to use mpi.parLapply instead of lapply.

> setMethod("xvalLoop", signature(cluster = "RmpiXval"),

+ function(cluster, ...) mpi.parLapply)

[1] "xvalLoop"

With these preliminaries, we’re ready for our first attempt at parallelizing
xval:

> mpi.bcast.cmd(library(MLInterfaces))

> lk1 <- xval(smallG, "ALL.AML", knnB, xvalMethod = "LOO",

+ group = as.integer(0), cluster = cluster)

> table(lk1, smallG$ALL.AML)

lk1 ALL AML
ALL 37 10
AML 10 15

10

� Hopefully the results of the single-processor and parallel results agree. Do
they?

� We discussed mpi.parLapply above. When it is used in xval, the effect is
to forward exprs(smallG) to each of the nodes in the cluster. How would
you expect this solution to scale? Any ideas about how to make this more
efficient?

‘Single program, multiple data’ model

Before starting this section, execute the command

> source("~/rsrsc/batch.R")

The program flow in the previous example is that the manager starts to
evaluate xval. The manager ‘massages’ input data, and at a critical point
forwards data and work to other nodes in the cluster.

A different model is to start xval on all nodes, and for all nodes to input
and massage data. At the critical section of code marked by xvalLoop, each
node performs only its own work, and arranges to communicate results between
all nodes. This model of computation is potentially very efficient, avoiding
communication of large data betweeen nodes. We will now explore how to
implement this solution.

Consider the following commands:

> bcast.Rcmd(ff <- function() {

+ f <- function(i) mpi.comm.rank()

+ sapply(1:20, f)

+ })

function ()
{

f <- function(i) mpi.comm.rank()
sapply(1:20, f)

}

> bcast.Rcmd(ff())

[1] 0

So far not very interesting! One way to think the function ff is as a small
program. bcast.Rcmd is a function I wrote for this practical, available in the
file ~/rsrsc/batch.R. It evaluates the single program on all nodes, including
the master node. The first bcast.Rcmd assigns the value ff to all nodes on the
cluster. The second bcast.Rcmd evaluates ff on all nodes. bcast.Rcmd returns
the value of the program as run on the manager node.

We now introduce a ‘wrapper’ that changes the way evaluation of f works.

11

> bcast.Rcmd(ff <- function() {

+ f <- function(i) mpi.comm.rank()

+ ff <- wrap(f, -1)

+ sapply(1:20, ff)

+ })

function ()
{

f <- function(i) mpi.comm.rank()
ff <- wrap(f, -1)
sapply(1:20, ff)

}

> bcast.Rcmd(ff())

[1] 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2

The wrap function (also written for this practical) takes a function and ‘wraps’ it
so that successive calls to the function only sometimes compute a new value. The
other times, it returns a previously-stored psuedo-value. Computations occur in
a round-robin fashion – first node 1, then node 2, etc. The manager node never
evaluates the function, but instead collects and coordinates the results of the
worker nodes. The end result is that the manager node collects the round-robin
evaluations from all nodes, returning something approaching a useful result.

Here is a slightly more extensive example, where a bootstrap calculation is
distributed across nodes in a cluster.

> bcast.Rcmd(ff <- function() {

+ library(boot)

+ ratio <- function(d, w) sum(d$x * w)/sum(d$u * w)

+ ratiow <- wrap(ratio, -1)

+ boot(city, ratiow, R = 999, stype = "w")

+ })

function ()
{

library(boot)
ratio <- function(d, w) sum(d$x * w)/sum(d$u * w)
ratiow <- wrap(ratio, -1)
boot(city, ratiow, R = 999, stype = "w")

}

> bcast.Rcmd(ff())

ORDINARY NONPARAMETRIC BOOTSTRAP

Call:

12

boot(data = city, statistic = ratiow, R = 999, stype = "w")

Bootstrap Statistics :
original bias std. error

t1* 1.520313 0.03311055 0.2092155

Notice that this is changed only a very little from the single-processor evaluation.
Here is a sketch of the wrap function:

> wrap <- function(func, pseudo, comm = 1) {

+ iter <- -1

+ sz <- mpi.comm.size(comm) - 1

+ rank <- mpi.comm.rank(comm)

+ tag <- list(result = 1)

+ if (rank == 0)

+ function(...) {

+ iter <<- iter + 1

+ mpi.recv.Robj(iter%%sz + 1, tag$result, comm)

+ }

+ else function(...) {

+ iter <<- iter + 1

+ if (iter%%sz + 1 == rank) {

+ result <- func(...)

