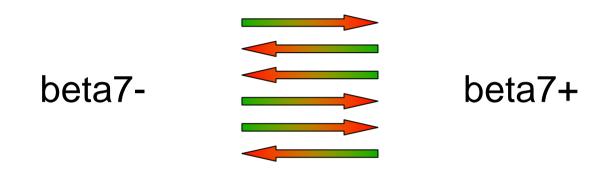
Differential expression analysis of microarray experiments

Bioconductor 2007

Gordon Smyth Walter and Eliza Hall Institute

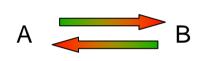
Getting started


Copy the directory 'bioc2007limma' from the flashdisk to a convenient place on your computer, e.g., c:/bioc2007limma

- Open c:/bioc2007limma/html/index.html in your browser
- Make c:/bioc2007limma/data the working directory of your R session

limma package documentation

Function help pages
Class help pages
Group help pages
User's Guide


Example 1: Integrin beta7+ vs beta7–

- Reading two-color data
- Control spots
- Background correction
- Dye-swaps
- Empirical Bayes differential expression

Designs — Linear Models

A \longrightarrow B $y = \log_2(R/G) \equiv B - A$

$\begin{pmatrix} y_1 \\ y_2 \end{pmatrix} = \begin{pmatrix} 1 \\ -1 \end{pmatrix} \beta$	$\beta \equiv B - A$
(y_2) (-1)	Γ

Ref	A
	В

$ _{-} _{10} P_1 $	$\beta_1 \equiv A - \operatorname{Ref} \\ \beta_2 \equiv B - A$
-----------------------	---

A B

$$\begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ -1 & 1 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} \beta_1 \\ \beta_2 \end{pmatrix} \qquad \qquad \beta_1 \equiv B - A \\ \beta_2 \equiv C - A$$

Linear Model Estimates

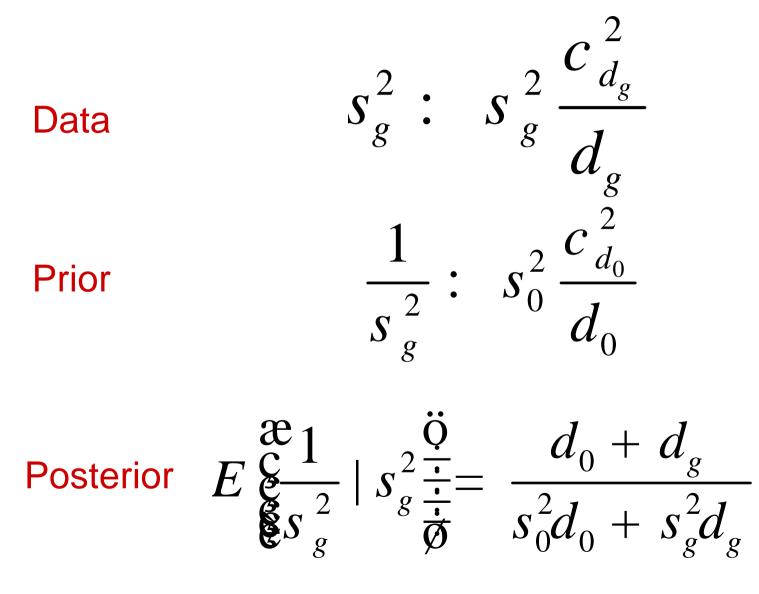
Obtain a linear model for each gene g

$$E(\underbrace{y_g}) = X \underbrace{b_g}_{x_g}$$
$$var(\underbrace{y_g}) = W_g^{-1} s_g^2$$

 \hat{b}_{gj}

 S_{g}

Estimate models to get


coefficients

standard deviations

standard errors

$$\operatorname{se}(\hat{b}_{gj})^2 = c_{gj} s_g^2$$

Hierarchical model for variances

7

Posterior Statistics

Posterior variance estimators

$$\Re_{g}^{2} = \frac{s_{0}^{2}d_{0} + s_{g}^{2}d_{g}}{d_{0} + d_{g}}$$

Moderated t-statistics

$$\hat{t}_{gj}^{0} = \frac{\hat{b}_{gj}}{\frac{g}{g}\sqrt{C_{gj}}}$$

Baldi & Long 2001, Wright & Simon 2003, Smyth 2004

Exact distribution for moderated t

An unexpected piece of mathematics shows that, under the null hypothesis,

$$k_{g}^{0}: t_{d_{0}+d_{g}}$$

The degrees of freedom add!

