
Semantic web concepts and tools in Bioconductor

©2006 VJ Carey

July 28, 2006

Contents

1 Introduction 2

2 The RDF model in brief 2

3 Starting out with Rredland 6
3.1 Getting acquainted . 6
3.2 The Open Biological Ontologies . 7

3.2.1 Gene ontology . 7
3.2.2 Exercises 1: Inspecting the triples representation for GO 9
3.2.3 Mouse anatomy . 9
3.2.4 Exercises 2: Assessing anatomical change in mouse by Theiler stage 10
3.2.5 Exercises 3: Parsing and inspecting the MGED OWL ontology . . 10

4 Intact.rdf and protein-protein interaction 11
4.1 Exercises with Intact data . 12

5 Further work 13

6 Appendix: Excerpt from the formal definition of the OWL vocabulary 13

7 Appendix: URI protocol excerpt 15

1

1 Introduction

Semantic web activities of W3C include the formulation of standards to support data
interchange via WWW. Formal models for metadata are a major concern, and the Re-
source Description Framework (RDF) model is the primary product in this area.

A useful resource is Shelly Powers’ monograph Practical RDF (pub. O’Reilly, 2003).
She notes:

... the RDF specification is about metadata – data about data. This is a
key RDF concept; by creating a domain-neutral specification to describe re-
sources, the same specification can then be used with many different domains
but still be processed by the same RDF agents or parsed by the same RDF
parsers. (p. 84)

She also cites the W3C OWL comment on ontologies:

An ontology formally defines a common set of terms that are used to de-
scribe and represent a domain. Ontologies can be used by automated tools
to power advanced services such as more accurate web search, intelligent
software agents, and knowledge management. (p. 228)

Because bioinformatics involves so many problems of data integration from hetero-
geneous and distributed source, tools for remote metadata access and interpretation are
in high demand. A W3C working group on Semantic Web for Life Sciences has been
formed and has had several meetings and active discussion on a public web mailing list.

This lab focuses on the use of R to work with RDF models and their serializations.
RDF models can be used for gene ontology and related ontologies in biology. RDF is
used to encode models in a richer metadata modeling system called OWL (for Web
Ontology Language). Using Bioconductor tools one can parse and transform documents
in OWL and/or RDF to work with emerging metadata standards for life sciences data.

There is no pretense in this lab to provide a comprehensive view of work in semantic
web research for life sciences. The Journal of Web Semantics has some relevant resources.
Much of the work in this area should be considered high risk.

2 The RDF model in brief

RDF prescribes a graphical model for information. Information takes the form of a
directed graph. An arc in the graph consists of a subject node, a directed predicate
edge, and an object node. We will use the term “blank node” to refer to a non-specific,
but uniquely identifiable, element of the graph.

• In the original specification, the subject node was required to be a blank node
or a Uniform Resource Identifier reference (URI reference, defined by Berners-Lee
et al., see appendix section 7.) [This is now updated to be an Internationalized
Resource Identifier (IRI).]

2

• The predicate node is required to be a URI reference

• The subject node is required to be a URI reference, a literal, or a blank node.

For concreteness, we will examine an serialization of such a graph in an R data frame.
The R object gordb is a representation of the entire GO ontology (see section 3.2.1) in
subject-predicate-object form.

> library(Rredland)

> data(gordb)

> gordb[1:3,]

subject predicate

NA (r1154007138r8790r1) http://www.w3.org/2002/07/owl#someValuesFrom

102884 (r1154007138r8790r1) http://www.w3.org/1999/02/22-rdf-syntax-ns#type

NA.1 (r1154007138r8790r2) http://www.w3.org/2002/07/owl#onProperty

object

NA http://www.geneontology.org/owl/#GO_0006310

102884 http://www.w3.org/2002/07/owl#Restriction

NA.1 http://www.geneontology.org/owl/#part_of

These rows involve blank nodes for subjects; to motivate this representation more
straightforwardly, we consider how to understand the structure related to the term
metaphase. The following code exploits knowledge of the fact that a predicate with
substring “label” is used to link the subject [GO term label] to the actual string literal
for the term:

