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Purpose

IRanges Purpose

• Fulfill low-level Bioconductor sequence analysis requirements.
• Add new low-level utilities and classes not in vanilla R.
• Supplant inefficient vanilla R functionality, particularly

concerning long vectors (e.g. window function).

• Sits below eSet-like representations of sequence experiments
in packages like ShortRead .

As such, package name is misleading (prefer Seqbase), but
changing name would be costly to the BioC community.
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Purpose

Lessons Learned

• S4 classes are useful because they declare form, but...
• Creating many S4 objects in R level loop takes time.
• S4 object structure consumes memory, which can build up

when there are lots of instantiated objects.
• Class definitions can change and good to version instantiated

object.
• Can become too infatuated with multiple inheritances.
• Avoid initialize methods, if possible. Use constructors instead.

• Testing is a developer’s (and researcher’s) best friend.
• Validity methods provide important run-time data checking.
• Automated (RUnit) tests make crucial refactoring possible.

• Don’t let the perfect be the enemy of the good.
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Data Structures

IRanges Data Structures

• S4 Sequence class
• Mimics vector “class hierarchy”
• Typed list objects
• Data tables that can store S4 Sequence objects
• Self-describing (think Biobase’s AnnotatedDataFrame

metadata slots)

• Structures for compressing data
• Run-length encodings (RLEs) (e.g. coverage vector)
• Sparse list objects (e.g. read mapping information)

• Integer ranges/intervals

• Data on integer ranges/intervals
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Functionality

IRanges Functionality

• Implements the vector “interface” for Sequence objects

• Typed list object operations
• Simple looping operations
• Within and across object manipulations (e.g. Ops, Math,

Summary group generics)

• Efficient operations on compressed data objects
• Full suite of methods for RLE objects
• Smart looping on compressed list objects

• Comprehensive integer ranges/interval operations

• Some functionality for data on ranges
• Initial focus on subscripting, merging based on ranges, and

*apply functionality.
• Use cases may call for wider functionality.
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Metadata

Two types of metadata

• Whole object description (list)

• Element metadata (DataFrame)

• Currently this feature is severely underutilized; metadata can
be passed from one object to another as data is processed.
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Sequence Subclasses

The IRanges package is chock full of Sequence subclasses:

Sequence Class Definition

> length(getClassDef("Sequence")@subclasses)

[1] 84

> head(names(getClassDef("Sequence")@subclasses),

+ 8)

[1] "DataTable" "AtomicList"
[3] "Rle" "XSequence"
[5] "SimpleList" "CompressedList"
[7] "DataFrameList" "RangesList"

> slotNames(getClassDef("Sequence"))

[1] "elementMetadata" "elementType"
[3] "metadata"
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Example sequence
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RLEs

Run-Length Encodings (RLEs)

Our example has many repeated values:

Code

> sum(diff(s) == 0)

[1] 133

Good candidate for compression by run-length encoding:

Code

> sRle <- Rle(s)

> sRle

'numeric' Rle instance of length 156 with 23 runs
Lengths: 40 1 2 3 1 2 3 1 2 3 ...
Values : 0 1 2 3 4 5 6 7 8 9 ...

Compression reduces size from 156 to 46.
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RLEs

Rle operations

The Rle object shares many method interfaces with vector:

Basic

> sRle > 0 | rev(sRle) > 0

'logical' Rle instance of length 156 with 3 runs
Lengths: 40 76 40
Values : FALSE TRUE FALSE

Summary

> sum(sRle > 0)

[1] 66

Statistics

> cor(sRle, rev(sRle))

[1] 0.5142557
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Typed Lists

Typed Lists

• Ordinary R list objects require element inspection and as such
rarely used in method signature.

• Typed lists are list object whose elements inherit from a single
class and more conducive to serve as method inputs.

• Typed lists in IRanges come in two basic flavors: “simple” and
compressed (ideal for sparse lists).

• As with all Sequence classes, contain metadata slots.
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Typed Lists

List of Integers (1/2)

Typed list objects are well suited for method dispatch:

Simple List Type

> intList1 <- IntegerList(1:10, 1:100,

+ compress = FALSE)

> intList1

SimpleIntegerList: 2 elements

> (2L * intList1)[[1]]

[1] 2 4 6 8 10 12 14 16 18 20

> intList2 <- IntegerList(11:20,

+ 101:200, compress = FALSE)

> (intList1 + intList2)[[1]]

[1] 12 14 16 18 20 22 24 26 28 30
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Typed Lists

List of Integers (2/2)

Compressed List Type

> xList <- lapply(1:1e+05, function(i) if (i%%100 ==

+ 0) 1:10 else integer(0))

> cintList <- IntegerList(xList)

> system.time(sapply(xList, mean))

user system elapsed
5.803 0.037 5.915

> system.time(sapply(cintList, mean))

user system elapsed
0.797 0.018 0.816

> identical(sapply(xList, mean),

+ sapply(cintList, mean))

[1] TRUE
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Typed Lists

Sparse List of S4 Objects

Large lists of mostly empty S4 elements can take a large footprint:

Compressed List of Rle Objects

> empty <- Rle()

> empty

'logical' Rle instance of length 0 with 0 runs
Lengths:
Values :

> print(object.size(lapply(1:1e+05,

+ function(i) empty)), units = "Mb")

69 Mb

> print(object.size(RleList(lapply(1:1e+05,

+ function(i) empty))), units = "Mb")

0.4 Mb
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Other

Other Sequence Types

• DataTable interface and DataFrame class
• data.frame and AnnotatedDataFrame can’t house S4

Sequence objects such as Rle and IRanges, DNAStringSet
• A split version (SplitDataFrameList) can hold data across

spaces (e.g. sequencing lanes, chromosomes, contigs, etc.).

