Data architecture and workflow for high-throughput genomics

VJ Carey, Channing Lab; © 2007 Bioconductor Foundation of N.A.

- views on outreach
- four experimental paradigms
- interface contracts and compliance

Cold Spring Harbor CDATA-07 [Integrative data

 analysis for high-throughput biology]- Strategy - 2 week course (!)
- prominent experimentalists/methodologists lecture most days (e.g., Futcher, Lieb, Wigler, Cheung, Spielman, Baggerly, Irizarry, Carvalho)
- dataset/packages associated with each technique form basis for stat-oriented lectures and labs
- most students are experimentalists (have had NIH and FDA project officers as well); many not very happy with statistics curriculum
- will target advertising at stats and comp-bio departments for 08;

Upstream data structures

```
    raw -- Expression/SNP array framework --
```


1..1.1..ーーー- 1 -ーーー
$1 . .1$.

S features to sequence/source
per chip
MD1: map geometry of chip
MD2: map sequence to biological
reference annotation

MD3：record hybridization metadata including phenotype and experimental design

Downstream data structures
preprocessing... removal of nonbiologic variation
N chips -> ExpressionSet instance

		phenoData:		
		r		
		id sex disease		
			\|-----------------------1	
AssayData: exprs		N	1 \|	
	N		1	
			,	
\| 2.21			1	
\| 1.7				--------------
1.1		+ varMetadata (r x q term		
1.1		descr.)		
G \| . 1			featureData (probe meta-	
1 \|			data)	
1 l			experimentData (MIAME)	

Basic outreach approach

- make it easy for practitioners to touch, manipulate, interrogate digital products of exemplary experiments
- big motivation to learn a little R

Integrative container design: Four experimental paradigms

- Useful aim: All relevant information from an experiment or family of related experiments should be contained in a single, aptly named, R variable
- Moderately successful examples:
- Golub_Merge (but developers still include their own matrix representations in data?)
- yeastCC - same
- chr20GGceuRMA (hgfocus + hapmap 700K for Utah CEPH founders)
-harbChIP (abuse of ExpressionSet structure; featureData includes intergenic sequence data)
- neveExCGH (array CGH + u133a on 50 breast cancer cell lines)

Paradigm 1: expression time series

> library (yeastCC)
> data(spYCCES)
> spYCCES
ExpressionSet (storageMode: environment)
assayData: 6178 features, 77 samples
element names: exprs
phenoData
sampleNames: cln3_40, cln3_30, ..., elu_390 (77 total)
varLabels and varMetadata description:
syncmeth: experimental method of synchronization or cyclin induction time: in minutes
phase: Phase of the cell cycle. M: mitosis, G1: gap 1, S: DNA synthesis, G gap 2.
featureData
featureNames: YAL001C, YAL002W, ..., YPR204W (6178 total)
fvarLabels and fvarMetadata description: none
experimentData: use 'experimentData(object)'
pubMedIds: 9843569
Annotation: YEAST
> experimentData(spYCCES)
Experiment data
Experimenter name: Spellman PT
Laboratory: Department of Genetics, Stanford University Medical Center, Stan
Contact information:
Title: Comprehensive identification of cell cycle-regulated genes of the yea URL:
PMIDs: 9843569

Abstract: A 150 word abstract is available. Use 'abstract' method.
> abstract(spYCCES)
[1] "We sought to create a comprehensive catalog of yeast genes whose transcript levels vary periodically within the cell cycle. To this end, we used DNA microarrays and samples from yeast cultures synchronized by three independent methods: alpha factor arrest, elutriation, and arrest of a cdc15 temperature-sensitive mutant. Using periodicity and correlation algorithms, we identified 800 genes that meet an objective minimum criterion for cell cycle regulation. In separate experiments, designed to examine the effects of inducing either the G1 cyclin Cln3p or the B-type cyclin Clb2p, we found that the mRNA levels of more than half of these 800 genes respond to one or both of these cyclins....

