
Parallel R

M. T. Morgan (mtmorgan@fhcrc.org)

Fred Hutchinson Cancer Research Center
Seattle, WA

http://bioconductor.org

4 August, 2006

1

mtmorgan@fhcrc.org
http://bioconductor.org

Introduction

Why parallel?

� Long computations, or big data.

� Goal is to divide computation burden among processors.

Solutions with R

� Usually, no ‘magic bullet’

– R is not thread safe, all data is in memory.

– Algorithms are written for serial processing.

– Not quite true, e.g., BLAS/LAPACKa libraries.

� Instead: ad hoc solutions with packages such as Rmpi.
ahttp://cran.fhcrc.org/doc/manuals/R-admin.html

2

http://cran.fhcrc.org/doc/manuals/R-admin.html

Problems we will touch on

� Random number generation. Useful to introduce methods and
suggest challenges.

� Interactively exploring ExpressionSet data.

� Cross-validation. Embarassingly parallel : each cross-validation
independent of other iterations. Readily parallelized.

� (Advanced) Bootstrapping. Also embarassingly parallel, but
more work required to parallelize.

� (Advanced) Interfacing C code.

3

Solutions and limitations

� Write an R script for sequential processing; identify bottlenecks
in code execution.

� Modify to allow parallelization.

– Load packages such as Rmpi.

– Redefine or modify functions to distribute calculations.

� Often: develop algorithm interactively, evaluate in BATCH mode.

Limitations.

� Quite a bit of programming required.

� Maximum speedup limited by fraction of parallelizable code.

� Communication costs suggest coarse-grained parallelization.

� Diminishing proportional benefits of additional processors.

4

A first session

> library(Rmpi)

> mpi.spawn.Rslaves(nslaves = 2)

2 slaves are spawned successfully. 0 failed.

master (rank 0, comm 1) of size 3 is running on: gladstone

slave1 (rank 1, comm 1) of size 3 is running on: gladstone

slave2 (rank 2, comm 1) of size 3 is running on: gladstone

� One node (master or manager) coordinates tasks, other nodes
(slaves or workers) perform computations.

� nslaves can be more or less than the number of processing
units (e.g., CPUs) available.

� Each spawned R is a separate process, sharing only a
mechanism of communication with the other R processes.

5

Sending data and commands

> x <- 1:5

> mpi.bcast.Robj2slave(x)

� Efficiently send (broadcast) any R object (including functions).

– Internally: using serialize.

> mpi.remote.exec(search())[1]

$slave1

[1] ".GlobalEnv" "package:Rmpi"

[3] "package:methods" "package:stats"

[5] "package:graphics" "package:grDevices"

[7] "package:utils" "package:datasets"

[9] "Autoloads" "package:base"

� Evaluate and receive results of any R function.

6

Calculations on ExpressionSet

> library(golubEsets)

Loading required package: Biobase

Loading required package: tools

> data(golubMerge)

> exprSet <- exprs(golubMerge)

> res <- apply(exprSet, 1, mad)

> res <- mpi.parApply(exprSet, 1, mad)

� mpi.parApply like apply, but first argument divided between
workers.

� Expensive communication, because portions of exprSet sent
‘over the wire’ to each worker.

7

Another way. . .

> ff <- function(i) mad(exprSet[i,])

> res <- sapply(1:nrow(exprSet), ff)

Parallel code:

> mpi.bcast.cmd(library(golubEsets))

> mpi.bcast.cmd(data(golubMerge))

> mpi.bcast.cmd(exprSet <- exprs(golubMerge))

> res <- mpi.parSapply(1:nrow(exprSet), ff)

� mpi.bcast.cmd like mpi.remote.exec, but no return value.

� Data loaded from local disk.

� mpi.parSapply like sapply; FUN sent to workers.

� Only a vector of length 7129 sent and received.

8

Random numbers

> mpi.remote.exec(runif(4))

X1 X2

1 0.8830365 0.8830365

2 0.6278537 0.6278537

3 0.6288069 0.6288069

4 0.1779682 0.1779682

� Not very random!

� Each node has the same random number seed, so creates the
same random number sequence.

� Parallel computaton, but not very useful: apply the same
program to the same data.