> ac = as.character

> tag = gordb[intersect(grep("\"metaphase\"", ac(gordb[, 3])),

+ grep("label", ac(gordb[, 2]))), 1]

> tag

[1] http://www.geneontology.org/owl/#GO_0051323

24467 Levels: (r1154007138r8790r1) ... http://www.geneontology.org/owl/#part_of

We have discovered the GO symbolic tag used for the simple term “metaphase”. Now
let us look at all RDF arcs involving this tag as subject. (We define a chomp function to
deal with the fact that some comments are very long and inhibit printing of neighboring
strings):

> chomp = function(x) {

+ data.frame(lapply(x, function(x) substring(x, 1, 60)))

+ }

> tmp <- chomp(gordb[grep(tag, gordb[, 1]),])

> tmp

3

subject

1 http://www.geneontology.org/owl/#GO_0051323

2 http://www.geneontology.org/owl/#GO_0051323

3 http://www.geneontology.org/owl/#GO_0051323

4 http://www.geneontology.org/owl/#GO_0051323

predicate

1 http://www.w3.org/2000/01/rdf-schema#label

2 http://www.w3.org/2000/01/rdf-schema#comment

3 http://www.w3.org/1999/02/22-rdf-syntax-ns#type

4 http://www.w3.org/2000/01/rdf-schema#subClassOf

object

1 "metaphase"

2 "Progression through metaphase, the second stage of chromoso

3 http://www.w3.org/2002/07/owl#Class

4 (r1154007138r8790r3402)

Now we see that the metaphase term is said to be a subclass of an entity identified as a
blank node (r1154007138r8790r3402).

> theblank = as.character(tmp[grep("subClassOf", ac(tmp[, 2])),

+ 3])

> theblank

[1] "(r1154007138r8790r3402)"

Let’s look at the arcs for which this blank node is subject:

> chomp(gordb[grep(theblank, ac(gordb[, 1])),])

subject predicate

1 (r1154007138r8790r3402) http://www.w3.org/2002/07/owl#onProperty

2 (r1154007138r8790r3402) http://www.w3.org/2002/07/owl#someValuesFrom

3 (r1154007138r8790r3402) http://www.w3.org/1999/02/22-rdf-syntax-ns#type

object

1 http://www.geneontology.org/owl/#part_of

2 http://www.geneontology.org/owl/#GO_0000279

3 http://www.w3.org/2002/07/owl#Restriction

Now we see that the relationship of GO:0051323 to GO:0000279 is not a simple “is-a”
or subclass; it is a part-of constituting “some values from” the process named by 279.
What is that?

> chomp(gordb[grep("0000279", ac(gordb[, 1])),])

4

subject

1 http://www.geneontology.org/owl/#GO_0000279

2 http://www.geneontology.org/owl/#GO_0000279

3 http://www.geneontology.org/owl/#GO_0000279

4 http://www.geneontology.org/owl/#GO_0000279

predicate

1 http://www.w3.org/2000/01/rdf-schema#label

2 http://www.w3.org/2000/01/rdf-schema#comment

3 http://www.w3.org/1999/02/22-rdf-syntax-ns#type

4 http://www.w3.org/2000/01/rdf-schema#subClassOf

object

1 "M phase"

2 "Progression through M phase, the part of the cell cycle com

3 http://www.w3.org/2002/07/owl#Class

4 (r1154007138r8790r71)

We have now learned that metaphase is a part of M phase. Elaborating the objects of
the comment predicates would teach us more.

In summary, the graphical model we have just explored using R is:

rdfs:label

GO:00051323 ------------------> "metaphase"

owl:subClassOf

------------------> (b1)

rdf:type

(b1) ------------------> owl:restriction

owl:onProperty

------------------> go:part-of

owl:someValuesFrom

------------------> GO:0000279

rdfs:label

GO:0000279 ------------------> "M phase"

We are using tok: prefixes to denote the provenance of a metadata concept. We really
are not supposed to make any assumptions about the meanings of “label”, “type” and so
on – the meanings are fixed by the authorities identified in these namespace qualification
prefixes. We see that some of the metadata terms are coming from RDF schema (rdfs),
some from RDF syntax (rdf) some from owl, some from GO.

