Outline	Introduction 00000	Sequences 0000000	Ranges 0000000000	Data on Ranges 0000	Future direction

IRanges Package Design overview and framing of its role in BioC

July 29, 2009

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Outime	00000	0000000	0000000000	0000	r uture direction
1 Int	roduction Purpose Data Structures Functionality Metadata	5			
2 Se	quences RLEs Typed Lists Other				
3 Ra	nges Basics Ranges as sets Overlap				
4 Da	ta on Ranges Views RangedData				
6 Fu	ture direction			 < □ > < □ 	E> E ∽

Outline	00000	ooooooo	Ranges 0000000000	0000	Future direction
Outlir	ie				
	ntroduction				
	Purpose				
	Data Structur	es			
	Functionality				
	Metadata				
2 S	equences				
	RLEs				
	Typed Lists				
	Other				
3 F	Ranges				
	Basics				
	Ranges as set	S			
	Overlap				
4	Data on Ranges				
	Views				
	RangedData				
•	uture direction				▲ ■ ▶ ■ • • • • • • •

- Fulfill low-level Bioconductor sequence analysis requirements.
 - Add new low-level utilities and classes not in vanilla R.
 - Supplant inefficient vanilla R functionality, particularly concerning long vectors (e.g. window function).
- Sits below *eSet*-like representations of sequence experiments in packages like *ShortRead*.

As such, package name is misleading (prefer *Seqbase*), but changing name would be costly to the BioC community.

- S4 classes are useful because they declare form, but...
 - Creating many S4 objects in R level loop takes time.
 - S4 object structure consumes memory, which can build up when there are lots of instantiated objects.
 - Class definitions can change and good to version instantiated object.
 - Can become too infatuated with multiple inheritances.
 - Avoid *initialize* methods, if possible. Use constructors instead.
- Testing is a developer's (and researcher's) best friend.
 - Validity methods provide important run-time data checking.
 - Automated (*RUnit*) tests make crucial refactoring possible.

• Don't let the perfect be the enemy of the good.

• S4 Sequence class

- Mimics vector "class hierarchy"
- Typed list objects
- Data tables that can store S4 Sequence objects
- Self-describing (think *Biobase*'s *AnnotatedDataFrame* metadata slots)
- Structures for compressing data
 - Run-length encodings (RLEs) (e.g. coverage vector)
 - Sparse list objects (e.g. read mapping information)

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- Integer ranges/intervals
- Data on integer ranges/intervals

- Implements the vector "interface" for Sequence objects
- Typed list object operations
 - Simple looping operations
 - Within and across object manipulations (e.g. Ops, Math, Summary group generics)
- Efficient operations on compressed data objects
 - Full suite of methods for RLE objects
 - Smart looping on compressed list objects
- Comprehensive integer ranges/interval operations
- Some functionality for data on ranges
 - Initial focus on subscripting, merging based on ranges, and *apply functionality.

• Use cases may call for wider functionality.

- Whole object description (*list*)
- Element metadata (*DataFrame*)
- Currently this feature is severely underutilized; metadata can be passed from one object to another as data is processed.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Outline	00000	0000000	0000000000	0000	
Outlin	е				
n Ir	ntroduction				
	Purpose				
	Data Structur	res			
	Functionality	00			
	Metadata				
9 S	equences				
	RIFs				
	Typed Lists				
	Othor				
D	Other				
3 1	Decise				
	Dasics				
	Ranges as set	S			
	Overlap				
4 D	ata on Ranges				
	Views				
	RangedData				
A C	utura direction				1 = 1 = 10 A

Sequences

Outline	Introduction 00000	Sequences	Ranges 0000000000	Data on Ranges 0000	Future direction
Seque	nce Subclas	ses			
The	<i>IRanges</i> pack	age is chock	full of <i>Sequer</i>	nce subclasses:	
Seq	uence Class D	efinition			

> length(getClassDef("Sequence")@subclasses)

[1] 84

> head(names(getClassDef("Sequence")@subclasses),

+ 8)

- [1] "DataTable" "AtomicList"
- [3] "Rle" "XSequence"
- [5] "SimpleList" "CompressedList"
- [7] "DataFrameList" "RangesList"
- > slotNames(getClassDef("Sequence"))
- [1] "elementMetadata" "elementType"
- [3] "metadata"

