
Analysis of microscopy images and

cellular phenotypes using EBImage

Grégoire Pau
European Molecular Biology Laboratory, Heidelberg, Germany

July 23, 2009

Contents

1 Motivation 1

2 Preprocessing images and visualisation 1

3 Cell segmentation 3
3.1 Nucleus segmentation by thresholding . 3
3.2 Cell membrane determination . 4
3.3 Batch processing . 6

4 Cellular features 6

1 Motivation

EBImage is a Bioconductor package which provides general purpose functionality for the reading, writing, pro-
cessing and analysis of images. In this tutorial, we use EBImage to transform images coming from the microscope,
segment cells, extract quantitative cellular descriptors and predict phenotypes from cellular populations.

We are using a set of 8 human HeLa cell populations perturbed by small interfering RNAs (siRNA) targeting
different genes (Table 1). After transfection, cells were grown for 48 h, stained with three immunofluorescent
markers (DNA, tubulin and actin) and imaged by microscopy.

Image name Target gene Expected phenotype
001-01-C03 Rluc Wild type
001-01-D03 Rluc Wild type
001-01-E04 KIF11 Mitotic arrest
001-01-F04 KIF11 Mitotic arrest
001-01-I04 CLSPN Giant cells
001-01-M04 Rluc Wild type
002-01-B20 PKM2 Undefined
003-01-H03 TRAPPC3 Elongated cells

Table 1: Experiment/perturbation mapping.

2 Preprocessing images and visualisation

After having started R, the package EBImage is loaded by typing the following command.

> library("EBImage")

The function readImage reads images and supports many image formats, including JPEG, TIFF, GIF and
PNG. The following example reads a microscopy image and assigns it to the variable a. The image a is then
displayed using display.

1

> a = readImage('images/001-01-C03-actin.jpeg')

> display(a)

The image a shows the actin channel of a population of HeLa cells. We now read the DNA channel and
assign it to the variable d.

> d = readImage('images/001-01-C03-dna.jpeg')

> display(d)

Figure 1: The actin (a, left) and DNA (d, right) channels of the cell population “001-01-C03”.

Images are represented as matrices. Hence, they can be manipulated in R with algebraic operators such as
sum, product or comparison, with numbers or other matrices. These basic operations are the building blocks
of all image processing operators and can be used to adjust the dynamic range of an image.

> display(a*2)

> display(a+d)

> display(d+0.3)

EBImage supports many geometric transformations such as resizing or rotation.

> display(resize(a, w=256))

> display(rotate(a, 30))

Gray images can be combined into color images using the function rgbImage. The following example shows
how to combine the tree fluorescent channels of the image “001-01-C03” into the RGB color image x.

> t = readImage('images/001-01-C03-tubulin.jpeg')

> x = rgbImage(red=a, green=t, blue=d)

> display(x)

Images can be written using writeImage. The ouput image format is guessed according to the filename
extension.

> writeImage(x, 'images/001-01-C03-rgb.jpeg')

Automatic image processing is useful when batch processing thousand of images. The following script
combines the color channels of the 8 experiments and writes corresponding the output “-rgb.jpeg” images.

> ids = unique(substr(dir('images'), 1, 10))

> for (id in ids) {

+ cat(id, '\n')

+ a = readImage(file.path('images', paste(id, '-actin.jpeg', sep='')))

+ t = readImage(file.path('images', paste(id, '-tubulin.jpeg', sep='')))

+ d = readImage(file.path('images', paste(id, '-dna.jpeg', sep='')))

+ x = rgbImage(red=a, green=t, blue=d)

+ writeImage(x, file.path('images', paste(id, '-rgb.jpeg', sep='')))

+ }

2

Figure 2: The cell population“001-01-C03”(x) showing actin (red), tubulin (green) and DNA (blue) components.

The new RGB combined images can be viewed using an external viewer. A more convenient option is
to generate a web page showing all the thumbnail images. The following script generates the thumbnails by
reducing all the images located of the directory “images”.

> dir.create('thumbs')

> img = dir('images')

> for (i in img) {

+ cat(i, '\n')

+ y = readImage(file.path('images', i))

+ writeImage(resize(y, w=256), file.path('thumbs', i))

+ }

A web page, showing all the images with thumbnails, is generated using the HTML package hwriter.

> library(hwriter)

> m1 = matrix(file.path('thumbs', img), nrow=length(ids), byrow=TRUE)

> m2 = matrix(file.path('images', img), nrow=length(ids), byrow=TRUE)

> m1 = hwriteImage(m1, link=m2, table=FALSE)

> rownames(m1) = ids

> hwrite(m1, 'gallery.html')

> browseURL('gallery.html')

3 Cell segmentation

Segmenting objects from an image is a standard task in image analysis. Depending on the kind of objects to
be isolated, segmentation algorithms can range from really basic ones to very complex models. The images we
are analysing here are simple: each cell contains a nucleus, and nuclei are not superposed, well separated and
lie in a dark, uniform medium. Thresholding-based segmentation algorithms are simple and powerful enough
to separate the nuclei in our images. We are using a two-step algorithm where the nuclei are segmented first,
followed by the determination of the cell membranes.

3.1 Nucleus segmentation by thresholding

Global thresholding is a simple segmentation method which consists in finding a threshold that separates the
objects from the background. The next example uses global thresholding to segment the nuclei from the DNA
channel d.

> display(d)

> nmask1 = d>0.15

> display(nmask1)

3

Results are correct but some nuclei next to each other have been fused by the algorithm. A variant of global
thresholding, adaptive thresholding, consists in comparing the intensity of every pixels to their neigbhborood,
resulting in a binary image. Adaptive thesholding is efficiently implemented by the function thresh.