There seems to be some artificiality here. Is metaphase properly thought of as a
subclass of M phase? No. The subclass relationship is used to denote a generic hier-
archical subsumption. The details of the relationship are complex and require multiple

5

predicates, so the blank node is used to allow emanation of multiple arcs to specify the
properties defining the relationship.

3 Starting out with Rredland

3.1 Getting acquainted

The Rredland package is a prototype interface to the C-based librdf.org resources for
parsing and modeling information in RDF. librdf (Redland) has a very rich API and
only a small portion of it is exposed at present.

> library(Rredland)

Functions currently available include:

> objects("package:Rredland")

[1] "cleanXSDT" "freeRedl"

[3] "getArcsWith" "getClassElements"

[5] "getClassGraph" "getDatatypeProperties"

[7] "getOWLClasses" "getOWLProperties"

[9] "getOWLSubclasses" "getObjectProperties"

[11] "getPropertiesWithDomain" "getPropertyRange"

[13] "getStatus" "makeRedlURI"

[15] "nodeFromURIString" "openRedlWorld"

[17] "readRDF" "ref"

[19] "restoreBDB" "setStatus"

[21] "size" "world"

A fundamental tool is the import function:

> args(readRDF)

function (uri, storageType = c("internal", "bdb")[1], storageName = "test",

world = ..GredlWorld, stoHash = NULL)

NULL

There are two possible ways to identify an RDF resource for importing. The simplest
approach uses a string URI (e.g., file:some.rdf). Alternatively, one can construct
a librdf URI object and pass that to the import function readRDF. You can do

example(readRDF)

after attaching the library to see some demonstrations.

6

3.2 The Open Biological Ontologies

The OBO project collects a variety of vocabularies with the aim of supporting shared
use of standard terminologies.

3.2.1 Gene ontology

One of the most familiar resources to bioinformaticians is Gene Ontology (GO). GO
is serialized and distributed by OBO in their OBO format. A small excerpt from the
markup is given here:

format-version: 1.0
date: 24:07:2006 10:24
saved-by: gwg
auto-generated-by: OBO-Edit 1.002
subsetdef: goslim_generic "Generic GO slim"
subsetdef: goslim_goa "GOA and proteome slim"
subsetdef: goslim_plant "Plant GO slim"
subsetdef: goslim_yeast "Yeast GO slim"
subsetdef: gosubset_prok "Prokaryotic GO subset"
default-namespace: gene_ontology
remark: geneontology.org version: Revision: 4.30

[Term]
id: GO:0000001
name: mitochondrion inheritance

7

namespace: biological_process
def: "The distribution of mitochondria, including the mitochondrial

genome, into daughter cells after mitosis or meiosis, mediated
by interactions between mitochondria and the cytoskeleton." [GOC:mcc,
PMID:10873824, PMID:11389764]

exact_synonym: "mitochondrial inheritance" []
is_a: GO:0048308 ! organelle inheritance
is_a: GO:0048311 ! mitochondrion distribution

This markup is fairly easy for a human to read and understand. However, program-
matic translation requires some effort or special tools. The XML standard for markup
is advantageous, in that very generic tools for parsing and isolating structures can be
deployed. RDF/XML goes beyond XML in that the tag set and informatin structure is
fully specified by the RDF standard.

