
Biostrings Lab (ChIP-seq course, Nov. 2008)

November 14, 2008

1 Lab overview

Learn the basics of Biostrings and the BSgenome data packages.
For this lab you need:

• A laptop with the latest release version of R (R 2.8 series).

• The Biostrings, BSgenome and BSgenome.Mmusculus.UCSC.mm9 packages.

• topReads.rda: serialized object containing the top 1000 reads for each
lane of 2 ChIP-seq experiments.

2 Check your installation

Exercise 1
1. Start R and load the BSgenome.Mmusculus.UCSC.mm9 package.

2. Display chromosome 1.

3. Load topReads.rda.

4. Display a few reads from experiment 2 / lane 1.

3 Basic containers

3.1 DNAString objects

The DNAString class is the basic container for storing a large nucleotide se-
quence. Unlike a standard character vector in R that can store an arbitrary
number of strings, a DNAString object can only contain 1 sequence. Like for
most classes defined in Biostrings, DNAString is also the name of the constructor
function for DNAString objects.

Exercise 2
1. Pick up a read from experiment 2 / lane 1 and convert it to a DNAString

object (use the DNAString constructor).
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2. Use length and alphabetFrequency on it.

3. Get its reverse complement.

4. Extract an arbitrary substring with subseq.

3.2 DNAStringSet objects

The DNAStringSet class is the basic container for storing an arbitrary number of
nucleotide sequences. Like with R character vectors (and any vector-like object
in general), use length to get the number of elements (sequences) stored in a
DNAStringSet object and the [ operator to subset it. In addition, subsetting
operator [[ can be used to extract an arbitrary element as a DNAString object.

Exercise 3
1. Use the DNAStringSet constructor to store the 1000 reads from experiment

2 / lane 1 into a DNAStringSet object. Let’s call this instance dict0.

2. Use length and width on dict0.

3. Use subsetting operator [ to remove its 2nd element.

4. Invert the order of its elements.

5. Use subsetting operator [[ to extract its 1st element as a DNAString
object.

6. Use the DNAStringSet constructor (i) to remove the last 2 nucleotides of
each element, then (ii) to keep only the last 10 nucleotides.

7. Call alphabetFrequency on dict0 and on its reverse complement. Try
again with collapse=TRUE.

8. Remove reads with Ns (put the “clean” dictionary in dict0 again).

3.3 XStringViews objects

An XStringViews object contains a set of views on the same sequence called
the subject (for example this can be a DNAString object). Each view is defined
by its start and end locations: both are integers such that start <= end. The
Views function can be used to create an XStringViews object given a subject
and a set of start and end locations. Like for DNAStringSet objects, length,
width, [ and [[ are supported for XStringViews objects. Additional subject,
start, end and gaps methods are also provided.

Exercise 4
1. Use the Views function to create an XStringViews object with a DNAS-

tring subject. Make it such that some views are overlapping but also that
the set of views don’t cover the subject entirely.
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2. Try subject, start, end and gaps on this XStringViews object.

3. Try alphabetFrequency on it.

4. Turn it into a DNAStringSet object with the DNAStringSet constructor.

4 BSgenome data packages

The name of a BSgenome data package is made of 4 parts separated by a dot
(e.g. BSgenome.Celegans.UCSC.ce2):

• The 1st part is always BSgenome.

• The 2nd part is the name of the organism (abbreviated).

• The 3rd part is the name of the organisation who assembled the genome.

• The 4th part is the release string or number used by this organisation for
this assembly of the genome.

All BSgenome data package contain a single top level object whose name
matches the second part of the package name.

Exercise 5
1. Load BSgenome.Mmusculus.UCSC.mm9 and display its top level object.

Note that this doesn’t load any sequence in memory yet.

2. Use seqlengths on it to get the lengths of the single sequences (this
doesn’t load any sequence either).

3. Display some of the chromosomes. Some information about the built-
in masks is displayed. Let’s drop the masks for now by accessing the
sequences with e.g. unmasked(Mmusculus$chrM). Note that a sequence is
not loaded until it is accessed.

4. Do the chromosomes contain IUPAC extended letters?

5. Use chartr to simulate a bisulfite transformation of chromosome 1 (see
?chartr).

5 String matching

5.1 The matchPattern function

This function finds all the occurences (aka matches or hits) of a given pattern
in a reference sequence called the subject.

Exercise 6
1. Find all the matches of a short pattern (invent one) in mouse chromosome

1. Don’t choose the pattern too short or too long.

3



2. In fact, if we don’t take any special action, we only get the hits in the plus
strand of the chromosome. Find the matches in the minus strand too.
(Note: the cost of taking the reverse complement of an entire chromosome
sequence can be high in terms of memory usage. Try to do something
better.)