• EXternal sequences
• Sequences derived from XSequence are references
• Memory not copied when containing object is modified
• Example: XString in Biostrings package, for storing biological

sequences efficiently
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Basics

Ranges

• Often interested in consecutive subsequences

• Consider the alphabet as a sequence:
• {A, B, C} is a consecutive subsequence
• The vowels would not be consecutive

• Compact representation: range (start and width)

• Ranges objects store a sequence of ranges
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Basics

Creating a Ranges object

The IRanges class is a simple Ranges implementation.

Code

> ir <- IRanges(c(1, 8, 14, 15, 19,

+ 34, 40), width = c(12, 6, 6,

+ 15, 6, 2, 7))

ir

0 10 20 30 40
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Basics

Basic Ranges manipulation

Accessors

> start(ir)

[1] 1 8 14 15 19 34 40

> end(ir)

[1] 12 13 19 29 24 35 46

> width(ir)

[1] 12 6 6 15 6 2 7
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Basics

Basic Ranges manipulation

Subsetting

> ir[1:5]

IRanges instance:
start end width

[1] 1 12 12
[2] 8 13 6
[3] 14 19 6
[4] 15 29 15
[5] 19 24 6
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Ranges as sets

Normalizing ranges

• Ranges can represent a set of integers

• NormalIRanges formalizes this, with a compact, normalized
representation

• reduce normalizes ranges

Code

> reduce(ir)
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Ranges as sets

Normalizing ranges

Code

> reduce(ir)

ir

0 10 20 30 40

reduce(ir)

0 10 20 30 40
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Ranges as sets

Set operations

• Ranges as set of integers: intersect, union, gaps, setdiff

• Each range as integer set, in parallel: pintersect, punion,
pgap, psetdiff

Example: gaps

> gaps(ir)
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Ranges as sets

Set operations

Example: gaps

> gaps(ir)

ir

0 10 20 30 40

gaps(ir)

0 10 20 30 40
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Overlap

Disjoining ranges

• Disjoint ranges are non-overlapping

• disjoin returns the widest ranges where the overlapping
ranges are the same

Code

> disjoin(ir)
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Overlap

Disjoining ranges

Code

> disjoin(ir)

ir

0 10 20 30 40

disjoin(ir)

0 10 20 30 40
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Overlap

Overlap detection

• overlap detects overlaps between two Ranges objects

• Uses interval tree for efficiency

Code

> ol <- overlap(reduce(ir), ir)

> as.matrix(ol)

query subject
[1,] 1 1
[2,] 2 1
[3,] 3 1
[4,] 4 1
[5,] 5 1
[6,] 6 2
[7,] 7 3
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Overlap

Counting overlapping Ranges

coverage counts number of ranges over each position

Code

> cov <- coverage(ir)

ir

0 10 20 30 40

0
1

2
3

4
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Overlap

Finding nearest neighbors

• nearest finds the nearest neighbor ranges (overlapping is
zero distance)

• precede, follow find non-overlapping nearest neighbors on
specific side
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Views

Views

• Associates a Ranges object with a sequence

• Sequences can be Rle or (in Biostrings) XString

• Extends Ranges, so supports the same operations
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Views

Slicing a Sequence into Views

Goal: find regions above cutoff of 3
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Views

Slicing a Sequence into Views

Goal: find regions above cutoff of 3

Using Rle

> Views(sRle, as(sRle > 3, "IRanges"))

Views on a 156-length Rle subject

views:
start end width

[1] 47 67 21 [ 4 5 5 6 ...]
[2] 86 100 15 [5 5 5 5 5 5 ...]

Convenience

> sViews <- slice(sRle, 4)

> sViewsList <- RleViewsList(slice(sRle,

+ 4), slice(rev(sRle), 4))
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Views

Summarizing windows

• Could sapply over each window
• Native functions available for common tasks: viewMins,
viewMaxs, viewSums, ...

Code

> viewSums(sViews)

[1] 150 72

> viewSums(sViewsList)

SimpleNumericList: 2 elements

> viewMaxs(sViews)

[1] 10 5

> viewMaxs(sViewsList)

SimpleNumericList: 2 elements
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RangedData

RangedData

• Dataset where range is associated with a data row

• Holds ranges on multiple sequences (e.g.
chromosomes/contigs)

• 3D data structure that departs from R conventions
• In some context, feels like a list
• In others, feels like a data.frame

• Serves as basic data structure for rtracklayer
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Short/Medium Term Goals

• Document biological sequencing experiment components in an
IRanges context.

• Genome browser track(s) = RangedData/RangedDataList
• Coverage across chromosomes = RleList
• Mapped ranges to genome = CompressedIRangesList
• Data (sans ranges) across chroms = SplitDataFrameList

• Backfill functionality in current hot classes.
• Add kernel smoother methods for Rle/RleList.
• Further define RangedData.

• Optimize performance at choke points. (Accumulating
coverage too slow?)

• Create (multiple) alignment data class and methods.
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