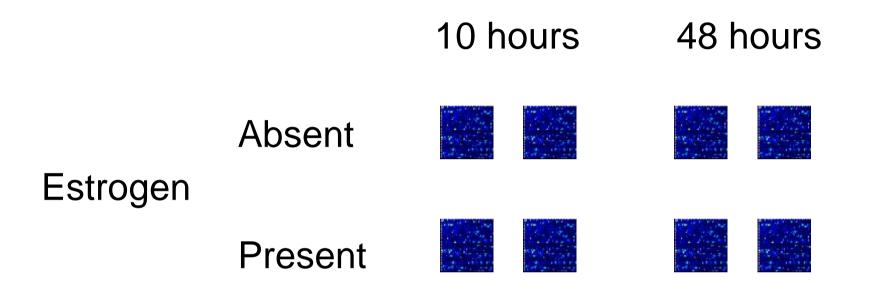
The Bayes prior in effect adds d_0 extra arrays for estimating the variance.

Hierarchical model for means

Data
$$\hat{b}_{gj}: N(b_{gj}, c_{gj}s_{g}^{2})$$

Prior $P(b_{gj} \ 1 \ 0) = p$
 $b_{gj} \ | \ b_{gj} \ 1 \ 0: \ N(0, c_{0j}s_{g}^{2})$

Lönnstedt and Speed 2002, Smyth 2004

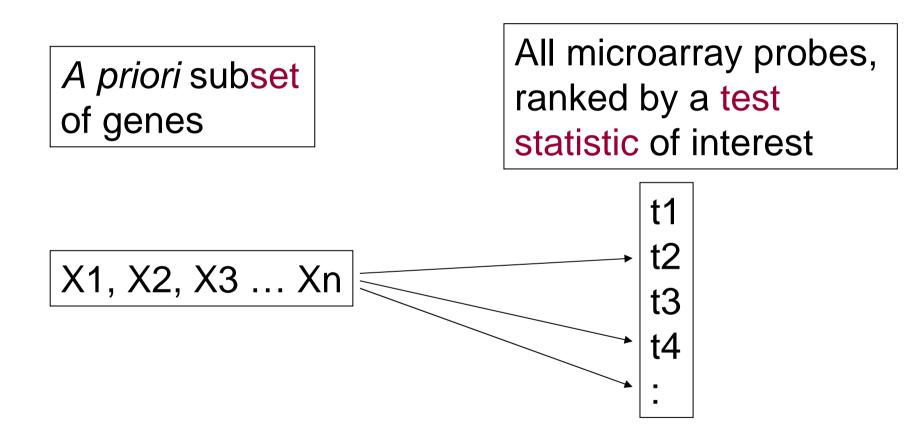

Posterior Odds

Posterior odds of differential expression

Hence \tilde{t} gives the best possible ranking of genes

Lönnstedt and Speed 2002, Smyth 2004

Example 2: Estrogen


- Reading Affymetrix data
- Factorial designs
- Gene set tests

Gene sets

- Test significance of a (prior specified) group of genes
- The genes might belong to a known pathway or might be the top genes from a related experiment
- The set might be significant even if individual genes are not

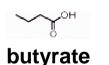
Gene set enrichment analysis (GSEA) originated by Mootha et al PNAS 2003 and Subramanian et al PNAS 2005

Mean rank gene set tests

Look for ranks for set genes amongst test statistics

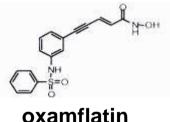
Example 3: Targets of SAHA and depsipeptide

Case Study

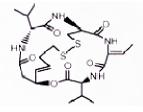

Peart, Smyth, van Laar, Richon, Holloway, Johnstone

Identification and functional significance of genes regulated by structurally diverse histone deacetylase inhibitors

PNAS Feb 2005


Tumour cell growth inhibitors

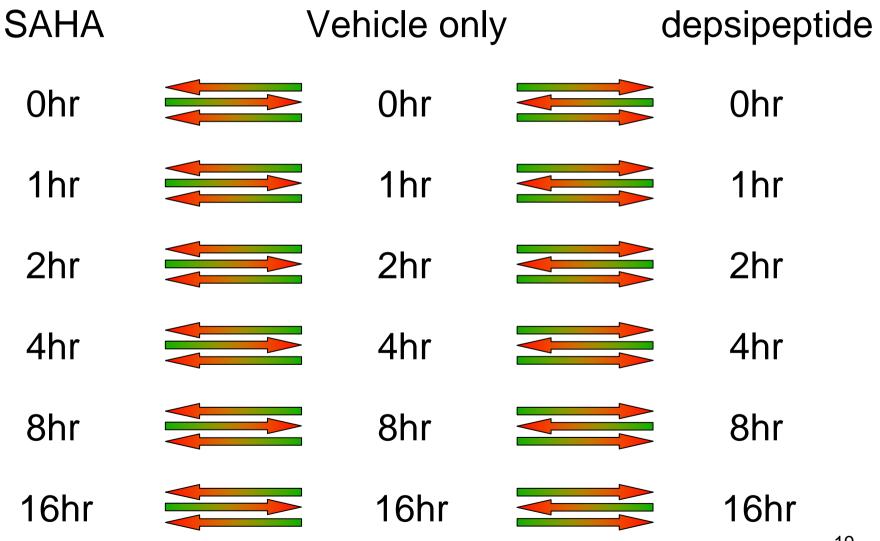
- Histone deacetylase inhibitors (HDACis) are anti-cancer agents that inhibit tumour cell growth and survival
- Not toxic to normal cells
- Genes active in biological effects are unknown

