
Bioc 2009 lab session: genetics of gene expression

©2009 VJ Carey PhD

July 25, 2009

Contents

1 Introduction 2

2 Key resources for discovering and interpreting eQTL 2
2.1 General metadata . 2

2.1.1 Consensus sequence . 2
2.1.2 Gene enumeration, location, and other mappings 3
2.1.3 SNP enumeration and location . 5
2.1.4 SNP chip annotation . 6
2.1.5 Expression array metadata . 9

2.2 A HapMap-based integrative genomics package for the YRI cohort 9
2.3 GGtools and rtracklayer: eQTL discovery and context 12
2.4 Problems . 14

2.4.1 Sample filtering and validity . 14
2.4.2 SNP filtering and robustness . 14
2.4.3 Somatic deletion . 15
2.4.4 gseQTL – gene set expression QTLs 16

3 Getting acquainted with affy’s genomewide 6.0 chip 18
3.1 Raw import and visualization . 18
3.2 Grouping intensities; the M vs S plot . 19
3.3 crlmm for genotyping . 21
3.4 Problems . 22

3.4.1 M vs S granularity . 22
3.4.2 Calling via clustering . 23

4 Imputation 23

1

1 Introduction

Numerous publications have investigated the relationships between SNP allele frequen-
cies and variation in expression, (Cheung et al., 2005; Stranger et al., 2007; Dixon et al.,
2007; Göring et al., 2007). Interpretation of findings in such studies is complicated
(Williams et al., 2007; Kliebenstein, 2009). This lab reviews how Bioconductor resources
may be used to conduct further research in this domain.

A figure from Williams (2007) illustrates some of the ways polymorphisms in DNA
might affect expression variation:

2 Key resources for discovering and interpreting eQTL

2.1 General metadata

2.1.1 Consensus sequence

It is often useful to have access to consensus genomic sequence. We will focus on data
in humans.

> library(BSgenome.Hsapiens.UCSC.hg18)

> Hsapiens$chr20

2

62435964-letter "MaskedDNAString" instance (# for masking)

seq: ####################################...ATTCTTCTTTGAATGTCTGATAGAATTCCGCGGATC

masks:

maskedwidth maskedratio active names desc

1 2930711 0.046939469 TRUE AGAPS assembly gaps

2 0 0.000000000 TRUE AMB intra-contig ambiguities (empty)

3 29017078 0.464749419 FALSE RM RepeatMasker

4 496674 0.007954934 FALSE TRF Tandem Repeats Finder [period<=12]

all masks together:

maskedwidth maskedratio

31975395 0.512131

all active masks together:

maskedwidth maskedratio

2930711 0.04693947

2.1.2 Gene enumeration, location, and other mappings

Human genes are enumerated and described using a SQLite-based package that provides
information from NCBI Entrez Gene.

> library(org.Hs.eg.db)

> cpeg = get("CPNE1", revmap(org.Hs.egSYMBOL))

> cpeg

[1] "8904"

> get(cpeg, org.Hs.egGENENAME)

[1] "copine I"

> get(cpeg, org.Hs.egCHRLOC)

20 20

-33677381 -33677379

You may notice two start positions for this gene, depending on the annotation package
version in use (see the sessionInfo() in the appendix for details.) To explain this, the
documentation available through help(org.Hs.egCHRLOC) has:

Since some genes have multiple start sites, this field can map to

multiple locations.

Mappings were based on data provided by: UCSC Genome

Bioinformatics (Homo sapiens) (

ftp://hgdownload.cse.ucsc.edu/goldenPath/currentGenomes/Homo_sapiens

) on 2009-Sep3

3

The full set of mappings for Entrez Gene entities can be listed:

> org.Hs.eg()

Quality control information for org.Hs.eg:

This package has the following mappings:

org.Hs.egACCNUM has 29534 mapped keys (of 40596 keys)

org.Hs.egACCNUM2EG has 592232 mapped keys (of 592232 keys)

org.Hs.egALIAS2EG has 103280 mapped keys (of 103280 keys)

org.Hs.egCHR has 40359 mapped keys (of 40596 keys)

org.Hs.egCHRLENGTHS has 25 mapped keys (of 25 keys)

org.Hs.egCHRLOC has 20048 mapped keys (of 40596 keys)

org.Hs.egCHRLOCEND has 20048 mapped keys (of 40596 keys)

org.Hs.egENSEMBL has 20198 mapped keys (of 40596 keys)

org.Hs.egENSEMBL2EG has 19886 mapped keys (of 19886 keys)

org.Hs.egENSEMBLPROT has 19876 mapped keys (of 40596 keys)

org.Hs.egENSEMBLPROT2EG has 44845 mapped keys (of 44845 keys)

org.Hs.egENSEMBLTRANS has 19912 mapped keys (of 40596 keys)

org.Hs.egENSEMBLTRANS2EG has 44905 mapped keys (of 44905 keys)

org.Hs.egENZYME has 2021 mapped keys (of 40596 keys)

org.Hs.egENZYME2EG has 870 mapped keys (of 870 keys)

org.Hs.egGENENAME has 40596 mapped keys (of 40596 keys)

org.Hs.egGO has 17593 mapped keys (of 40596 keys)

org.Hs.egGO2ALLEGS has 10614 mapped keys (of 10614 keys)

org.Hs.egGO2EG has 7831 mapped keys (of 7831 keys)

org.Hs.egMAP has 36457 mapped keys (of 40596 keys)

org.Hs.egMAP2EG has 2944 mapped keys (of 2944 keys)

org.Hs.egOMIM has 14184 mapped keys (of 40596 keys)

org.Hs.egOMIM2EG has 16569 mapped keys (of 16569 keys)

org.Hs.egPATH has 4758 mapped keys (of 40596 keys)

org.Hs.egPATH2EG has 201 mapped keys (of 201 keys)

org.Hs.egPFAM has 23980 mapped keys (of 40596 keys)

org.Hs.egPMID has 28269 mapped keys (of 40596 keys)

org.Hs.egPMID2EG has 238987 mapped keys (of 238987 keys)

org.Hs.egPROSITE has 23980 mapped keys (of 40596 keys)

org.Hs.egREFSEQ has 28038 mapped keys (of 40596 keys)

org.Hs.egREFSEQ2EG has 91461 mapped keys (of 91461 keys)

org.Hs.egSYMBOL has 40596 mapped keys (of 40596 keys)

org.Hs.egSYMBOL2EG has 40579 mapped keys (of 40579 keys)

org.Hs.egUNIGENE has 24563 mapped keys (of 40596 keys)

4

org.Hs.egUNIGENE2EG has 25172 mapped keys (of 25172 keys)

org.Hs.egUNIPROT has 20666 mapped keys (of 40596 keys)

Additional Information about this package:

DB schema: HUMAN_DB

DB schema version: 2.0

Organism: Homo sapiens

Date for NCBI data: 2009-May7

Date for GO data: 200904

Date for KEGG data: 2009-May6

Date for Golden Path data: 2009-Sep3

Date for IPI data: 2009-May07

Date for Ensembl data: 2009-Mar6

More details on other annotation resources can be obtained using the biomaRt pack-
age.

2.1.3 SNP enumeration and location

> library(SNPlocs.Hsapiens.dbSNP.20080617)

> data(package = "SNPlocs.Hsapiens.dbSNP.20080617")$results[, 3]

[1] "SNPcount" "chr10_snplocs" "chr11_snplocs" "chr12_snplocs"

[5] "chr13_snplocs" "chr14_snplocs" "chr15_snplocs" "chr16_snplocs"

[9] "chr17_snplocs" "chr18_snplocs" "chr19_snplocs" "chr1_snplocs"

[13] "chr20_snplocs" "chr21_snplocs" "chr22_snplocs" "chr2_snplocs"

[17] "chr3_snplocs" "chr4_snplocs" "chr5_snplocs" "chr6_snplocs"