A translator from OBO markup to OWL/RDF/XML is available. The translated
excerpt is:

<?xml version="1.0"?>
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
xmlns:owl="http://www.w3.org/2002/07/owl#"
xmlns="http://www.geneontology.org/owl/#"
xml:base="http://www.geneontology.org/owl/">
<owl:Ontology rdf:about=""/>
<owl:Class rdf:ID="GO_0000001">
<rdfs:label>mitochondrion inheritance</rdfs:label>
<rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string">The
distribution of mitochondria, including the mitochondrial genome,
into daughter cells after mitosis or meiosis, mediated by interactions
between mitochondria and the cytoskeleton.</rdfs:comment>

<!-- organelle inheritance -->
<rdfs:subClassOf rdf:resource="#GO_0048308"/>

<!-- mitochondrion distribution -->
<rdfs:subClassOf rdf:resource="#GO_0048311"/>

</owl:Class>

There is extensive use of namespace qualification. You can find the definition of the
OWL vocabulary defined in RDF at

http://www.w3.org/2002/07/owl

and see the appendix section 6 for an excerpt.

8

3.2.2 Exercises 1: Inspecting the triples representation for GO

1. Your copy of the Rredland library includes a data.frame gordb that represents a
parsed and translated version of the RDF model for GO. Here again are the first
three records:

> data(gordb)

> gordb[1:3,]

subject predicate
NA (r1154007138r8790r1) http://www.w3.org/2002/07/owl#someValuesFrom
102884 (r1154007138r8790r1) http://www.w3.org/1999/02/22-rdf-syntax-ns#type
NA.1 (r1154007138r8790r2) http://www.w3.org/2002/07/owl#onProperty

object
NA http://www.geneontology.org/owl/#GO_0006310
102884 http://www.w3.org/2002/07/owl#Restriction
NA.1 http://www.geneontology.org/owl/#part_of

Note that the order of rows is completely arbitrary. In this case, we see a number
of blank nodes; section 2 above illustrates interpretation of such structures.

Emulate the programming in section 2 to identify the immediate ancestor of apop-
tosis in the GO graph. You can use the functions

> arcsWsubj = function(subj) gordb[grep(subj, ac(gordb[, 1])),

+]

> term2tag = function(term) {

+ tmp = gordb[grep(term, ac(gordb[, 3])),]

+ tmp[grep("label", ac(tmp[, 2])), 1]

+ }

to find this tag. Note that these are very specialized functions that only work if
there is a gordb defined.

2. How can we find the children of the apoptosis term in the GO graph?

3.2.3 Mouse anatomy

The EMAP.obo ontology for mouse developmental anatomy is self describing, with the
following remark near the top of the document:

The Anatomical Dictionary for Mouse Development has been developed
at the Department of Anatomy, University of Edinburgh, Scotland and the
MRC Human Genetics Unit, Edinburgh as part of the Edinburgh Mouse
Atlas project (EMAP), in collaboration with the Gene Expression (GXD)

9

project at MGI, The Jackson Laboratory, Bar Harbor, ME. Copyright 1998-
2002 University of Edinburgh (UK) and MRC (UK). Questions and com-
ments should be sent to Jonathan Bard (J.Bard@ed.ac.uk) The file

’Mouse anatomy by time xproduct’
contains the stage-specific anatomical structures. The anatomical struc-

tures for each developmental stage are listed hierarchically in the form of a
tree structure, using part-of relationships. The developmental stage (Theiler
stage = TS) is displayed followed by the ’print name’ for the anatomical
structure. The print names are generated by GXD to unambiguously identify
anatomical structures for the user. If the name for a node is unambiguous,
only the node name itself is displayed. Otherwise, the node’s name is followed
by a minimal number of parent node’s names to provide sufficient context.
The EMAP id refers to the respective stage-specific anatomical structure.

3.2.4 Exercises 2: Assessing anatomical change in mouse by Theiler stage

Again, a data frame has been cooked for you providing the EMAP ontology in triples
form.

> data(EMAPdf)

> EMAPdf[1:3,]

subject predicate

NA (r1154000089r7521r1) http://www.w3.org/2002/07/owl#someValuesFrom

82385 (r1154000089r7521r1) http://www.w3.org/1999/02/22-rdf-syntax-ns#type

NA.1 (r1154000089r7521r2) http://www.w3.org/2002/07/owl#onProperty

object

NA http://www.geneontology.org/owl/#EMAP_0

82385 http://www.w3.org/2002/07/owl#Restriction

NA.1 http://www.geneontology.org/owl/#part_of

1. At what TS stage does Reichert’s membrane emerge, and when does it disappear?

2. How many anatomical features are static between TS18 and TS19? Identify some
features present in TS18 that are gone at TS19.