9

> mpi.setup.rngstream()

Loading required package: rlecuyer

> mpi.remote.exec(runif(4))

X1 X2

1 0.1507135 0.5593815

2 0.5115667 0.4183043

3 0.9870720 0.3926978

4 0.1850241 0.6008186

Repeatable research can be very problematic

� Identical results require repeatable random number sequence
and identical order of evaluation.

� Order of evaluation depends on, e.g., cluster size, but also
vaguaries of processs timing.

10

Lab, part 1

Next: toward useful work

11

Cross-validation and machine learning

Can gene expression patterns help identify phenotype?

� Divide known phenotypes into a ‘training’ and ‘test’ set.

� Train a machine learning algorithm with the training set.

� Test the trained alogrithm (comparing predicted and known
phenotypes) with the ‘test’ set.

� Cross-validiation: repeat with other training and test sets.

� Select ‘best’ machine learning algorithm.

Cross-validiation

� Statistically assess machine learning algorithm.

� Each cross-validiation (almost) independent.

12

An example: golubMerge data set

> library(MLInterfaces)

> library(golubEsets)

> data(golubMerge)

� Data set of 7129 gene expression values measured on 72
samples.

� 11 phenotypic measures on each sample, including leukemia
status (ALL or AML).

We will look at a subset of the data:

> smallG <- golubMerge[200:250,]

13

Cross-validation

> lk1 <- xval(smallG, "ALL.AML", knnB, xvalMethod = "LOO",

+ group = as.integer(0))

> table(lk1, smallG$ALL.AML)

lk1 ALL AML

ALL 37 10

AML 10 15

� Classify patient leukemia status using knnB algorithm (k
nearest neighbors).

� xvalMethod: leave-one-out – training set is all but one
sample, testing set the remaining sample.

� Cross-validate with all possible training and test sets.

� Interpretation: 72 cross-validations, 52 correct classifications.

14

Cross-validation in parallel

> mpi.bcast.cmd(library(MLInterfaces))

> lk1 <- xval(smallG, "ALL.AML", knnB, xvalMethod = "LOO",

+ group = as.integer(0), cluster = cluster)

> table(lk1, smallG$ALL.AML)

lk1 ALL AML

ALL 37 10

AML 10 15

� Same results as before (good!)

� MLInterfaces package developers modified xval for easy
parallelization.

� Implementation presented here has high communication costs,
so does not scale too well.

15

Under the hood. . .

> setClass("RmpiXval", representation("list"))

> setMethod("xvalLoop", signature(cluster = "RmpiXval"),

+ function(cluster, ...) mpi.parLapply)

> cluster = new("RmpiXval")

16

So far. . .

� Start a single process, spawn several workers, distribute data,
do analysis, return result.

Room for improvement.

� Interactive.

� Confusing mix of standard and parallel code.

� High communication costs to distribute data.

� Cluster configuration inside R.

� ‘Manager’ never does any real work.

17

Batch programing

Write a script file xval-batch.R. . .

file xval-batch.R

Load Rmpi, setup RmpiXval, xvalLoop (details above)

broadcast and analyze

mpi.bcast.cmd(library(MLInterfaces))

library(MLInterfaces)

library(golubEsets)

data(golubMerge)

smallG <- golubMerge[200:250,]

lk1 <- xval(smallG, "ALL.AML", knnB, xvalMethod = "LOO",

group = as.integer(0), cluster=new("RmpiXval"))

table(lk1, smallG$ALL.AML)

18

. . . and execute (from the command line) in ‘batch’ mode.

% R CMD BATCH xval-batch.R

Output presented in xval-batch.Rout.

� Original issues:

– Interactive. (SOLVED)

– Confusing mix of standard and parallel code. (SOLVED?)

– High communication costs to distribute data.

– Cluster configuration inside R.

– ‘Manager’ never does any real work.

19

A different parallel style

� Often, each node has its own hard drive, and cluster hardware
efficiently moves large data to each drive. So. . .

