

High Definition Genomics

Todd Richmond, PhD NimbleGen Systems, Inc.

- Upcoming products and platforms
- Empirical Probe Optimization

NimbleGen Array Synthesis and Design

Flexibility allows different feature sizes and spacing

Can produce custom patterns as well

PM		MM		MM	
	MM		MM		PM
MM		PM		MM	
	MM		MM		MM

MM		MM				
	PM		MM		MM	
MM		MM		PM		
			MM		MM	

Multiple Feature Formats

Can have multiple feature sizes and densities on a single array

Analysis Considerations/Challenges

Expression

- feature sizes/density
- replicate probe sets
- variable number of probes
- variable length probes
- mismatches
- one or two color

Analysis Considerations/Challenges

Genomic tiling

- replicate probe sets
- variable probe spacing I bp to 6 kb
- gaps due to repeat masking or uniqueness
- mismatches
- one or two color

Upcoming products and platforms

Path to Higher Probe Density

786,000 mirrors I:2 layout 390,000 features/array

Path to Higher Probe Density

786,000 mirrors I:2 layout 390,000 features/array

Path to Higher Probe Density

786,000 mirrors I:2 layout 390,000 features/array

4,200,000 mirrors I:I layout 4,200,000 features/array

- 2.1 million feature arrays will target genomic tiling applications first
 - I00 bp step for entire human genome in 7 arrays
 - ChIP
 - CGH
 - Methylation
 - Expression tiling (future)

- Need to evaluate the impact of processing 6X as much data
- Still un-resolved issues
- Coordinates for 3 DMDs I or 3 sets
- Continuous or discontinuous coordinates do we account for the gap between arrays.
- Randomization issues across entire feature space or within each DMD.

Path to Higher Throughput

Combination of 4,200,000 features and multiplex will create a 12plex with ~250,000 features/subarray

Multiplex Arrays

- Current plan is to "explode" multiplex arrays into separate arrays with their own identifiers at scan time.
- Existing software will not have to be changed to support multiplex format
- All current applications will be supported in multiplex format

Other Products Coming

- 2-color expression arrays
- new protocols for synthesizing full-length cDNA
- random prime labeling
 - Ioss of strand information

Empirical Probe Optimization

- For each gene in a bacterial genome, find N optimal probes so that the expression profile of the entire genome may be assayed in a single array of NimbleGen's multiplex format
- N is generally 2-7 probes
- previous studies have shown that 2-3 probes is sufficient (as long as they are the "right" ones)

- From previous studies, we know the following:
- Bright probes are not always the best
 - While bright, they are often unresponsive
- Reproducible probes are not always the best
 - While consistent, they sometimes do not respond to changing concentrations
- The only way to find probes that measure changes in DNA concentration is to subject them to different concentrations and watch how they respond

- Hybridize probes to different genomic DNA concentrations and select those that are bright, reproducible, **and follow the concentration curve**.
- Ensures that all probes see equal copy number
- Need normalization controls to ensure that we can get the appropriate concentration series
 - Genomic DNA from another species used as a standard
 - Random probes used as low end standard

- Generate all possible 24-mer probes from CDS features
- Gather normal information for standard probe selection
- Uniqueness check against both strands of whole genome
- E. coli probes are checked against target genome
- Organism probes not checked against E. coli. Hyb will eliminate those that, by chance, share similarity to E. coli.

Do standard probe selection

- 4-5X oversampling so we have enough probes to evaluate
- E. coli normalization probes = 15% of total
- Random probes = 5% of total

Normalization

- Data collected from 0.25X, IX, and 4X concentration series
- Arrays scanned at 3 PMTs 50V apart
- Signal intensities rearranged by replicate, one column per replicate per array
 - 2700 genes; 21 probes per gene
 - 6 replicate blocks; 2 arrays per concentration
 - vsn normalization used to correct array data.
 - E. coli and random probes used to generate parameters which are then assigned to the organism probes

11 EE EE EE EE EE

Ecoli probes after variance stabilizing normalization (PMT3)

Random probes before variance stabilizing normalization (PMT3)

minati

Random probes after variance stabilizing normalization (PMT3)

III III III

11 BE CO 18 BE AN 1

- Want probes that best follow the dilution series, and have maximal brightness and consistency
- Weighted linear regression fitted to the dilution series for each probe
- log2 transformation and weighted linear regression were used to minimize the effect of outliers on the data.
- weights calculated by fitting the line, calculating the residuals, and then using the weights from a tukey biweight mean calculation on the residuals to fit a weighted regression.
- Tukey biweight mean of the signal intensities of the probe at the 4X dilution represents the overall signal intensity of the probe.

- Have four main parameters for second round of rank selection:
- Slope of the regression line (range: 0 to 1)
 - Never reaches theoretical maximum of 2, and sometimes is negative
- r^2 of the regression line (range: 0 to 1)
- log₂ signal intensity at 4X concentration (range: 0 to 16)
- log₂ position from 3' end (range: 0 to 13)
- Goal is to have the first three make the major contributions, contributing ~1/3 to the score.
 - Position is secondary, primary selection provides spacing

- slope * 100 = 0-100 contribution
- $r^{2} * 100 = 0.100$ contribution
- $\log_2 \text{ signal } * 6 = 0.96 \text{ contribution}$
- $\log_2 position * -3 = -39-0$ contribution
- after first probe, penalty becomes a bonus as distance is measured from nearest selected probe

Example Data

Slope versus Signal Intensity

The probes that are best at following the concentration series span a 16-fold range in intensity

Slope versus Signal Intensity

r^2 versus Signal Intensity

R-squared versus Signal Intensity

Slope versus r^2

Probes that best follow the concentration series are also some of the most reproducible

Slope versus R-squared value

Side-by-side Comparison

- Optimized probe set vs original probe set
- 2700 genes; 5 probes per gene
- Two RNA samples
- I2plex design

Probe Level Comparison

- Data separated by well
- Normalized by sample/probe set combination
- Median signal intensity of optimized probes ~4X greater than non-optimized

Sample 2 Probe Level Signal

High Definition GenomicsSM

30403_A2 30403_B2 30403_C2

30403_C4

Expression Summary

nhleGen®

Differential Expression

.

Suboptimal Example

Conclusions

- Empirical performance preferred over *in silico* prediction
- To find probes that measure concentration changes, must submit them to changing concentrations
- Useful for bacterial expression and genomic tiling applications (CGH, ChIP, methylation, exon arrays)
 - greater utility when probe choice is not constrained
 - Less useful for eukaryotic expression
 - probe sequences that span splice junctions are not present in genomic sample

Acknowledgments

Bioinformatics

- Steve Smith
- Michael Hogan
- Kyle Munn
- Melodee Patterson
- Nan Jiang
- Michael Molla
- Jacob Kitzman

- Roland Green
- Rebecca Selzer
- Tom Albert
- Jason Norton
- Business Development
- Emile Nuwaysir