3. At what Theiler stage does pigmented retinal epithelium emerge?

4. Emulate the graph at the end of section 2 to illustrate the relationship between
EMAP 1904 and EMAP 1905.

3.2.5 Exercises 3: Parsing and inspecting the MGED OWL ontology

You can find the MGEDOntology (version 1) in OWL format as follows:

10

> mgfi = system.file("RDF/MGEDOntology.owl", package = "Rredland")

> fiu = paste("file:", mgfi, sep = "")

> substr(readLines(mgfi, n = 15), 1, 70)

[1] "<?xml version=\"1.0\"?>"

[2] "<rdf:RDF"

[3] " xmlns:protege=\"http://protege.stanford.edu/plugins/owl/protege#\""

[4] " xmlns:rdf=\"http://www.w3.org/1999/02/22-rdf-syntax-ns#\""

[5] " xmlns:xsd=\"http://www.w3.org/2001/XMLSchema#\""

[6] " xmlns:rdfs=\"http://www.w3.org/2000/01/rdf-schema#\""

[7] " xmlns:owl=\"http://www.w3.org/2002/07/owl#\""

[8] " xmlns:daml=\"http://www.daml.org/2001/03/daml+oil#\""

[9] " xmlns:dc=\"http://purl.org/dc/elements/1.1/\""

[10] " xmlns=\"http://mged.sourceforge.net/ontologies/MGEDOntology.owl#\""

[11] " xml:base=\"http://mged.sourceforge.net/ontologies/MGEDOntology.owl\">"

[12] " <owl:Ontology rdf:about=\"\">"

[13] " <dc:title rdf:datatype=\"http://www.w3.org/2001/XMLSchema#string\""

[14] " >The MGED Ontology</dc:title>"

[15] " <dc:creator rdf:datatype=\"http://www.w3.org/2001/XMLSchema#string\""

1. Use readRDF to import the OWL model. How many statements are there?

2. Create the associated data.frame. This employs the as(x, "data.frame") pat-
tern. Emulate the graph diagram at the end of section 2 to illustrate the relation-
ship between the DiseaseLocation class and primary site. There are four blank
nodes involved.

4 Intact.rdf and protein-protein interaction

A fragment of the intact database, serialized to RDF by Eric Jain of ISB-CH, is provided.

> infi = system.file("RDF/partIntact.rdf", package = "Rredland")

> fii = paste("file:", infi, sep = "")

> substr(readLines(infi, n = 15), 1, 70)

[1] "<?xml version='1.0' encoding='UTF-8'?>"
[2] "<rdf:RDF xmlns=\"urn:lsid:uniprot.org:ontology:\" xmlns:rdf=\"http://www."

[3] "<rdf:Description rdf:about=\"urn:lsid:uniprot.org:intact:EBI-300303\">"

[4] "<rdf:type rdf:resource=\"urn:lsid:uniprot.org:ontology:Interaction\"/>"

[5] "<rdfs:label>aret-apt-1</rdfs:label>"

[6] "<rdfs:comment>Interaction detected by coIP</rdfs:comment>"

[7] "<participant rdf:resource=\"urn:lsid:uniprot.org:uniprot:O16114\"/>"

[8] "<participant rdf:resource=\"urn:lsid:uniprot.org:uniprot:O18409\"/>"

11

[9] "</rdf:Description>"

[10] "<rdf:Description rdf:about=\"urn:lsid:uniprot.org:intact:EBI-297969\">"

[11] "<rdf:type rdf:resource=\"urn:lsid:uniprot.org:ontology:Interaction\"/>"

[12] "<rdfs:label>hoxb1-pbx1-1</rdfs:label>"

[13] "<rdfs:comment>Interaction detected by X-ray crystallography.</rdfs:com"

[14] "<participant rdf:resource=\"urn:lsid:uniprot.org:uniprot:P14653\"/>"

