
How to Use SQLite with R

Seth Falcon

January 18, 2006

1 Introduction

This vignette introduces SQLite, a self-contained relational database engine.
The excercises provide a mini-tutorial on relational databases and use of struc-
tured query language (SQL).

We begin by reviewing relational database system (RDBMS) concepts, in-
troducing structured query language (SQL), and describing features of SQLite.
From there, we will work through an extended example in which we will create
a SQLite database containing annotation data for the Affymetrix hgu95av2 mi-
croarray chip. The example will demonstrate database creation and querying,
basic SQL, and techniques for importing large amounts of data into SQLite.

2 An overview of Relational Database Mange-
ment Systems

An RDBMS is a system for managing tabular data and relations among collec-
tions of tabular data. Each table has a set of fields (columns) that define the
type of information stored in the table. Each row of a table represents a record
in the database. Conceptually, a table in an RDBMS has much in common with
a data.frame in R.

Each row in a table must be uniquely identifiable. Usually, one column is
designated to store a value gauranteed to be unique for each record in the table
and this column is referred to as the primary key for the table.

Relations in a database describe the interdependencies between the pieces
of data stored in the system. There are three types of relations that are worth
naming: many-to-many, one-to-many, and one-to-one.

Two columns A and B in a database have a many-to-many relationship when
a given record in A is related to zero or more records in B and a record in B is
related to zero or more records in A. The relationship between Affymetrix ids
and PubMed ids, as encoded in the hgu95av2PMID environment, is a many-to-
many relationship: each Affymetrix id can relate to zero or more PubMed ids
and any given PubMed id can be related to zero or more Affymetrix ids.

A one-to-many relationship occurs when a given record in column A is related
to zero or more records in column B and a given record in column B is related

1

to exactly one record in A. For example, the relationship between journals and
papers is one-to-many; a journal has many papers, but a paper is published
(generally) in a single journal.

Columns A and B have a one-to-one relationship if a given record in A
corresponds to exactly one record in B and vice versa. There is a one-to-one
relationship between GO ids and terms in the GO ontology.

3 Structured Query Language (SQL)

Structured Query Language (SQL) is a language used for manipulating rela-
tional databases. It is defined by an ANSI standard that, in theory, is imple-
mented by all RDBMS’s. In practice, it is common for the SQL implemented
in a given RDBMS to include extensions that provide enhanced functionality at
the cost of lost compatibility across different RDBMS’s.

A good resource for learning SQL is: http://sqlzoo.net/.

4 A lightweight database: SQLite

SQLite (http://www.sqlite.org/) is a lightweight, self-contained, zero-configuration,
cross-platform, open source database engine. SQLite implements most of the
ANSI SQL92 standard, but is missing some features found in an enterprise-class
RDBMS’s such as stored procedures. Unlike most enterprise-class RDBMS’s,
SQLite is not a client/server application and for the most part, it is assumed
that a single process (user) will access a database at a given time.

Each SQLite database is contained in a single file (portable across platforms)
and can be manipulated using the sqlite command line tool.

Binding are available for many programming languages that allow for pro-
gramatic manipulation of SQLite databases. In How to use DBI: Connecting to
Databases with R, we demonstrate the use of RSQLite, a package that allows R
to access SQLite databases.

In this vignette, we focus on the use of the sqlite command line tool. In
order to work the excercises below, you will need a version of SQLite greater
than or equal to version 3.1.3.

5 An annotation database for Affymetrix hgu95av2

Now we will build a database of annotation data for the Affymetrix hgu95av2
chip.

5.1 Flat files

We will use the following plain-text “flat files” as the input data for our anno-
tation database:

2

http://sqlzoo.net/
http://www.sqlite.org/

hgu95av2-acc.txt Two columns. The first column gives Affymetrix probe id,
the second is accession number.

hgu95av2-go.txt Three columns: Affymetrix probe id, GO id, evidence code.
Each row describes a GO annotation for a probe and gives the evidence
used to determine the annotation.

hgu95av2-goId2Ontol.txt Two columns: GO id, GO ontology code (BP, CC,
MF).

hgu95av2-pmid.txt Two columns: Affymetrix probe id, PubMed id.

5.2 Starting SQLite

The sqlite command line tool takes the name of a SQLite database file as its
first argument. If you want to create a new database, simply specify the name
and the file will be created for you. We’ll use hgu95av2-temp.db as the name
of our annotation database for the Affymetrix hgu95av2 chip.

