
Outline Introduction Sequences Ranges Data on Ranges Future direction

IRanges Package
Design overview and framing of its role in BioC

July 29, 2009

Outline Introduction Sequences Ranges Data on Ranges Future direction

1 Introduction
Purpose
Data Structures
Functionality
Metadata

2 Sequences
RLEs
Typed Lists
Other

3 Ranges
Basics
Ranges as sets
Overlap

4 Data on Ranges
Views
RangedData

5 Future direction

Outline Introduction Sequences Ranges Data on Ranges Future direction

Outline

1 Introduction
Purpose
Data Structures
Functionality
Metadata

2 Sequences
RLEs
Typed Lists
Other

3 Ranges
Basics
Ranges as sets
Overlap

4 Data on Ranges
Views
RangedData

5 Future direction

Outline Introduction Sequences Ranges Data on Ranges Future direction

Purpose

IRanges Purpose

• Fulfill low-level Bioconductor sequence analysis requirements.
• Add new low-level utilities and classes not in vanilla R.
• Supplant inefficient vanilla R functionality, particularly

concerning long vectors (e.g. window function).

• Sits below eSet-like representations of sequence experiments
in packages like ShortRead .

As such, package name is misleading (prefer Seqbase), but
changing name would be costly to the BioC community.

Outline Introduction Sequences Ranges Data on Ranges Future direction

Purpose

Lessons Learned

• S4 classes are useful because they declare form, but...
• Creating many S4 objects in R level loop takes time.
• S4 object structure consumes memory, which can build up

when there are lots of instantiated objects.
• Class definitions can change and good to version instantiated

object.
• Can become too infatuated with multiple inheritances.
• Avoid initialize methods, if possible. Use constructors instead.

• Testing is a developer’s (and researcher’s) best friend.
• Validity methods provide important run-time data checking.
• Automated (RUnit) tests make crucial refactoring possible.

• Don’t let the perfect be the enemy of the good.

Outline Introduction Sequences Ranges Data on Ranges Future direction

Data Structures

IRanges Data Structures

• S4 Sequence class
• Mimics vector “class hierarchy”
• Typed list objects
• Data tables that can store S4 Sequence objects
• Self-describing (think Biobase’s AnnotatedDataFrame

metadata slots)

• Structures for compressing data
• Run-length encodings (RLEs) (e.g. coverage vector)
• Sparse list objects (e.g. read mapping information)

• Integer ranges/intervals

• Data on integer ranges/intervals

Outline Introduction Sequences Ranges Data on Ranges Future direction

Functionality

IRanges Functionality

• Implements the vector “interface” for Sequence objects

• Typed list object operations
• Simple looping operations
• Within and across object manipulations (e.g. Ops, Math,

Summary group generics)

• Efficient operations on compressed data objects
• Full suite of methods for RLE objects
• Smart looping on compressed list objects

• Comprehensive integer ranges/interval operations

• Some functionality for data on ranges
• Initial focus on subscripting, merging based on ranges, and

*apply functionality.
• Use cases may call for wider functionality.

Outline Introduction Sequences Ranges Data on Ranges Future direction

Metadata

Two types of metadata

• Whole object description (list)

• Element metadata (DataFrame)

• Currently this feature is severely underutilized; metadata can
be passed from one object to another as data is processed.

Outline Introduction Sequences Ranges Data on Ranges Future direction

Outline

1 Introduction
Purpose
Data Structures
Functionality
Metadata

2 Sequences
RLEs
Typed Lists
Other

3 Ranges
Basics
Ranges as sets
Overlap

4 Data on Ranges
Views
RangedData

5 Future direction

Outline Introduction Sequences Ranges Data on Ranges Future direction

Sequence Subclasses

The IRanges package is chock full of Sequence subclasses:

Sequence Class Definition

> length(getClassDef("Sequence")@subclasses)

[1] 84

> head(names(getClassDef("Sequence")@subclasses),

+ 8)

[1] "DataTable" "AtomicList"
[3] "Rle" "XSequence"
[5] "SimpleList" "CompressedList"
[7] "DataFrameList" "RangesList"

> slotNames(getClassDef("Sequence"))

[1] "elementMetadata" "elementType"
[3] "metadata"

Outline Introduction Sequences Ranges Data on Ranges Future direction

Example sequence

0 50 100 150

0
2

4
6

8
10

Index

s

Outline Introduction Sequences Ranges Data on Ranges Future direction

RLEs

Run-Length Encodings (RLEs)

Our example has many repeated values:

Code

> sum(diff(s) == 0)

[1] 133

Good candidate for compression by run-length encoding:

Code

> sRle <- Rle(s)

> sRle

'numeric' Rle instance of length 156 with 23 runs
Lengths: 40 1 2 3 1 2 3 1 2 3 ...
Values : 0 1 2 3 4 5 6 7 8 9 ...

Compression reduces size from 156 to 46.