[15] "<participant rdf:resource=\"urn:lsid:uniprot.org:uniprot:P40424\"/>"

We can get a feel for the character of the resource as follows, after parsing and converting
to a triples data frame:

> dint[1:5,]

subject

1 urn:lsid:uniprot.org:intact:EBI-300303

2 urn:lsid:uniprot.org:intact:EBI-300303

3 urn:lsid:uniprot.org:intact:EBI-300303

4 urn:lsid:uniprot.org:intact:EBI-300303

5 urn:lsid:uniprot.org:intact:EBI-300303

predicate

1 http://www.w3.org/1999/02/22-rdf-syntax-ns#type

2 http://www.w3.org/2000/01/rdf-schema#label

3 http://www.w3.org/2000/01/rdf-schema#comment

4 urn:lsid:uniprot.org:ontology:participant

5 urn:lsid:uniprot.org:ontology:participant

object

1 urn:lsid:uniprot.org:ontology:Interaction

2 "aret-apt-1"

3 "Interaction detected by coIP"

4 urn:lsid:uniprot.org:uniprot:O16114

5 urn:lsid:uniprot.org:uniprot:O18409

To study the protein-protein interaction graph accumulated over the experiments, we
focus attention on the triples with participant predicates, split them by the interaction
label values, and join participants when interaction is declared.

4.1 Exercises with Intact data

1. Examine the comment fields. How would you add additional structure to reflect
specific experimental approaches, distinguishing for example Y2H and GST pull-
down? Does the existing RDF data need to be altered in any way?

2. Create the interaction graph. Use the graph package to assess the degree distribu-
tion. Use Rgraphviz to plot.

12

3. Read the data using the BDB hash representation. Look at the sizes of the con-
structed hashes and compare to the size of the saved data frame.

5 Further work

On suitable hardware, you could analyze the entire intact database. Some work to
analyze the comment fields could lead to added value by distinguishing experiment types
systematically.

The BioPAX ontologies (level1 and 2) are provided in OWL format in the Rredland
package. Explore them. Obtain the Reactome serializations based on BioPAX ontologies,
and evaluate their utility.

Berners-Lee’s closed world machine (google on that phrase) is an interesting simple
resource for rule-based inference on RDF models.

Creating OWL/RDF models de novo is accomplished conveniently using protege
(protege.stanford.edu).

6 Appendix: Excerpt from the formal definition of

the OWL vocabulary

<?xml version="1.0"?>
<!DOCTYPE rdf:RDF [

<!ENTITY rdf "http://www.w3.org/1999/02/22-rdf-syntax-ns#" >
<!ENTITY rdfs "http://www.w3.org/2000/01/rdf-schema#" >
<!ENTITY xsd "http://www.w3.org/2001/XMLSchema#" >
<!ENTITY owl "http://www.w3.org/2002/07/owl#" >

]>

<rdf:RDF
xmlns ="&owl;"
xmlns:owl ="&owl;"
xml:base ="http://www.w3.org/2002/07/owl"
xmlns:rdf ="&rdf;"
xmlns:rdfs="&rdfs;"

>

<Ontology rdf:about="">
<imports rdf:resource="http://www.w3.org/2000/01/rdf-schema"/>
<rdfs:isDefinedBy rdf:resource="http://www.w3.org/TR/2004/REC-owl-semantics-20040210/" />
<rdfs:isDefinedBy rdf:resource="http://www.w3.org/TR/2004/REC-owl-test-20040210/" />
<rdfs:isDefinedBy rdf:resource="http://www.w3.org/TR/2004/REC-owl-features-20040210/" />
<rdfs:comment>This file specifies in RDF Schema format the
built-in classes and properties that together form the basis of

13

the RDF/XML syntax of OWL Full, OWL DL and OWL Lite.
We do not expect people to import this file
explicitly into their ontology. People that do import this file
should expect their ontology to be an OWL Full ontology.