Design: sync meth vs sampling times
> table(spYCCES\$sync, spYCCES\$time)[, 1:15] 0710142021283035404249505660
alpha $11 \begin{array}{llllllllllllll} & 1 & 0 & 1 & 0 & 1 & 1 & 0 & 1 & 0 & 1 & 1 & 0 & 1\end{array} 0$
cdc15 $000 \begin{array}{lllllllllllll} & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0\end{array}$
cdc28 $100 \begin{array}{llllllllllllll} & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 1 & 0 & 1\end{array}$
clb2 000
cln3 000
elu 100

Biology: (declared) phase vs sampling times
> table(spYCCES\$phase, spYCCES\$time) [, 1:15]

	0	7	10	14	20	21	28	30	35	40	42	49	50	56	60
G1	0	0	1	1	1	1	0	0	0	0	0	0	1	0	1
G2	0	0	0	0	0	0	0	0	0	0	1	0	1	0	0
M	0	0	0	0	0	0	0	0	0	0	0	1	0	1	1
M/G1	3	1	1	0	0	0	0	2	0	0	0	0	0	0	0
S	0	0	0	0	0	0	1	1	1	1	0	0	0	0	0

programming: filtering to see (declared) phase vs sampling times
> CDC15 = which(spYCCES\$sync=="cdc15")
> table(spYCCES\$phase[CDC15], spYCCES\$time[CDC15]) [, 1:15]

| | 10 | 30 | 50 | 70 | 80 | 90 | 100 | 110 | 120 | 130 | 140 | 150 | 160 | 170 | 180 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| G1 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 0 |
| S | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 |
| G2 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| M | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| M/G1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 |

- Exercise: compare samples on a given gene obtained with different synchronization methods with respect to periodicity of expression

PIR1/alpha

PIR1/elu

CLN2/alpha

CLN2felu

paradigm 2: ChIP-chip, harbChIP in package:harbChIP

ExpressionSet (storageMode: lockedEnvironment)
assayData: 6230 features, 204 samples
element names: exprs, se.exprs
phenoData
rowNames: A1 (MATA1), ABF1, ..., ZMS1 (204 total)
varLabels and varMetadata description:
txFac: transcription factor symbol from Harbison website CSV fil s
featureData
featureNames: YAL001C, YAL002W, ..., MRH1 (6230 total)
fvarLabels and fvarMetadata description:
ID: NA
PLATE: NA

REV_SEQ: NA
(12 total)
experimentData: use 'experimentData(object)'
pubMedIds: 15343339
qqnorm int.ratio RDS1

- Exercise: verify that the motif for RDS1 discovered by Harbison et al, CGGCCG, is present in the most highly bound intergenic regions for that TF.
- Is it present in modestly or weakly bound regions?

```
> bigRDS1 = sort(exprs(harbChIP)[, "RDS1"], decr = TRUE) [1:5]
> bigRDS1
    YCR107W YCR105W YOR001W YOR258W YGL157W
5.387419 3.743832 2.676375 2.354235 2.317927
> pData(featureData(harbChIP))[names(.Last.value),8:10]
                                    FOR_SEQ REV_SEQ_NO
YCR107W <NA> <NA>
YCR105W CCGCTGCTAGGCGCGCCGTGAAAATGCATGTCAAATCTCGGA YGP24747
YOR001W CCGCTGCTAGGCGCGCCGTGTAAAAGGTGATTATGTAAAACAAGCG YGP34235
Y0R258W CCGCTGCTAGGCGCGCCGTGCAAGCTTTCTCGCATTTCTTT YGP34755
YGL157W CCGCTGCTAGGCGCGCCGTGGTATCACGCTAATTGAAGTTTTTTTTG YGP27527
                                    REV_SEQ
YCR107W <NA>
YCR105W GCAGGGATGCGGCCGCTGACTTCATTTGTTTATCTACCGCTTACATT
Y0R001W GCAGGGATGCGGCCGCTGACATTTTCTATGCGAAGCCTGATGT
YOR258W GCAGGGATGCGGCCGCTGACTTATGATGTTAAAAAGACATGTGTATG
YGL157W GCAGGGATGCGGCCGCTGACTAATTATTTTTGAAACTCTTTTGCAGC
```