Here is how to start the session:

sqlite3 hgu95av2-temp.db
sqlite> -- this is a comment
sqlite> .help -- this will show some useful commands

5.3 Creating a new table: CREATE

Tables in a database are created using SQL’s CREATE command. Create a
table named go_ont_name with two columns: ont and ont_name. It is a good
habit to use comments to document the structure of the tables you create.

sqlite> CREATE TABLE go_ont_name (ont TEXT, -- Ontology code
ont_name TEXT -- Ontology name

);
sqlite> .tables
go_ont_name

5.4 Inserting values by hand: INSERT

Since GO consists of just three top-level ontologies, we can enter the data for
this table by hand using SQL’s INSERT command.

INSERT INTO go_ont_name (ont, ont_name) VALUES ('CC', 'Cell Cycle');

Exercise 1
Use INSERT statements to add rows for Biological Process (BP) and Molecular
Function (MF).

3

5.5 Querying the database: SELECT

Now that we’ve created a table and inserted data into the table, we can extract
the data using SELECT.

Exercise 2
Try the following SELECT statements on the test database.

SELECT * FROM go_ont_name;
SELECT ont_name FROM go_ont_name WHERE ont = 'BP';
SELECT ont_name FROM go_ont_name WHERE ont = 'foo';
SELECT count(*) FROM go_ont_name;
SELECT * FROM go_ont_name WHERE ont_name LIKE '%le%';

5.6 Updating values by hand: UPDATE

UPDATE go_ont_name SET ont = 'MMM Cookies' WHERE ont = 'MF';
SELECT * FROM go_ont_name;

5.7 Deleting rows: DELETE

DELETE FROM go_ont_name WHERE ont = 'MMM Cookies';
SELECT * FROM go_ont_name;

5.8 Deleting tables: DROP TABLE

DROP TABLE go_ont_name;
.tables

5.9 Importing data

Creating database tables by hand using INSERT statements lacks efficiency.
Most RDBMS’s come with a utility that allows you to quickly import delimited
text files. SQLite provides .import for this purpose.

SQLite’s .import command imports data into a single database table. The
table must exist in the database prior to calling .import.

Here we will use a text file containing a number of table creation SQL com-
mands and a number of .import commands to load data into the empty tables.

sqlite3 hgu95av2-example.db < affy-annotation-schema.sql
sqlite3 hgu95av2-example.db
sqlite> .tables
acc go_ont go_ont_name go_probe pubmed

5.10 Combining data from more than one table

In database lingo, a join is a query that combines data from more than one
table.

4

5.10.1 Inner joins

The go_ont table maps GO ids to GO ontology. We can pull in data from the
go_ont_name table to get the more descriptive listing of the ontology for each
GO identifier. This required an INNER JOIN, which can be written as follows:

SELECT go_ont.go_id, go_ont.ont, go_ont_name.ont_name
FROM go_ont, go_ont_name
WHERE (go_ont.ont = go_ont_name.ont) LIMIT 3;

go_id|ont|ont_name
GO:0005764|CC|Cell Cycle
GO:0006029|BP|Biological Process
GO:0008152|BP|Biological Process

Exercise 3
Create a table mapping Affy ids to GO ontology codes.

5.10.2 Self joins

The following compound statement selects all Affy probes annotated at GO ID
“GO:0005737” with evidence IDA and ISS. This uses a self join and demon-
strates a common abbreviation syntax for table names.

SELECT g1.*, g2.evi FROM go_probe g1, go_probe g2 WHERE
(g1.go_id = 'GO:0005737' and g2.go_id = 'GO:0005737')
AND (g1.affy_id = g2.affy_id)
AND (g1.evi = 'IDA' and g2.evi = 'ISS');

affy_id|go_id|evi|evi
D28235_s_at|GO:0005737|IDA|ISS
L15326_s_at|GO:0005737|IDA|ISS
U04636_rna1_at|GO:0005737|IDA|ISS

5

	Introduction
	An overview of Relational Database Mangement Systems
	Structured Query Language (SQL)
	A lightweight database: SQLite
	An annotation database for Affymetrix hgu95av2
	Flat files
	Starting SQLite
	Creating a new table: CREATE
	Inserting values by hand: INSERT
	Querying the database: SELECT
	Updating values by hand: UPDATE
	Deleting rows: DELETE
	Deleting tables: DROP TABLE
	Importing data
	Combining data from more than one table
	Inner joins
	Self joins