> nmask2 = thresh(d, 15, 15, 0.005)

> display(nmask2)

> display(rgbImage(red=nmask1, green=nmask2))

The results are better, as shown by the red and green image comparing the two segmentation approaches.
Remaining single pixels or small artefacts from the mask nmask2 are removed using the function opening,
which performs a morphological opening on nmask2, rubbing the foreground by the structural element mk3. The
function fillHull removes internal holes in objects.

> mk3 = makeBrush(3, shape='diamond')

> nmask2 = opening(nmask2, mk3)

> nmask2 = fillHull(nmask2)

> display(nmask2)

Nuclei are now extracted from the mask using bwlabel, which labels connected sets in a binary image.

> nseg = bwlabel(nmask2)

> nn = max(nseg)

> display(nseg/nn)

> print(nn)

nseg contains a matrix where every object is defined by a group of pixels set to the same unique increasing
integer, starting with 0 for the background. Therefore, the total number of objects is given by the maximum
integer of the segmented image. Here, 147 objects were found but many are too small to be considered a priori
as nuclei. The following step computes the geometric features of the nuclei and prints them. Features include
coordinates (g.x, g.y), size in pixels g.s and perimeter g.p.

> nf = hullFeatures(nseg)

> print(nf)

The objects with a size lower than 150 pixels cannot be considered as nuclei and are removed using rmObjects.
121 nuclei are now present.

> nr = which(nf[,'g.s'] < 150)

> nseg = rmObjects(nseg, nr)

> nn = max(nseg)

> print(nn)

> display(nseg/nn)

3.2 Cell membrane determination

Since cells are touching, membrane determination cannot be done by thresholding. We are using instead the
Voronoi segmentation algorithm, starting with seeds (here the nuclei) and propagating the cell membranes
according to a metric based on the image gradient. Before doing so, we have to compute the cell mask cmask,
indicating whether each pixel belongs to a cell or not. Cell mask computation is done by adaptive thresholding,
through the function filter2 which convolutes an image with a 2D filter.

> mix = sqrt(a^2+t^2+d^2)

> display(mix)

> cmask = filter2(mix, mk3/5)>=0.12

> cmask = closing(cmask, mk3)

> nseg[!(cmask>0)] = 0

> display(rgbImage(red=cmask, green=nseg))

> display(x)

The Voronoi segmentation is performed by propagate, using the nuclei as seeds.

4

Figure 3: Segmented nuclei (nseg, left). Cell mask (red) and nuclei (yellow)
(rgbImage(red=cmask, green=nseg) ,right).

> cseg = propagate(mix^0.2, nseg, cmask, 0.1, 0)

> cseg = fillHull(cseg)

> display(cseg/max(cseg))

Cells with a size lower than 150 pixels are removed. Cell features are stored in the list acf.

> cf = hullFeatures(cseg)

> cr = which(cf[,'g.s'] < 150)

> cseg = rmObjects(cseg, cr)

> nseg = rmObjects(nseg, cr)

> acf = list()

> acf[[id]] = cf

> print(max(cseg))

> seg = paintObjects(nseg, x, col=c('#ffff00'))

> seg = paintObjects(cseg, seg, col=c('#ff00ff'))

> display(seg)

> writeImage(seg, file.path('images', paste(id, '-seg.jpeg', sep='')))

Figure 4: Final segmentation (seg). Nuclei are highlighted in yellow and cell boundaries in magenta.

5

3.3 Batch processing

Using the previous examples, write a script that, for each of the 8 images, segment it, write the segmented
image “-seg.jpeg”, compute the cell features and store them into the list acf. The following example writes a
web page containing the 8 images, before and after segmentation.

> img = dir('images')

> img = img[sort(c(grep('seg', img), grep('rgb', img)))]

> i2 = file.path('images', img)

> m2 = matrix(i2, nrow=length(ids), byrow=TRUE)

> m2 = hwriteImage(m2, table=FALSE)

> rownames(m2) = ids

> hwrite(m2, 'gallery2.html')

> browseURL('gallery2.html')

4 Cellular features

Cellular features characterize cell morphologies and harbor biologically relevant information. The following
example displays the distribution of cell perimeters g.s in 4 images.

> library(geneplotter)

> cp = sapply(acf, function(ac) ac[,'g.p'])

> multidensity(cp[c('001-01-C03', '001-01-D03', '001-01-M04', '003-01-H03')], xlim=c(0,1000), bw=100,

+ xlab='Cell perimeter (in pixels)', main='Distribution of cell perimeters')

Judging from the distributions, it seems that the cells of the image “003-01-H03” are longer than the ones in
“001-01-C03”, “001-01-D03” and “001-01-M04”. This phenotypic difference can be formally tested. The following
example shows that the cells of the image “003-01-H03” are significantly longer than the ones in “001-01-C03”
(Wilcoxon rank sum test, P-value < 1e-6).

> wilcox.test(cp[['001-01-C03']],cp[['003-01-H03']])

> wilcox.test(cp[['001-01-C03']],cp[['001-01-M04']])

0 200 400 600 800 1000

0.
00

00
0.

00
05

0.
00

10
0.

00
15

0.
00

20
0.

00
25

0.
00

30
0.

00
35

densities

Cell perimeter (in pixels)

D
en

si
ty

001−01−C03
001−01−D03
001−01−M04
003−01−H03

Figure 5: Distribution of cell perimeters in 4 cell populations.

6

	Motivation
	Preprocessing images and visualisation
	Cell segmentation
	Nucleus segmentation by thresholding
	Cell membrane determination
	Batch processing

	Cellular features