Outline Introduction Sequences Ranges Data on Ranges Future direction

RLEs

Rle operations

The Rle object shares many method interfaces with vector:

Basic

> sRle > 0 | rev(sRle) > 0

'logical' Rle instance of length 156 with 3 runs
Lengths: 40 76 40
Values : FALSE TRUE FALSE

Summary

> sum(sRle > 0)

[1] 66

Statistics

> cor(sRle, rev(sRle))

[1] 0.5142557

Outline Introduction Sequences Ranges Data on Ranges Future direction

Typed Lists

Typed Lists

• Ordinary R list objects require element inspection and as such
rarely used in method signature.

• Typed lists are list object whose elements inherit from a single
class and more conducive to serve as method inputs.

• Typed lists in IRanges come in two basic flavors: “simple” and
compressed (ideal for sparse lists).

• As with all Sequence classes, contain metadata slots.

Outline Introduction Sequences Ranges Data on Ranges Future direction

Typed Lists

List of Integers (1/2)

Typed list objects are well suited for method dispatch:

Simple List Type

> intList1 <- IntegerList(1:10, 1:100,

+ compress = FALSE)

> intList1

SimpleIntegerList: 2 elements

> (2L * intList1)[[1]]

[1] 2 4 6 8 10 12 14 16 18 20

> intList2 <- IntegerList(11:20,

+ 101:200, compress = FALSE)

> (intList1 + intList2)[[1]]

[1] 12 14 16 18 20 22 24 26 28 30

Outline Introduction Sequences Ranges Data on Ranges Future direction

Typed Lists

List of Integers (2/2)

Compressed List Type

> xList <- lapply(1:1e+05, function(i) if (i%%100 ==

+ 0) 1:10 else integer(0))

> cintList <- IntegerList(xList)

> system.time(sapply(xList, mean))

user system elapsed
5.803 0.037 5.915

> system.time(sapply(cintList, mean))

user system elapsed
0.797 0.018 0.816

> identical(sapply(xList, mean),

+ sapply(cintList, mean))

[1] TRUE

Outline Introduction Sequences Ranges Data on Ranges Future direction

Typed Lists

Sparse List of S4 Objects

Large lists of mostly empty S4 elements can take a large footprint:

Compressed List of Rle Objects

> empty <- Rle()

> empty

'logical' Rle instance of length 0 with 0 runs
Lengths:
Values :

> print(object.size(lapply(1:1e+05,

+ function(i) empty)), units = "Mb")

69 Mb

> print(object.size(RleList(lapply(1:1e+05,

+ function(i) empty))), units = "Mb")

0.4 Mb

Outline Introduction Sequences Ranges Data on Ranges Future direction

Other

Other Sequence Types

• DataTable interface and DataFrame class
• data.frame and AnnotatedDataFrame can’t house S4

Sequence objects such as Rle and IRanges, DNAStringSet
• A split version (SplitDataFrameList) can hold data across

spaces (e.g. sequencing lanes, chromosomes, contigs, etc.).

• EXternal sequences
• Sequences derived from XSequence are references
• Memory not copied when containing object is modified
• Example: XString in Biostrings package, for storing biological

sequences efficiently

Outline Introduction Sequences Ranges Data on Ranges Future direction

Outline

1 Introduction
Purpose
Data Structures
Functionality
Metadata

2 Sequences
RLEs
Typed Lists
Other

3 Ranges
Basics
Ranges as sets
Overlap

4 Data on Ranges
Views
RangedData

5 Future direction

Outline Introduction Sequences Ranges Data on Ranges Future direction

Basics

Ranges

• Often interested in consecutive subsequences

• Consider the alphabet as a sequence:
• {A, B, C} is a consecutive subsequence
• The vowels would not be consecutive

• Compact representation: range (start and width)

• Ranges objects store a sequence of ranges

Outline Introduction Sequences Ranges Data on Ranges Future direction

Basics

Creating a Ranges object

The IRanges class is a simple Ranges implementation.

Code

> ir <- IRanges(c(1, 8, 14, 15, 19,

+ 34, 40), width = c(12, 6, 6,

+ 15, 6, 2, 7))

ir

0 10 20 30 40

Outline Introduction Sequences Ranges Data on Ranges Future direction

Basics

Basic Ranges manipulation

Accessors

> start(ir)

[1] 1 8 14 15 19 34 40

> end(ir)

[1] 12 13 19 29 24 35 46

> width(ir)

[1] 12 6 6 15 6 2 7

Outline Introduction Sequences Ranges Data on Ranges Future direction

Basics

Basic Ranges manipulation

Subsetting

> ir[1:5]

IRanges instance:
start end width

[1] 1 12 12
[2] 8 13 6
[3] 14 19 6
[4] 15 29 15
[5] 19 24 6

Outline Introduction Sequences Ranges Data on Ranges Future direction

Ranges as sets

Normalizing ranges

• Ranges can represent a set of integers

• NormalIRanges formalizes this, with a compact, normalized
representation

• reduce normalizes ranges

Code

> reduce(ir)

Outline Introduction Sequences Ranges Data on Ranges Future direction

Ranges as sets

Normalizing ranges

Code

> reduce(ir)

ir

0 10 20 30 40

reduce(ir)