Outline	Introduction 00000	Sequences	Ranges 0000000000	Data on Ranges 0000	Future direction
Examp	ole sequenc	е			

Index

(ロ)、(型)、(E)、(E)、(E)、(D)へ()

S

Outline	Introduction 00000	Sequences ••••••	Ranges 0000000000	Data on Ranges 0000	Future direction
RLEs					
Run-Le	ength Enco	dings (RLI	Es)		

Our example has many repeated values:

Code
> sum(diff(s) == 0)
[1] 133

Good candidate for compression by run-length encoding:

Сс	ode
>	sRle <- Rle(s)
>	sRle
	'numeric' Rle instance of length 156 with 23 runs
	Lengths: 40 1 2 3 1 2 3 1 2 3
_	Values : 0 1 2 3 4 5 6 7 8 9

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Compression reduces size from 156 to 46.

Outline	Introduction 00000	Sequences	Ranges 0000000000	Data on Ranges 0000	Future direction
RLEs					
Rle or	perations				

The *Rle* object shares many method interfaces with vector:

Basic	
> sRle > 0 rev(sRle) > 0	
'logical' Rle instance of length 156 with 3 runs Lengths: 40 76 40	
Values : FALSE IRUE FALSE	

Summary

> sum(sRle > 0)

[1] 66

Statistics

> cor(sRle, rev(sRle))

[1] 0.5142557

Outline	Introduction 00000	Sequences	Ranges 0000000000	Data on Ranges 0000	Future direction
Typed Lists					
Typed	Lists				

- Ordinary R list objects require element inspection and as such rarely used in method signature.
- Typed lists are list object whose elements inherit from a single class and more conducive to serve as method inputs.
- Typed lists in *IRanges* come in two basic flavors: "simple" and compressed (ideal for sparse lists).

• As with all Sequence classes, contain metadata slots.

Outline	Introduction 00000	Sequences	Ranges 0000000000	Data on Ranges 0000	Future direction
Typed Lists					
list of	Integers (*	1/2)			

Typed list objects are well suited for method dispatch:

 \circ

Simple List Type					
<pre>> intList1 <- IntegerList(1:10, 1:100, + compress = FALSE) > intList1</pre>					
SimpleIntegerList: 2 elements					
> (2L * intList1)[[1]]					
[1] 2 4 6 8 10 12 14 16 18 20					
<pre>> intList2 <- IntegerList(11:20, + 101:200, compress = FALSE) > (intList1 + intList2)[[1]]</pre>					
[1] 12 14 16 18 20 22 24 26 28 30					

2

Outline	Introduction 00000	Sequences 0000000	Ranges 0000000000	Data on Ranges 0000	Future direction
Typed Lists					
List of	Integers (2	2/2)			

Compressed List Type

- > xList <- lapply(1:1e+05, function(i) if (i%%100 ==
- + 0) 1:10 else integer(0))
- > cintList <- IntegerList(xList)</pre>
- > system.time(sapply(xList, mean))

user system elapsed 5.803 0.037 5.915

> system.time(sapply(cintList, mean))

user system elapsed 0.797 0.018 0.816

> identical(sapply(xList, mean),

+ sapply(cintList, mean))

[1] TRUE

Sparse List of S4 Objects								
Typed Lists								
Outline	Introduction 00000	Sequences ○○○○○●○	Ranges 0000000000	Data on Ranges 0000	Future direction			

Large lists of mostly empty S4 elements can take a large footprint:

```
Compressed List of Rle Objects
> empty <- Rle()
> empty
  'logical' Rle instance of length 0 with 0 runs
  Lengths:
  Values :
> print(object.size(lapply(1:1e+05,
      function(i) empty)), units = "Mb")
+
69 Mb
```

```
> print(object.size(RleList(lapply(1:1e+05,
+ function(i) empty))), units = "Mb")
0.4 Mb
```