[21] "chr7_snplocs" "chr8_snplocs" "chr9_snplocs" "chrX_snplocs"

[25] "chrY_snplocs"

> c1chk = getSNPlocs("chr20")[1:10,]

> c1chk

RefSNP_id alleles_as_ambig loc

1 28753379 Y 8572

2 28579812 Y 8646

3 6078030 Y 9098

4 4814683 K 9795

5 6047235 Y 10100

6 34147676 M 10731

7 6076506 K 11231

5

8 6139074 M 11244

9 1418258 Y 11799

10 7274499 M 12150

> apply(c1chk, 2, class)

RefSNP_id alleles_as_ambig loc

"character" "character" "character"

The dbSNP identifiers are encoded without the ’rs’ to save space.
We can learn the detailed allele assignments using

> Biostrings::IUPAC_CODE_MAP

A C G T M R W S Y K V

"A" "C" "G" "T" "AC" "AG" "AT" "CG" "CT" "GT" "ACG"

H D B N

"ACT" "AGT" "CGT" "ACGT"

Additional metadata on SNP can be obtained using biomaRt, if you have a network
connection.

For example, we can get some metadata on a given dbSNP id as follows:

> m = useMart("snp")

> m = useDataset("hsapiens_snp", m)

> att = listAttributes(m)

> getBM(c("refsnp_id", "chr_name", "allele_1", "associated_gene",

+ "chrom_start", "chrom_strand"), filt = "refsnp", values = "rs6060535",

+ m)

The response is:

refsnp_id chr_name allele_1 associated_gene chrom_start chrom_strand

1 rs6060535 20 C NA 33698936 1

You will need to examine att and the results of listFilters(m) to determine how to
make more detailed queries.

2.1.4 SNP chip annotation

We focus on the genomewide SNP 6.0 chip from Affymetrix.

> library(pd.genomewidesnp.6)

> objects("package:pd.genomewidesnp.6")

[1] "pd.genomewidesnp.6"

6

> get(objects("package:pd.genomewidesnp.6"))

Class........: AffySNPCNVPDInfo

Manufacturer.: Affymetrix

Genome Build.: NCBI Build 36

Chip Geometry: 2572 rows x 2680 columns

Annotation...:

> con6 = get(objects("package:pd.genomewidesnp.6"))@getdb()

> dbListTables(con6)

[1] "featureSet" "featureSetCNV" "pmfeature" "pmfeatureCNV"

[5] "sequence" "sequenceCNV" "sqlite_stat1" "table_info"

We use SQL queries to discover table contents and attribute formats. Here we look
at some probe sequences, determine the feature set in which a given probe resides, and
check genomic metadata regarding this feature set.

> dbGetQuery(con6, "select * from sequence limit 8")

fid offset tstrand tallele seq

1 7 1 f T GTGCTTACAATACAGTGGTTTCCTT

2 8 1 f C GTGCTTACAATACGGTGGTTTCCTT

3 9 -1 r G CAGCTACAAATGAGAGTTTTCTAGT

4 10 -1 r A CAGCTACAAATGAAAGTTTTCTAGT

5 11 -1 r C CCATCATAACAGACAGTTGTATTAG

6 12 -1 r A CCATCATAACAGAAAGTTGTATTAG

7 13 -2 r T CGCATCAGAAAAAATGTTTTATGGC

8 14 -2 r G CGCATCAGAAAAAAGGTTTTATGGC

> dbGetQuery(con6, "select * from pmfeature where fid = 10")

fid strand allele fsetid pos x y

1 10 1 0 391678 1 9 0

> dbGetQuery(con6, "select * from featureSet where fsetid = 391678")

fsetid man_fsetid affy_snp_id dbsnp_rs_id chrom physical_pos strand

1 391678 SNP_A-1856539 NA rs11135923 8 26116296 1

cytoband allele_a allele_b

1 p21.2 A G

gene_assoc fragment_length

1 ENST00000380737 // intron // 0 // --- // --- // --- // --- NA

fragment_length2 dbsnp cnv

1 979 0 <NA>

7

We see that this feature set is used to genotype a SNP located on chromosome 8. We
can verify that the probe sequence corresponding to fid 10 is present, modulo the
polymorphism, using Bioconductor’s efficient genomic sequence representation.