Paradigm 3: genetics of gene expression

> library(GGtools)
> chr20GGdem
racExSet instance (SNP rare allele count + expression)
rare allele count assayData:
Storage mode: lockedEnvironment
featureNames: rs4814683, rs6076506, ..., rs6062370, rs6090120 (117
Dimensions:

racs

Features 117417
Samples 58
expression assayData
Storage mode: lockedEnvironment
featureNames: 1007_s_at, 1053_at, ..., AFFX-r2-P1-cre-3_at, AFFX-r
Dimensions: exprs
Features 8793
Samples 58

```
> exprs(chr20GGdem)[1:5,1:5]
    NA06985 NA06993 NA06994 NA07000 NA07022
1007_s_at 6.236674 5.631134 5.883270 5.791671 5.995744
1053_at 6.535133 6.680420 6.860158 6.298467 6.503476
117_at 4.660155 5.006104 5.018725 4.952051 6.156085
121_at 7.694798 7.331357 7.163441 6.941026 7.361222
1255_g_at 2.831350 2.709704 2.729904 2.723419 3.032477
> snps(chr20GGdem)[1:5,1:5]
                            NA06985 NA06993 NA06994 NA07000 NA07022
\begin{tabular}{rllllr} 
rs4814683 & 2 & 0 & 0 & 2 & 1 \\
rs6076506 & 0 & 0 & 0 & 0 & NA \\
rs6139074 & 2 & 0 & 0 & 2 & 1 \\
rs1418258 & 2 & 0 & 0 & 2 & 1 \\
rs7274499 & 0 & 0 & 0 & 0 & NA
\end{tabular}
```


Genetics of gene expression: analyses, mechanics

- snpScreen is well-documented, can help with focused tests of association between expression and genotypes
- messy, because gene and SNP location data are in various places
- SQLite annotation paradigm will greatly simplify storage and querying of metadata
- other genotype data representations (e.g., Clayton's snpMatrix) will be interfaced

paradigm 4: expression + aCGH

- Neve2006 documents and exemplifies cghExSet class
- ML lab will work with neveCGHmatch; in 2.6 neveExCGH is unified
- logRatios() and exprs(); cloneNames(), cloneMeta()
- NB: the contract for a modeling method - segmentation
- Consider rpart as a device for fitting piecewise constant model
- for free: predict on any compliant data frame, x-validated complexity diagnostic
sample 1 ; Lu

sample 3 ; BaA

sample 5 ; Lu

sample 2 ; Lu

sample 4 ; Lu

sample 6 ; BaB

Integrative container behavior

- Useful idiom: $\mathrm{X}[\mathrm{G}, \mathrm{S}]$ is a selection
$-G$ is a reporter selection predicate
$-S$ is a sample selection predicate
- can we entertain:

X[clonesNear("CPNE1"), homRare("rs6060535")] and would we want to? This would select copy number data near a certain gene for samples that have a certain genotype. The string parameters might work, or we might need hugo("CPNE1"), e.g., to specify semantics

- awaited maturity of SQLite annotation, now can experiment

contracts of statistical modeling procedures

- formula interface is useful
- predict(), plot(), coef(), residuals(), should exist and make sense (comply with reasonable expectations)
- many things that are fitting models (e.g., normalization functions) do not attempt this
- self-discipline is hard; software helpers (e.g., stub generators) are in wide use in other languages

transparency and agnosticism

- DR Cox, AAS 2007

It is interesting and perhaps surprising that J. W. Tukey, who had an extraordinarily wide-ranging knowledge of the natural sciences down to fine detail, favored largely ignoring that knowledge in the main phases of analysis, introducing it only in the final stages of interpretation.

transparency and agnosticism

- JD Watson, The Double Helix, ch 28.

Maurice, in a lab devoid of structural chemists, did not have anyone to tell him that all the textbook pictures were wrong.

conclusions

- main jobs: data capture, removal of irrelevant noise, interrogation/modeling, reporting
- multiassay containers coordinate and provide access to diverse measurements
- concise interrogators: generic methods that capitalize on simultaneous access to assay, phenotype, and biological metadata
- modeling functions should respect a well-established tradition of input and return capabilities
- tremendous development of container infrastructure: S. Falcon, M. Morgan, others