- DataTable interface and DataFrame class
 - data.frame and AnnotatedDataFrame can't house S4 Sequence objects such as Rle and IRanges, DNAStringSet
 - A split version (*SplitDataFrameList*) can hold data across spaces (e.g. sequencing lanes, chromosomes, contigs, etc.).
- EXternal sequences
 - Sequences derived from XSequence are references
 - · Memory not copied when containing object is modified
 - Example: *XString* in *Biostrings* package, for storing biological sequences efficiently

Outline	Introduction 00000	Sequences 0000000	Ranges	Data on Ranges 0000	Future direction
Outlin	ie				
	ntroduction				
	Purpose				
	Data Structure	ès			
	Functionality				
	Metadata				
2 S	equences				
	RLEs				
	Typed Lists				
	Other				
3 F	Ranges				
-	Basics				
	Ranges as sets				
	Overlap				
4)ata on Ranges				
	Views				
	RangedData				
A C	iuture direction			・ロト ・日 ・ ・ 田・	▲ Ξ ► Ξ • • • • • • • • • • • • • • • • •

Outline	Introduction 00000	Sequences 0000000	Ranges ●000000000	Data on Ranges 0000	Future direction
Basics					
Ranges					

- Often interested in *consecutive* subsequences
- Consider the alphabet as a sequence:
 - {A, B, C} is a consecutive subsequence
 - The vowels would not be consecutive
- Compact representation: range (start and width)

• Ranges objects store a sequence of ranges

Outline	Introduction 00000	Sequences 0000000	Ranges 0●00000000	Data on Ranges 0000	Future direction
Basics					
Creati	ng a Range	s object			

The IRanges class is a simple Ranges implementation.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Outline	Introduction 00000	Sequences 0000000	Ranges 00●0000000	Data on Ranges 0000	Future direction
Basics					
D •	D				

Basic Ranges manipulation

Access	ors						
> sta	rt(i	r)					
[1]	L 8	14	15	19	34	40	
> end	(ir)						
[1] 1	2 13	19	29	24	35	46	
> width(ir)							
[1] 1	26	6	15	6	2	7	

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

Outline	Introduction 00000	Sequences 0000000	Ranges 0000000000	Data on Ranges 0000	Future direction
Basics					

Basic Ranges manipulation

Subsetting							
> ir[1:5]							
IRanges instance:							
	start	end	width				
[1]	1	12	12				
[2]	8	13	6				
[3]	14	19	6				
[4]	15	29	15				
[5]	19	24	6				

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 のへぐ

Outline	Introduction 00000	Sequences 0000000	Ranges ○○○○●○○○○○	Data on Ranges 0000	Future direction
Ranges as set	s				
Norma	alizing range	es			

- Ranges can represent a set of integers
- *NormallRanges* formalizes this, with a compact, normalized representation

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

reduce normalizes ranges

Code

> reduce(ir)

Outline	Introduction 00000	Sequences 0000000	Ranges ○○○○●○○○○○	Data on Ranges 0000	Future direction
Ranges as sets					
Normali	izing range	es			

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 _ のへで

Outline	Introduction 00000	Sequences 0000000	Ranges ○○○○○●○○○○	Data on Ranges 0000	Future direction
Ranges as sets					
Set ope	erations				

- Ranges as set of integers: intersect, union, gaps, setdiff
- Each range as integer set, in parallel: pintersect, punion, pgap, psetdiff

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Example: gaps

> gaps(ir)

Outline	Introduction 00000	Sequences 0000000	Ranges ○○○○○●○○○	Data on Ranges 0000	Future direction
Overlap					
Disjoir	ning ranges				

- Disjoint ranges are non-overlapping
- disjoin returns the widest ranges where the overlapping ranges are the same

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Outline	Introduction 00000	Sequences 0000000	Ranges ○○○○○○○○○○	Data on Ranges 0000	Future direction
Overlap					
Overla	p detection				

- overlap detects overlaps between two Ranges objects
- Uses interval tree for efficiency

Code

[6,]

[7,]

```
> ol <- overlap(reduce(ir), ir)</pre>
```

2

3

```
> as.matrix(ol)
```

 query subject

 [1,]
 1

 [2,]
 2
 1

 [3,]
 3
 1

 [4,]
 4
 1

 [5,]
 5
 1

6

7

coverage counts number of ranges over each position

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Outline	Introduction 00000	Sequences 0000000	Ranges ○○○○○○○○○	Data on Ranges 0000	Future direction
Overlap					
Finding	, nearest n	eighbors			

