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DMD: Digital Mirror Device
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Feature Formats

‣ Flexibility allows different feature sizes and spacing
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Feature Formats

‣ Can produce custom patterns as well
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Multiple Feature Formats

‣ Can have multiple feature sizes and densities on a 
single array 
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Analysis Considerations/Challenges

‣ Expression

■ feature sizes/density

■ replicate probe sets

■ variable number of probes

■ variable length probes

■ mismatches

■ one or two color
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Analysis Considerations/Challenges

‣ Genomic tiling

■ replicate probe sets

■ variable probe spacing - 1 bp to 6 kb

■ gaps due to repeat masking or uniqueness

■ mismatches

■ one or two color
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Upcoming products and 
platforms
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Path to Higher Probe Density

TODAY
786,000 mirrors

1:2 layout
390,000 features/array

Q1 ‘07
4,200,000 mirrors

1:2 layout
2,100,000 features/array

NimbleChip HD2

Future
4,200,000 mirrors

1:1 layout
4,200,000 features/array

NimbleChip HD4
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HD2

‣ 2.1 million feature arrays will target genomic tiling 
applications first

‣ 100 bp step for entire human genome in 7 arrays

■ ChIP

■ CGH

■ Methylation

■ Expression tiling (future)
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HD2 Data Analysis

‣ Need to evaluate the impact of processing 6X as much 
data

‣ Still un-resolved issues

■ Coordinates for 3 DMDs - 1 or 3 sets

■ Continuous or discontinuous coordinates - do we 
account for the gap between arrays.

■ Randomization issues - across entire feature space 
or within each DMD.



High Definition GenomicsSM

Path to Higher Throughput

TODAY
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Path to Higher Throughput

TODAY
One hybridization chamber

Q4 ‘06
Multiplex hybridization chambers

2-plex
150K features

4-plex
70K feature

6-plex
40K features
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Combination of 4,200,000 features and multiplex will 
create a 12plex with ~250,000 features/subarray

Path to Higher Throughput
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Multiplex Arrays

‣ Current plan is to “explode” multiplex arrays into 
separate arrays with their own identifiers at scan time.

‣ Existing software will not have to be changed to 
support multiplex format

‣ All current applications will be supported in multiplex 
format
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Other Products Coming

‣ 2-color expression arrays

■ new protocols for synthesizing full-length cDNA

■ random prime labeling

❖ loss of strand information
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Empirical Probe 
Optimization
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Goal

‣ For each gene in a bacterial genome, find N optimal 
probes so that the expression profile of the entire 
genome may be assayed in a single array of  
NimbleGen’s multiplex format

■ N is generally 2-7 probes

■ previous studies have shown that 2-3 probes is 
sufficient (as long as they are the “right” ones)
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Approach

‣ From previous studies, we know the following:

■ Bright probes are not always the best

❖ While bright, they are often unresponsive

■ Reproducible probes are not always the best

❖ While consistent, they sometimes do not respond to changing 
concentrations

‣ The only way to find probes that measure changes in 
DNA concentration is to subject them to different 
concentrations and watch how they respond
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Approach

‣ Hybridize probes to different genomic DNA 
concentrations and select those that are bright, 
reproducible, and follow the concentration 
curve.

■ Ensures that all probes see equal copy number

‣ Need normalization controls to ensure that we can 
get the appropriate concentration series

■ Genomic DNA from another species used as a standard

■ Random probes used as low end standard
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Initial Probe Selection

‣ Generate all possible 24-mer probes from CDS features

‣ Gather normal information for standard probe selection 

■ Uniqueness check against both strands of whole genome

‣ E. coli probes are checked against target genome

‣ Organism probes not checked against E. coli. Hyb will eliminate 
those that, by chance, share similarity to E. coli. 
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Initial Probe Selection

‣ Do standard probe selection

‣ 4-5X oversampling so we have enough probes to 
evaluate

‣ E. coli normalization probes = 15% of total

‣ Random probes = 5% of total
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Normalization

‣ Data collected from 0.25X,1X, and 4X concentration 
series

‣ Arrays scanned at 3 PMTs – 50V apart

‣ Signal intensities rearranged by replicate, one column 
per replicate per array

■ 2700 genes; 21 probes per gene

■ 6 replicate blocks; 2 arrays per concentration

‣ vsn normalization used to correct array data.

■ E. coli and random probes used to generate parameters which 
are then assigned to the organism probes
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Organism probes after variance stabilizing normalization (PMT3)

Organism probes before variance stabilizing normalization (PMT3)
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Optimized Probe Selection

‣ Want probes that best follow the dilution series, and have 
maximal brightness and consistency

‣ Weighted linear regression fitted to the dilution series for each 
probe

■ log2 transformation and weighted linear regression were used to minimize 
the effect of outliers on the data.

■ weights calculated by fitting the line, calculating the residuals, and then 
using the weights from a tukey biweight mean calculation on the residuals 
to fit a weighted regression. 

‣ Tukey biweight mean of the signal intensities of the probe at 
the 4X dilution represents the overall signal intensity of the 
probe. 
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Optimized Probe Selection

‣ Have four main parameters for second round of rank 
selection:

■ Slope of the regression line (range: 0 to 1)

❖ Never reaches theoretical maximum of 2, and sometimes is negative

■ r2 of the regression line (range: 0 to 1)

■ log2 signal intensity at 4X concentration (range: 0 to 16)

■ log2 position from 3’ end (range: 0 to 13)

‣ Goal is to have the first three make the major 
contributions, contributing ~1/3 to the score.

■ Position is secondary,  primary selection provides 
spacing
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Optimized Probe Selection: Score Contributions

‣ slope * 100 = 0-100 contribution

‣ r2 * 100 = 0-100 contribution

‣ log2 signal * 6 = 0-96 contribution

‣ log2 position * -3 = -39-0 contribution

■ after first probe, penalty becomes a bonus as 
distance is measured from nearest selected probe



High – Definition Genomics SM

Example Data

DNA Concentration
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Slope versus Signal Intensity

‣ The probes that are 
best at following the 
concentration series 
span a 16-fold range 
in intensity



High Definition GenomicsSM

r2 versus Signal Intensity

‣ The most 
reproducible probes 
span a 250-fold range 
of intensities
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Slope versus r2

‣ Probes that best 
follow the 
concentration series 
are also some of the 
most reproducible
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Side-by-side Comparison

‣ Optimized probe 
set vs original 
probe set

‣ 2700 genes; 5 
probes per gene

‣ Two RNA samples

‣ 12plex design

1 1 1

2 2 2

1 1 1

2 2 2

opt

orig
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Probe Level Comparison

‣ Data separated by 
well

‣ Normalized by 
sample/probe set 
combination

‣ Median signal 
intensity of 
optimized probes 
~4X greater than 
non-optimized 30
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Expression Summary

‣ Expression summary 
using RMA

‣ Median expression 
level also 4X
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Differential Expression
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Suboptimal Example
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in silico vs empirical

Original
Rank 1−5

Original
Rank 6−21

Optimized Set

13410

42912

10193

13410

3217

0
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Conclusions

‣ Empirical performance preferred over in silico 
prediction

‣ To find probes that measure concentration changes, 
must submit them to changing concentrations

‣ Useful for bacterial expression and genomic tiling 
applications (CGH, ChIP, methylation, exon arrays)

■ greater utility when probe choice is not constrained

‣ Less useful for eukaryotic expression

■ probe sequences that span splice junctions are not 
present in genomic sample
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