� Each node determines data to analyze, performs the analysis,
and coordinates the (usually much smaller) results with other
nodes.

file xval-batch-2.R

Load Rmpi, setup RmpiXval2, xvalLoop (details elsewhere)

analyze data

library(MLInterfaces)

library(golubEsets)

data(golubMerge)

smallG <- golubMerge[200:250,]

lk1 <- xval(smallG, "ALL.AML", knnB, xvalMethod = "LOO",

20

group = as.integer(0), cluster=new("RmpiXval2"))

output results, but only once!

if (mpi.comm.rank() == 0)

table(lk1, smallG$ALL.AML)

Control cluster (e.g., using 3 nodes) from the command line:

% mpiexec -n 3 R CMD BATCH xval-batch-2.R

Original issues:

� Interactive. (SOLVED)

� Confusing mix of standard and parallel code. (SOLVED)

� High communication costs to distribute data. (SOLVED)

� Cluster configuration inside R. (SOLVED)

� ‘Manager’ never does any real work. (SOLVED)

21

Under the hood. . .

> setClass("RmpiXval2", representation = list(size = "numeric"))

> setMethod("xvalLoop", signature(cluster = "RmpiXval2"),

+ function(cluster, ...) lapplys)

> cluster <- new("RmpiXval2")

� All nodes start xval, locally prepare data for analysis.

� xvalLoop method partitions work for each node, allows
computation to occur in parallel, collates results.

� All nodes massage and return result.

22

Really under the hood: allgather.Robj

Efficiently collate obj from all nodes.

> allgather.Robj <- function(obj = NULL, comm = 1) {

+ obj <- as.integer(charToRaw(serialize(obj,

+ NULL)))

+ sz <- mpi.allgather(length(obj), 1, integer(mpi.comm.size(comm)),

+ comm)

+ objs <- mpi.allgatherv(obj, 1, integer(sum(sz)),

+ sz, comm)

+ as.list(unlist(lapply(split(as.raw(objs),

+ rep(1:length(sz) - 1, sz)), unserialize),

+ recursive = FALSE, use.names = FALSE))

+ }

23

Really under the hood: lapplys

lapply-like loop: obtain work, do calculations, gather all results.

> lapplys <- function(X, FUN, ..., comm = 1) {

+ rank <- mpi.comm.rank(comm) + 1

+ n <- mpi.comm.size(comm)

+ tasks <- 1:length(X)

+ mywork <- X[split(tasks, cut(tasks, n))[[rank]]]

+ result <- lapply(mywork, FUN, ...)

+ allgather.Robj(result, comm)

+ }

24

Lab, part 2

Next: advanced topics, tools, and

opportunities

25

The bootstrap

> library(boot)

> args(boot)

function (data, statistic, R, sim = "ordinary", stype = "i",

strata = rep(1, n), L = NULL, m = 0, weights = NULL, ran.gen = function(d,

p) d, mle = NULL, ...)

NULL

� Bootstrap often embarassingly parallel, but. . .

� boot not readily accessible to parallelization.

One solution.

� Wrap statistic to distribute computing.

� WARNING: this is a ‘hack’, and will not work for parametric
bootstraps.

26

Bootstrap first attempts

> ratio <- function(d, w) sum(d$x * w)/sum(d$u *

+ w)

> boot(city, ratio, R = 999, stype = "w")

ORDINARY NONPARAMETRIC BOOTSTRAP

Call:

boot(data = city, statistic = ratio, R = 999, stype = "w")

Bootstrap Statistics :

original bias std. error

t1* 1.520313 0.04600615 0.2272670

27

Parallel processing ideas that don’t work.

> mpi.bcast.cmd(library(boot))

> mpi.bcast.Robj2slave(ratio)

> res1 <- mpi.remote.exec(boot(city, ratio, R = 999,

+ stype = "w"))

> sz <- mpi.comm.size()

> res2 <- mpi.parLapply(1:sz, function(i) boot(city,

+ ratio, R = 999/sz, stype = "w"))

� res1: identical bootstraps on each node!

� res2: 999 (ish) bootstraps, but need to be collated!

28

How boot works, and how to parallelize it

How boot works.

� for loop, calling statistic in a pre-determined order.

� For most versions of boot, each call to statistic has no
influence on subsequent program execution.

How to parallelize it.

� Arrange for calls to statistic to be distributed, and. . .

� Manager always recieves results.

� Workers calculate result (expensive) and forwards to manager,
but only occasionally.

� wrap: see the lab for details.

29

A wrapped ratio

Manager ratiow

> ratiow <- wrap(ratio, pseudo = 1)

> ratiow

function (...)

mpi.recv.Robj(mpi.any.source(), tag$result, comm)

<environment: 0x19e1a78>

Worker ratiow

> mpi.bcast.Robj2slave(wrap)

> mpi.bcast.cmd(ratiow <- wrap(ratio, pseudo = 1))

> mpi.remote.exec(ratiow)[1]

$slave1

function (...)