+ mpi.send.Robj(result, 0, tag$result, comm)

+ }

+ else result <- pseudo

+ result

+ }

+ }

> mpi.bcast.Robj2slave(wrap)

This uses several features of the R language, and as an exercise it would be
useful to discuss these with others in the lab.

� In R, a function can be treated just like any other object. What is the
return value of wrap?

� R is lexically scoped. This means that the return values of wrap ‘remember’
the environment in which they were defined. So the return value of wrap
can access the variables iter, sz, rank and tag.

� A line near then end of wrap reads iter <<- iter + 1. The R operator
<<- causes assignment, but unlike the usual assignment statement <- it
looks for a variable (in this case named iter) to assign to in the environ-
ment where the function is defined. So the effect is to change the value of
the iter that is defined in the very first line of wrap

13

� wrap is really quite incomplete. What issues can you see with it, and how
migth it be improved?

A parallel lapply

lapply provides a very useful framework for embarassingly parallel problems.

> args(lapply)

function (X, FUN, ...)
NULL

The argument X represents the ‘work’ to be done, FUN the program that needs
to be evaluated on each piece of work, and ... the data on which the program
is to be evaluated. Here is a batch program that uses lapplys, an lapply-like
alternative, to perform a simple parallel computation:

> res <- bcast.Rcmd(lapplys(1:20, function(i) mpi.comm.rank()))

> unlist(res)

[1] 0 0 0 0 0 1 1 1 1 1 2 2 2 2 2 3 3 3 3 3

The ‘work’ is a list from 1 to 20. The function to be performed by each node is
to determine the rank of the node. lapplys ensures that work gets distributed
approximately evenly between nodes, and collates results from each node into a
single list (unlist(res) simplifies results for compact presentation).

As a more complicated example, here is a way to perform cross-validation
in batch mode.

> bcast.Rcmd(ff <- function() {

+ library(MLInterfaces)

+ setClass("BatchXval", representation("list"))

+ setMethod("xvalLoop", signature(cluster = "BatchXval"),

+ function(cluster, ...) lapplys)

+ cluster <- new("BatchXval")

+ data(golubMerge)

+ smallG <- golubMerge[200:250,]

+ lk1 <- xval(smallG, "ALL.AML", knnB, xvalMethod = "LOO",

+ group = as.integer(0), cluster = cluster)

+ table(lk1, smallG$ALL.AML)

+ })

function ()
{

library(MLInterfaces)
setClass("BatchXval", representation("list"))
setMethod("xvalLoop", signature(cluster = "BatchXval"), function(cluster,

...) lapplys)

14

cluster <- new("BatchXval")
data(golubMerge)
smallG <- golubMerge[200:250,]
lk1 <- xval(smallG, "ALL.AML", knnB, xvalMethod = "LOO",

group = as.integer(0), cluster = cluster)
table(lk1, smallG$ALL.AML)

}

> bcast.Rcmd(ff())

lk1 ALL AML
ALL 37 10
AML 10 15

� Describe what steps the flow of execution of this program. Which node(s)
read data from disk? How much communication is likely occurring between
nodes?

� Based on experience earlier in the lab, how do you think this program
performs as more nodes are used in the computation?

Let’s take a closer look at lapplys.

> lapplys <- function(X, FUN, ..., comm = 1) {

+ rank <- mpi.comm.rank(comm) + 1

+ n <- mpi.comm.size(comm)

+ tasks <- 1:length(X)

+ mywork <- X[split(tasks, cut(tasks, n))[[rank]]]

+ result <- lapply(mywork, FUN, ...)