> library(BSgenome.Hsapiens.UCSC.hg18)

> c8 = Hsapiens$chr8

> c8

146274826-letter "MaskedDNAString" instance (# for masking)

seq: GCAATTATGACACAAAAAATTAAACAGTGCAGACTG...ATGAATCTGGGTGCTCCTGTATTGGGTGCATATATA

masks:

maskedwidth maskedratio active names desc

1 3662000 0.025035067 TRUE AGAPS assembly gaps

2 0 0.000000000 TRUE AMB intra-contig ambiguities (empty)

3 68913019 0.471120157 FALSE RM RepeatMasker

4 949199 0.006489148 FALSE TRF Tandem Repeats Finder [period<=12]

all masks together:

maskedwidth maskedratio

72624214 0.4964915

all active masks together:

maskedwidth maskedratio

3662000 0.02503507

> f10s = dbGetQuery(con6, "select seq from sequence where fid = 10")[1, 1]

> f10s

[1] "CAGCTACAAATGAAAGTTTTCTAGT"

> matchPattern(reverseComplement(DNAString(f10s)), c8)

Views on a 146274826-letter DNAString subject

subject: GCAATTATGACACAAAAAATTAAACAGTGCAGAC...GAATCTGGGTGCTCCTGTATTGGGTGCATATATA

views: NONE

> matchPattern(reverseComplement(DNAString(f10s)), c8, max.mismatch = 1)

Views on a 146274826-letter DNAString subject

subject: GCAATTATGACACAAAAAATTAAACAGTGCAGAC...GAATCTGGGTGCTCCTGTATTGGGTGCATATATA

views:

start end width

[1] 26116285 26116309 25 [ACTAGAAAACTCTCATTTGTAGCTG]

The attempt to find a perfect match failed, but the search allowing a single mismatch
succeeds.

8

2.1.5 Expression array metadata

We are working with the illumina expression platform (human v1).

> library(illuminaHumanv1.db)

> get("CPNE1", revmap(illuminaHumanv1SYMBOL))

[1] "GI_23397697-A"

2.2 A HapMap-based integrative genomics package for the YRI
cohort

The hmyriB36 object in the hmyriB36 package is an instance of class smlSet, which
coordinates transcriptwide expression measures with genomewide SNP data.

> library(hmyriB36)

> if (!exists("hmyriB36")) data(hmyriB36)

> hmyriB36

snp.matrix-based genotype set:

number of samples: 90

number of chromosomes present: 24

annotation: illuminaHumanv1.db

Expression data dims: 47293 x 90

Phenodata: An object of class "AnnotatedDataFrame"

rowNames: NA18500, NA18501, ..., NA19240 (90 total)

varLabels and varMetadata description:

fam: NA

samp: NA

...: ...

isFounder: NA

(8 total)

This object answers to methods familiar in the use of ExpressionSets:

> dim(exprs(hmyriB36))

[1] 47293 90

> featureNames(hmyriB36)[1:4]

[1] "GI_10047089-S" "GI_10047091-S" "GI_10047093-S" "GI_10047099-S"

> dim(pData(hmyriB36))

9

[1] 90 8

> annotation(hmyriB36)

[1] "illuminaHumanv1.db"

Genotype data is managed using structures defined in the snpMatrix package by
David Clayton.