3. matchPattern now support indels (recent improvement) via the with.indels
argument. Use the same pattern to find all the matches in chromosome 1
that are at an edit distance <= 2 from it.

5.2 The vmatchPattern function

This function finds all the matches of a given pattern in a set of reference
sequences.

Exercise 7
1. Load the upstream5000 object from Mmusculus and find all the matches

of a short arbitrary pattern in it.

2. The value returned by vmatchPattern is an MIndex object containing the
match coordinates for each reference sequence. You can use the startIn-

dex and endIndex accessors on it to extract the match starting and ending
positions as lists (one list element per reference sequence). [[ extracts the
matches of a given reference sequence as an MIndex object. coundIndex

extract the match counts as an integer vector (one element per reference
sequence).

5.3 Ambiguities

IUPAC extended letters can be used to express ambiguities in the pattern or
in the subject of a search with matchPattern. This is controlled via the fixed
argument of the function. If fixed is TRUE (the default), all letters in the pattern
and the subject are interpreted litterally. If fixed is FALSE, IUPAC extended
letters in the pattern and in the subject are interpreted as ambiguities e.g. M will
match A or C and N will match any letter (the IUPAC_CODE_MAP named character
vector gives the mapping between IUPAC letters and the set of nucleotides that
they stand for). The most common use of this feature is to introduce wildcards
in the pattern by replacing some of its letters with Ns.

Exercise 8
1. Search pattern GAACTTTGCCACTC in Mouse chromosome 1.

2. Repeat but this time allow the 2nd T in the pattern (6th letter) to match
anything. Anything wrong?

3. Call matchPattern with fixed="subject" to work around this problem.
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5.4 Masking

The MaskedDNAString container is dedicated to the storage of masked DNA
sequences. As mentioned previously, you can use the unmasked accessor to turn
a MaskedDNAString object into a DNAString object (the masks will be lost),
or use the masks accessor to extract the masks (the sequence that is masked
will be lost).

Each mask on a sequence can be active or not. Masks can be activated
individually with:

> chr1 <- Mmusculus$chr1

> active(masks(chr1))["TRF"] <- TRUE # activate Tandem Repeats Finder mask

or all together with:

> active(masks(chr1)) <- TRUE # activate all the masks

Some functions in Biostrings like alphabetFrequency or the string matching
functions will skip the masked region when walking along a sequence with active
masks.

Exercise 9
1. What percentage of Mouse chromosome 1 is made of assembly gaps?

2. Check the alphabet frequency of Mouse chromosome 1 when only the
AGAPS mask is active, when only the AGAPS and AMB masks are active.
Compare with unmasked chromosome 1.

3. Try as(chr1 , "XStringViews") and gaps(as(chr1 , "XStringViews"))

with different sets of active masks. How do you use this to display the
contigs as views?

4. Activate all masks and find the occurences of an arbitrary DNA pattern
in it. Compare to what you get with unmasked chromosome 1.

In addition to the built-in masks, the user can put its own mask on a se-
quence. Two types of user-controlled masking are supported: by content or by
position. The maskMotif function will mask the regions of a sequence that con-
tain a motif specified by the user. The Mask constructor will return the mask
made of the regions defined by the start and end locations specified by the user
(like with the Views function).

5.5 Finding the hits of a large set of short motifs

Our own competitor to other fast alignment tools like MAQ or bowtie is the
matchPDict function. Its speed is comparable to the speed of MAQ but it
uses more memory than MAQ to align the same set of reads against the same
genome. Here are some important differences between matchPDict and MAQ
(or bowtie):
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1. matchPDict ignores the quality scores,

2. it finds all the matches,

3. it fully supports 2 or 3 (or more) mismatching nucleotides anywhere in
the reads (performance will decrease significantly though if the reads are
not long enough),

4. it supports masking (masked regions are skipped),

5. it supports IUPAC ambiguities in the subject (useful for SNP detection).

The workflow with matchPDict is the following:

1. Preprocess the set of short reads with the PDict constructor.

2. Call matchPDict on it.

3. Query the MIndex object returned by matchPDict.

Exercise 10
1. Preprocess dict0 (obtained earlier from topReads.rda) with the PDict

constructor.

2. Use this PDict object to find the (exact) hits of dict0 in Mouse chromo-
some 1.

3. Use countIndex on the MIndex object returned by matchPDict to extract
the nb of hits per read.

4. Which read has the highest number of hits? Display those hits as an
XStringViews object. Check this result with a call to matchPattern.

5. You only got the hits that belong to the + strand. How would you get
the hits that belong to the - strand?

6. Redo this analysis for inexact matches with at most 2 mismatches per read
in the last 20 nucleotides.
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