+ allgather.Robj(result, comm)

+ }

> mpi.bcast.Robj2slave(lapplys)

The function has nearly the same signature as lapply. The first several lines
make lapplys slightly different on each node that it runs on. The line mywork<-...
divides X into approximately evenly sized lists, and selects a different list for each
node. The next line evaluates FUN for a subset of the original X, with the subset
differing depending on the the node. The final line is an Rmpi extension that
collates results from different nodes.

lapplys makes use of an extension to Rmpi

> allgather.Robj <- function(obj = NULL, comm = 1) {

+ obj <- as.integer(charToRaw(serialize(obj, NULL)))

+ sz <- mpi.allgather(length(obj), 1, integer(mpi.comm.size(comm)),

+ comm)

+ objs <- mpi.allgatherv(obj, 1, integer(sum(sz)),

+ sz, comm)

+ as.list(unlist(lapply(split(as.raw(objs), rep(1:length(sz) -

15

+ 1, sz)), unserialize), recursive = FALSE, use.names = FALSE))

+ }

> mpi.bcast.Robj2slave(allgather.Robj)

Allgather is an MPI concept, where objects from all nodes are collated and
redistributed to all nodes. The allgather.Robj is an extension to this, and is
included here to illustrate how MPI routines can be included in R functions for
easy evaluation.

Finally, bcast.Rcmd is defined on the manager node to broadcast commands
to all workers, and to evaluate the same commands on the manager.

> bcast.Rcmd <- function(cmd = NULL, rank = 0, comm = 1) {

+ if (mpi.comm.rank(comm) == rank) {

+ cmdp <- deparse(substitute(cmd), width.cutoff = 500)

+ cmdp <- paste(cmdp, collapse = "\"\"/")

+ mpi.bcast(x = nchar(cmdp), type = 1, rank = rank,

+ comm = comm)

+ mpi.bcast(x = cmdp, type = 3, rank = rank, comm = comm)

+ eval(cmd, parent.frame())

+ }

+ else {

+ charlen <- mpi.bcast(x = integer(1), type = 1,

+ rank = rank, comm = comm)

+ if (is.character(charlen))

+ parse(text = "break")

+ else {

+ out <- mpi.bcast(x = .Call("mkstr", as.integer(charlen),

+ PACKAGE = "Rmpi"), type = 3, rank = rank,

+ comm = comm)

+ parse(text = unlist(strsplit(out, "\"\"/")))

+ }

+ }

+ }

This command makes use of several R language concepts, including the ability to
deparse and serialize R objects (including functions), and to evaluate R objects
in environments different from the calling environment.

Conclusions

We have covered alot of ground in the lab. Here is a brief summary of the
highlights:

1. There are at present few ‘out of the box’ solutions for parallel programming
in R; you’ll have to grapple with at least some details of parallelization.

2. Not all parts of a script can be usefully parallelized.

16

3. Communication costs can be important, and for large data sets can out-
weigh much of the benefit of faster computation.

4. Even without communication costs, the decrease in compute time is in-
versely proportional to the number of nodes available: adding 1 node to a
1 node cluster doubles potential computational throughput, but adding 1
node to a 10 node cluster matters hardly at all.

5. Repeatability is essential for scientific research, and can be a thorny issue
in a parallel environment.

6. Rmpi provides some functionality for parallel programming, including an
interface to lower-level MPI functions.

7. Useful new parallel techniques introduced in the lab rely on executing a
series of commands as a single program on the remote and manager nodes.

8. This technique is useful in conjunction with a ‘wrapper’ that determines
which nodes engage in expensive computations, and lapplys, an lapply-
like function for distributing work evenly between nodes.

Needless to say, we have barely scratched the surface of possibility. The algo-
rithms presented here are only a fraction of those useful in parallel computation.
They lack any error checking or recovery, and make no attempt to check-point or
otherwise ensure against system failure. These are the directions for exploration.

17