{

30

if (iter%%sz == rank - 1) {

result <- func(...)

mpi.send.Robj(result, 0, tag$result, comm)

}

else result <- pseudo

iter <<- iter + 1

result

}

<environment: 0xc65d40>

> mpi.bcast.cmd(boot(city, ratiow, R = 999, stype = "v"))

> bootp <- boot(city, ratiow, R = 999, stype = "v")

> hist(bootp$t)

31

Histogram of bootp$t

bootp$t

F
re

qu
en

cy

1.4 1.6 1.8 2.0

0
50

10
0

15
0

32

Interfacing C code

R packages.

� Allow user to define collections of useful functions.

� Can include C source code, callable from R

� Package-writing details complex, but available onlinea.

Strategy.

� Call a C function.

� Evaluate arbitrary parallel code, including spawning new
processes.

� Return result.
ahttp://cran.fhcrc.org/doc/manuals/R-exts.html

33

http://cran.fhcrc.org/doc/manuals/R-exts.html

A brief outline: spawning parallel processes

R code

> parallelPi <- function(nodes) {

+ nodes <- as.integer(nodes)

+ if (nodes < 1 || length(nodes) > 1)

+ stop("nodes should be a single integer value")

+ prog <- system.file(file.path("examples",

+ "cpi"), package = "Rpi")

+ .Call("parallelPi", prog, nodes, PACKAGE = "Rpi")

+ }

C function (to calculate π).

SEXP parallelPi(SEXP program, SEXP nodes) {

MPI_Comm intercomm;

int *slaverrcode;

SEXP ans;

34

/* type checking & set-up */

if(!isInteger(nodes) || (length(nodes) != 1))

error("expected a numeric value for number of nodes");

PROTECT(ans = allocVector(REALSXP, 1));

/* parallel */

slaverrcode = (int*) Calloc(nodes, int);

MPI_Comm_spawn(CHAR(STRING_ELT(program, 0)), MPI_ARGV_NULL,

INTEGER(nodes)[0], MPI_INFO_NULL, 0,

MPI_COMM_SELF, &intercomm, slaverrcode);

[...]

UNPROTECT(1);

return(ans);

}

35

Other opportunities: Rmpi-like packages

� rpvm provides an interface to the PVM library (similar to
MPI); additional functionality not as developed as Rmpi.

� snow provides a common interface to point-to-point commands
(like mpi.send.Robj) and functions (like mpi.parLapply) built
on top of Rmpi, rpvm, or native ‘sockets’.

� papply simple mpi.parLapply functionality, used transparently
in serial or parallel modes.

36

NetWorkSpaces

� NetWorkSpacesa allows variables to be stored on a centralized
server, and accessed by multiple instances of R – the illusion of
shared memory.

� Multi-language (R, Python, matlab) support, i.e., possible to
store a variable in matlab, access and manipulate it in R, and
forward the result to Python.

ahttp://nws-r.sourceforge.net

37

http://nws-r.sourceforge.net

Tools used today

Software infrastructure

� MPI (e.g., LAM/MPIa) for linux, MPICH2b for Windows.

� Intentionally clustered computers likely already have MPI.

Rmpi

� Linux: usually biocLite(Rmpi).

� Windows: binaryc download and instructions.

Quantiand

� Linux distribution available on a single bootable CD.

� Contains MPI, R, and most CRAN and Bioconductor packages!
ahttp://www.lam-mpi.org/
bhttp://www-unix.mcs.anl.gov/mpi/mpich/
chttp://www.stats.uwo.ca/faculty/yu/Rmpi/
dhttp://dirk.eddelbuettel.com/quantian.html

38

http://www.lam-mpi.org/
http://www-unix.mcs.anl.gov/mpi/mpich/
http://www.stats.uwo.ca/faculty/yu/Rmpi/
http://dirk.eddelbuettel.com/quantian.html

Ideas for development

� Exposing existing functionality for parallelization, e.g., xval in
MLInterfaces.

� Building high-level abstractions to MPI, e.g., automatically
partitioning work in batch jobs, creatign the illusion of shared
variables.

� Providing creative solutions to interactive parallel
programming.

39