</rdfs:comment>
<versionInfo>10 February 2004, revised $Date: 2006/07/28 05:34:42 $</versionInfo>
<priorVersion rdf:resource="http://www.daml.org/2001/03/daml+oil"/>

</Ontology>

<rdfs:Class rdf:ID="Class">
<rdfs:label>Class</rdfs:label>
<rdfs:subClassOf rdf:resource="&rdfs;Class"/>

</rdfs:Class>

<Class rdf:ID="Thing">
<rdfs:label>Thing</rdfs:label>
<unionOf rdf:parseType="Collection">
<Class rdf:about="#Nothing"/>
<Class>
<complementOf rdf:resource="#Nothing"/>

</Class>
</unionOf>

</Class>

<Class rdf:ID="Nothing">
<rdfs:label>Nothing</rdfs:label>
<complementOf rdf:resource="#Thing"/>

</Class>

<rdf:Property rdf:ID="equivalentClass">
<rdfs:label>equivalentClass</rdfs:label>
<rdfs:subPropertyOf rdf:resource="&rdfs;subClassOf"/>
<rdfs:domain rdf:resource="#Class"/>
<rdfs:range rdf:resource="#Class"/>

</rdf:Property>

<rdf:Property rdf:ID="disjointWith">
<rdfs:label>disjointWith</rdfs:label>
<rdfs:domain rdf:resource="#Class"/>
<rdfs:range rdf:resource="#Class"/>

</rdf:Property>

<rdf:Property rdf:ID="equivalentProperty">
<rdfs:label>equivalentProperty</rdfs:label>
<rdfs:subPropertyOf rdf:resource="&rdfs;subPropertyOf"/>

14

</rdf:Property>

<-- ... -->
</rdf:RDF>

7 Appendix: URI protocol excerpt

Berners-Lee, et. al. Standards Track [Page 11]

RFC 2396 URI Generic Syntax August 1998

3. URI Syntactic Components

The URI syntax is dependent upon the scheme. In general, absolute
URI are written as follows:

<scheme>:<scheme-specific-part>

An absolute URI contains the name of the scheme being used (<scheme>)
followed by a colon (":") and then a string (the <scheme-specific-
part>) whose interpretation depends on the scheme.

The URI syntax does not require that the scheme-specific-part have
any general structure or set of semantics which is common among all
URI. However, a subset of URI do share a common syntax for
representing hierarchical relationships within the namespace. This
"generic URI" syntax consists of a sequence of four main components:

<scheme>://<authority><path>?<query>

each of which, except <scheme>, may be absent from a particular URI.
For example, some URI schemes do not allow an <authority> component,
and others do not use a <query> component.

absoluteURI = scheme ":" (hier_part | opaque_part)

URI that are hierarchical in nature use the slash "/" character for
separating hierarchical components. For some file systems, a "/"
character (used to denote the hierarchical structure of a URI) is the
delimiter used to construct a file name hierarchy, and thus the URI
path will look similar to a file pathname. This does NOT imply that

15

the resource is a file or that the URI maps to an actual filesystem
pathname.

hier_part = (net_path | abs_path) ["?" query]

net_path = "//" authority [abs_path]

abs_path = "/" path_segments

URI that do not make use of the slash "/" character for separating
hierarchical components are considered opaque by the generic URI
parser.

opaque_part = uric_no_slash *uric

uric_no_slash = unreserved | escaped | ";" | "?" | ":" | "@" |
"&" | "=" | "+" | "$" | ","

We use the term <path> to refer to both the <abs_path> and
<opaque_part> constructs, since they are mutually exclusive for any
given URI and can be parsed as a single component.

3.1. Scheme Component

Just as there are many different methods of access to resources,
there are a variety of schemes for identifying such resources. The
URI syntax consists of a sequence of components separated by reserved
characters, with the first component defining the semantics for the
remainder of the URI string.

Scheme names consist of a sequence of characters beginning with a
lower case letter and followed by any combination of lower case
letters, digits, plus ("+"), period ("."), or hyphen ("-"). For
resiliency, programs interpreting URI should treat upper case letters
as equivalent to lower case in scheme names (e.g., allow "HTTP" as
well as "http").

scheme = alpha *(alpha | digit | "+" | "-" | ".")