0 10 20 30 40

Outline Introduction Sequences Ranges Data on Ranges Future direction

Ranges as sets

Set operations

• Ranges as set of integers: intersect, union, gaps, setdiff

• Each range as integer set, in parallel: pintersect, punion,
pgap, psetdiff

Example: gaps

> gaps(ir)

Outline Introduction Sequences Ranges Data on Ranges Future direction

Ranges as sets

Set operations

Example: gaps

> gaps(ir)

ir

0 10 20 30 40

gaps(ir)

0 10 20 30 40

Outline Introduction Sequences Ranges Data on Ranges Future direction

Overlap

Disjoining ranges

• Disjoint ranges are non-overlapping

• disjoin returns the widest ranges where the overlapping
ranges are the same

Code

> disjoin(ir)

Outline Introduction Sequences Ranges Data on Ranges Future direction

Overlap

Disjoining ranges

Code

> disjoin(ir)

ir

0 10 20 30 40

disjoin(ir)

0 10 20 30 40

Outline Introduction Sequences Ranges Data on Ranges Future direction

Overlap

Overlap detection

• overlap detects overlaps between two Ranges objects

• Uses interval tree for efficiency

Code

> ol <- overlap(reduce(ir), ir)

> as.matrix(ol)

query subject
[1,] 1 1
[2,] 2 1
[3,] 3 1
[4,] 4 1
[5,] 5 1
[6,] 6 2
[7,] 7 3

Outline Introduction Sequences Ranges Data on Ranges Future direction

Overlap

Counting overlapping Ranges

coverage counts number of ranges over each position

Code

> cov <- coverage(ir)

ir

0 10 20 30 40

0
1

2
3

4

Outline Introduction Sequences Ranges Data on Ranges Future direction

Overlap

Finding nearest neighbors

• nearest finds the nearest neighbor ranges (overlapping is
zero distance)

• precede, follow find non-overlapping nearest neighbors on
specific side

Outline Introduction Sequences Ranges Data on Ranges Future direction

Outline

1 Introduction
Purpose
Data Structures
Functionality
Metadata

2 Sequences
RLEs
Typed Lists
Other

3 Ranges
Basics
Ranges as sets
Overlap

4 Data on Ranges
Views
RangedData

5 Future direction

Outline Introduction Sequences Ranges Data on Ranges Future direction

Views

Views

• Associates a Ranges object with a sequence

• Sequences can be Rle or (in Biostrings) XString

• Extends Ranges, so supports the same operations

Outline Introduction Sequences Ranges Data on Ranges Future direction

Views

Slicing a Sequence into Views

Goal: find regions above cutoff of 3

0 50 100 150

0
2

4
6

8
10

Index

s

Outline Introduction Sequences Ranges Data on Ranges Future direction

Views

Slicing a Sequence into Views

Goal: find regions above cutoff of 3

Using Rle

> Views(sRle, as(sRle > 3, "IRanges"))

Views on a 156-length Rle subject

views:
start end width

[1] 47 67 21 [4 5 5 6 ...]
[2] 86 100 15 [5 5 5 5 5 5 ...]

Convenience

> sViews <- slice(sRle, 4)

> sViewsList <- RleViewsList(slice(sRle,

+ 4), slice(rev(sRle), 4))

Outline Introduction Sequences Ranges Data on Ranges Future direction

Views

Summarizing windows

• Could sapply over each window
• Native functions available for common tasks: viewMins,
viewMaxs, viewSums, ...

Code

> viewSums(sViews)

[1] 150 72

> viewSums(sViewsList)

SimpleNumericList: 2 elements

> viewMaxs(sViews)

[1] 10 5

> viewMaxs(sViewsList)

SimpleNumericList: 2 elements

Outline Introduction Sequences Ranges Data on Ranges Future direction

RangedData

RangedData

• Dataset where range is associated with a data row

• Holds ranges on multiple sequences (e.g.
chromosomes/contigs)

• 3D data structure that departs from R conventions
• In some context, feels like a list
• In others, feels like a data.frame

• Serves as basic data structure for rtracklayer

Outline Introduction Sequences Ranges Data on Ranges Future direction

Outline

1 Introduction
Purpose
Data Structures
Functionality
Metadata

2 Sequences
RLEs
Typed Lists
Other

3 Ranges
Basics
Ranges as sets
Overlap

4 Data on Ranges
Views
RangedData

5 Future direction

Outline Introduction Sequences Ranges Data on Ranges Future direction

Short/Medium Term Goals

• Document biological sequencing experiment components in an
IRanges context.

• Genome browser track(s) = RangedData/RangedDataList
• Coverage across chromosomes = RleList
• Mapped ranges to genome = CompressedIRangesList
• Data (sans ranges) across chroms = SplitDataFrameList

• Backfill functionality in current hot classes.
• Add kernel smoother methods for Rle/RleList.
• Further define RangedData.

• Optimize performance at choke points. (Accumulating
coverage too slow?)

• Create (multiple) alignment data class and methods.

	Outline
	Introduction
	Purpose
	Data Structures
	Functionality
	Metadata

	Sequences
	RLEs
	Typed Lists
	Other

	Ranges
	Basics
	Ranges as sets
	Overlap

	Data on Ranges
	Views
	RangedData

	Future direction