- nearest finds the nearest neighbor ranges (overlapping is zero distance)
- precede, follow find non-overlapping nearest neighbors on specific side

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Outline	Introduction 00000	Sequences 0000000	Ranges 0000000000	Data on Ranges	Future direction
Outlir	ne				
	ntroduction				
	Purpose				
	Data Structure	ès			
	Functionality				
	Metadata				
2 9	Sequences				
	RLEs				
	Typed Lists				
	Other				
3 F	Ranges				
	Basics				
	Ranges as sets				
	Overlap				
4	Data on Ranges				
-	Views				
	RangedData				
				(人口) (人口) (日) (日)	▲ 臣 ▶ □ 臣 → のへ(や

Euture divection

Outline	Introduction 00000	Sequences 0000000	Ranges 0000000000	Data on Ranges ●000	Future direction
Views					
Views					

- Associates a Ranges object with a sequence
- Sequences can be *Rle* or (in Biostrings) *XString*
- Extends Ranges, so supports the same operations

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Outline	Introduction 00000	Sequences 0000000	Ranges 0000000000	Data on Ranges 0●00	Future direction
Views					
Slicing	; a Sequenc	e into Viev	WS		

Goal: find regions above cutoff of 3

Index

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Outlin	e Intro	duction DO	Sequences 0000000	Ranges 0000000000	Data on Ranges 0●00	Future direction
Views						
Slie	cing a Se	equence	into Views	;		
	Goal: find	regions al	pove cutoff of	3		
	Using Rle					
	> Views(sRle, as	(sRle > 3,	"IRanges"))	
	Views	on a 156	-length Rle	e subject		
	views:					

..]

	start	end	width					
[1]	47	67	21	[4	5	5	6	
[2]	86	100	15	ſ5 5	5	55	5	

Convenience

- > sViews <- slice(sRle, 4)</pre>
- > sViewsList <- RleViewsList(slice(sRle,</pre>
- + 4), slice(rev(sRle), 4))

Outline	Introduction 00000	Sequences 0000000	Ranges 0000000000	Data on Ranges 00●0	Future direction
Views					
<u> </u>					

Summarizing windows

- Could sapply over each window
- Native functions available for common tasks: viewMins, viewMaxs, viewSums, ...

Code

```
> viewSums(sViews)
```

```
[1] 150 72
```

```
> viewSums(sViewsList)
```

SimpleNumericList: 2 elements

```
> viewMaxs(sViews)
```

[1] 10 5

```
> viewMaxs(sViewsList)
```

SimpleNumericList: 2 elements

Outline	Introduction 00000	Sequences 0000000	Ranges 0000000000	Data on Ranges ○○○●	Future direction
RangedData					
Rangec	IData				

- Dataset where range is associated with a data row
- Holds ranges on multiple sequences (e.g. chromosomes/contigs)
- 3D data structure that departs from R conventions

- In some context, feels like a list
- In others, feels like a data.frame
- Serves as basic data structure for *rtracklayer*

Outline	00000	0000000	0000000000	0000	r ature direction
Outlin	e				
1	ntroduction				
	Purpose				
	Data Structure	es			
	Functionality				
	Metadata				
2 S	equences				
	, RLEs				
	Typed Lists				
	Other				
3 R	langes				
	Basics				
	Ranges as sets				
	Overlap				
4 D	ata on Ranges				
•	Views				
	RangedData				
	uture direction				< ≣ ▶ ≡ ∽ २ (

- Document biological sequencing experiment components in an *IRanges* context.
 - Genome browser track(s) = RangedData/RangedDataList
 - Coverage across chromosomes = *RleList*
 - Mapped ranges to genome = *CompressedIRangesList*
 - Data (sans ranges) across chroms = SplitDataFrameList

- Backfill functionality in current hot classes.
 - Add kernel smoother methods for *Rle/RleList*.
 - Further define *RangedData*.
- Optimize performance at choke points. (Accumulating coverage too slow?)
- Create (multiple) alignment data class and methods.