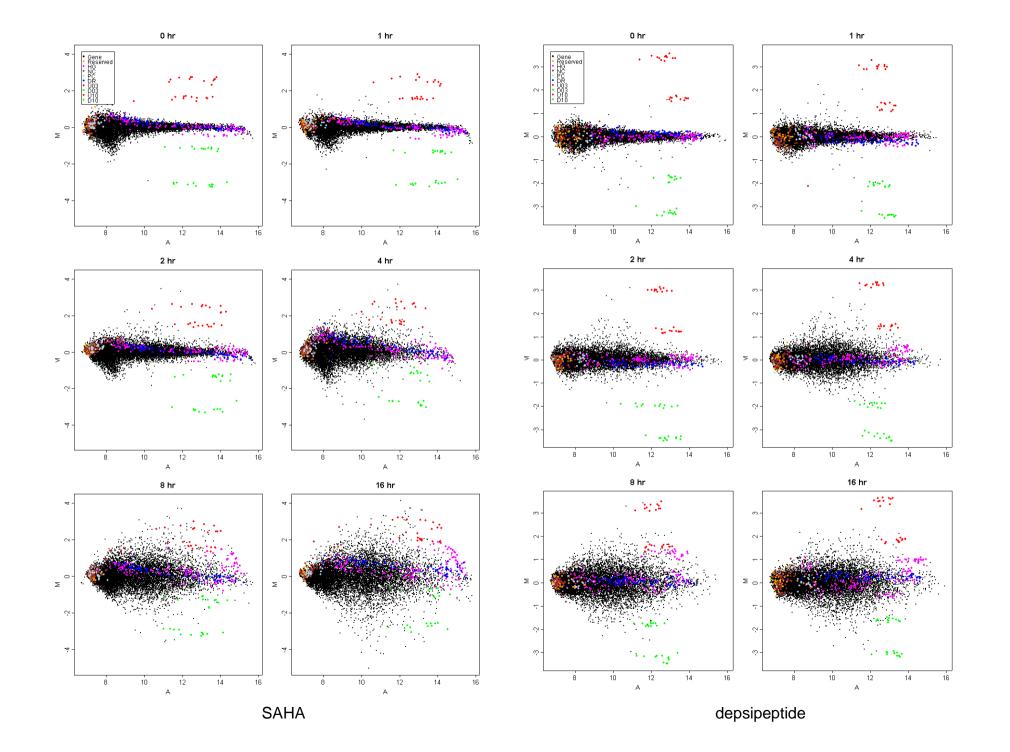

C NH S NH

SAHA

Contraction of the series

MS-27-275




depsipeptide

Target cell cultures

- Study effects of SAHA and depsipeptide on the acute T-cell leukemia cell line CEM
- SAHA and depsipeptide are structurally different but have similar biological effects (induce death through intrinsic apoptotic pathway)
- Prising out subtle differences is of great interest

Experimental design

Aims of experiment

- Identify common responders: genes which respond similarly to SAHA and depsipeptide
- Identify specific responders: genes which respond to one of SAHA or depsipeptide, but not to the other
- Different responders, genes which respond to both SAHA and depsipeptide but differently, are of lesser interest

Classic ANOVA methods are applicable

- An F-test for time on 5 df will find genes which change at any time (simpler than a series of t-tests at each time)
- An F-test for drug x time interaction will find genes which react differently to the two drugs

Moderated F-Statistic

The idea of shrinking the variance extends immediately to multiple contrasts

Moderated F-statistic

$$\vec{F}_g^0 = \frac{\text{MST}_g}{\frac{g}{g}} : F_{k,d_g+d_0}$$

MST=Mean Sum of squares between Treatments

Wright & Simon 2003, Smyth 2004

Linear model analysis

- Fit linear model to the M-values (logratios) for each gene
- Include effects for drug x time
- Allow for probe/drug specific dye-effects
- Treat each time series of 6 arrays as a randomized block, i.e., allow arrays hybridized together to be correlated

Classifying common and specific responders

Tests	Common	SAHA specific	depsi specific
Time (SAHA)	•	e	X
Time (depsi)	æ	X	€
Drug x time interaction	X	8	8

 Θ = significant, x = not significant

Acknowledgements

Peter MacCallum Cancer Centre

- Melissa Peart
- Ricky Johnstone
- Ryan van LaarAndy Holloway