Relative URI references are distinguished from absolute URI in that
they do not begin with a scheme name. Instead, the scheme is
inherited from the base URI, as described in Section 5.2.

16

3.2. Authority Component

Many URI schemes include a top hierarchical element for a naming
authority, such that the namespace defined by the remainder of the
URI is governed by that authority. This authority component is
typically defined by an Internet-based server or a scheme-specific
registry of naming authorities.

authority = server | reg_name

The authority component is preceded by a double slash "//" and is
terminated by the next slash "/", question-mark "?", or by the end of
the URI. Within the authority component, the characters ";", ":",
"@", "?", and "/" are reserved.

An authority component is not required for a URI scheme to make use
of relative references. A base URI without an authority component
implies that any relative reference will also be without an authority
component.

3.2.1. Registry-based Naming Authority

The structure of a registry-based naming authority is specific to the
URI scheme, but constrained to the allowed characters for an
authority component.

reg_name = 1*(unreserved | escaped | "$" | "," |
";" | ":" | "@" | "&" | "=" | "+")

3.2.2. Server-based Naming Authority

URL schemes that involve the direct use of an IP-based protocol to a
specified server on the Internet use a common syntax for the server
component of the URI's scheme-specific data:

<userinfo>@<host>:<port>

where <userinfo> may consist of a user name and, optionally, scheme-
specific information about how to gain authorization to access the
server. The parts "<userinfo>@" and ":<port>" may be omitted.

server = [[userinfo "@"] hostport]

The user information, if present, is followed by a commercial at-sign

17

"@".

userinfo = *(unreserved | escaped |
";" | ":" | "&" | "=" | "+" | "$" | ",")

Some URL schemes use the format "user:password" in the userinfo
field. This practice is NOT RECOMMENDED, because the passing of
authentication information in clear text (such as URI) has proven to
be a security risk in almost every case where it has been used.

The host is a domain name of a network host, or its IPv4 address as a
set of four decimal digit groups separated by ".". Literal IPv6
addresses are not supported.

hostport = host [":" port]
host = hostname | IPv4address
hostname = *(domainlabel ".") toplabel ["."]
domainlabel = alphanum | alphanum *(alphanum | "-") alphanum
toplabel = alpha | alpha *(alphanum | "-") alphanum
IPv4address = 1*digit "." 1*digit "." 1*digit "." 1*digit
port = *digit

Hostnames take the form described in Section 3 of [RFC1034] and
Section 2.1 of [RFC1123]: a sequence of domain labels separated by
".", each domain label starting and ending with an alphanumeric
character and possibly also containing "-" characters. The rightmost
domain label of a fully qualified domain name will never start with a
digit, thus syntactically distinguishing domain names from IPv4
addresses, and may be followed by a single "." if it is necessary to
distinguish between the complete domain name and any local domain.
To actually be "Uniform" as a resource locator, a URL hostname should
be a fully qualified domain name. In practice, however, the host
component may be a local domain literal.

Note: A suitable representation for including a literal IPv6
address as the host part of a URL is desired, but has not yet been
determined or implemented in practice.

The port is the network port number for the server. Most schemes
designate protocols that have a default port number. Another port
number may optionally be supplied, in decimal, separated from the
host by a colon. If the port is omitted, the default port number is
assumed.

3.3. Path Component

18

The path component contains data, specific to the authority (or the
scheme if there is no authority component), identifying the resource
within the scope of that scheme and authority.

19

	Introduction
	The RDF model in brief
	Starting out with Rredland
	Getting acquainted
	The Open Biological Ontologies
	Gene ontology
	Exercises 1: Inspecting the triples representation for GO
	Mouse anatomy
	Exercises 2: Assessing anatomical change in mouse by Theiler stage
	Exercises 3: Parsing and inspecting the MGED OWL ontology

	Intact.rdf and protein-protein interaction
	Exercises with Intact data

	Further work
	Appendix: Excerpt from the formal definition of the OWL vocabulary
	Appendix: URI protocol excerpt