> library(snpMatrix)

> objects("package:snpMatrix")

[1] "chi.squared" "col.summary" "deg.freedom"

[4] "effect.sign" "effective.sample.size" "epsout.ld.snp"

[7] "filter.rules" "glm.test.control" "ibs.stats"

[10] "ibsCount" "ibsDist" "imputation.maf"

[13] "imputation.r2" "impute.snps" "ld.snp"

[16] "ld.with" "misinherits" "niceprint"

[19] "p.value" "pair.result.ld.snp" "plot"

[22] "plot.snp.dprime" "pool" "pool2"

[25] "print.snp.dprime" "qq.chisq" "read.HapMap.data"

[28] "read.pedfile.info" "read.pedfile.map" "read.plink"

[31] "read.snps.chiamo" "read.snps.long" "read.snps.pedfile"

[34] "read.wtccc.signals" "row.summary" "sample.size"

[37] "single.snp.tests" "snp.cbind" "snp.cor"

[40] "snp.imputation" "snp.lhs.tests" "snp.post"

[43] "snp.pre" "snp.rbind" "snp.rhs.tests"

[46] "summary" "switch.alleles" "tdt.snp"

[49] "test.allele.switch" "write.snp.matrix" "xxt"

We use the snp.matrix class to manage high-density genotypes:

> snps(hmyriB36, chrnum("1"))

A snp.matrix with 90 rows and 305929 columns

Row names: NA18500 ... NA19240

Col names: rs10399749 ... rs7534839

> class(snps(hmyriB36, chrnum("1")))

[1] "snp.matrix"

> names(smList(hmyriB36))

10

[1] "1" "2" "3" "4" "5" "6" "7" "8" "9" "10" "11" "12" "13" "14" "15"

[16] "16" "17" "18" "19" "20" "21" "22" "X" "Y"

Raw bytes are used to represent genotypes:

> snps(hmyriB36, chrnum("1"))@.Data[1:4, 1:4]

rs10399749 rs2949421 rs2691310 rs4030303

NA18500 01 03 03 01

NA18501 01 03 03 01

NA18502 01 03 03 01

NA18503 01 03 03 01

Various coercions can be performed:

> as(snps(hmyriB36, chrnum("1"))[1:5, 1:5], "character")

rs10399749 rs2949421 rs2691310 rs4030303 rs4030300

NA18500 "A/A" "B/B" "B/B" "A/A" "A/A"

NA18501 "A/A" "B/B" "B/B" "A/A" "A/A"

NA18502 "A/A" "B/B" "B/B" "A/A" "A/A"

NA18503 "A/A" "B/B" "B/B" "A/A" "A/A"

NA18504 "A/A" "B/B" "B/B" "A/A" "A/A"

> as(snps(hmyriB36, chrnum("1"))[1:5, 1:5], "numeric")

rs10399749 rs2949421 rs2691310 rs4030303 rs4030300

NA18500 0 2 2 0 0

NA18501 0 2 2 0 0

NA18502 0 2 2 0 0

NA18503 0 2 2 0 0

NA18504 0 2 2 0 0

The latter computation gives us the number of copies of the B allele. We also have

> table(getAlleles(hmyriB36, rsid("rs10399749")))

A/A

7 83

11

2.3 GGtools and rtracklayer: eQTL discovery and context

We now illustrate how to search for expression QTL. We focus on gene copine I, resident
on chromosome 20, using the CEU cohort.

> library(GGtools)

> if (!exists("hmceuB36.2021")) data(hmceuB36.2021)

> f1 = gwSnpTests(genesym("CPNE1") ~ male, hmceuB36.2021, chrnum(20))

> tt = topSnps(f1)

> tt

p.val

rs17093026 6.485612e-14

rs1118233 1.897898e-13

rs2425078 2.426168e-13

rs1970357 2.426168e-13

rs12480408 2.426168e-13

rs6060535 2.426168e-13

rs11696527 2.426168e-13

rs6058303 2.426168e-13

rs6060578 2.426168e-13

rs7273815 2.544058e-13

> tsn = rownames(tt)[1]

> plot(f1)

12

0e+00 1e+07 2e+07 3e+07 4e+07 5e+07 6e+07

0
2

4
6

8
10

12
CPNE1

position on chr 20

−
lo

g1
0

p
G

au
ss

ia
n

LM
 [1

df
]

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●
●

●

●

●●●

●
●

●

●●

●●

●

●

●
●●

●

●

●●●

●
●

●

●

●

●●
●

●

●

●

●

●

●●●

●
●

●
●

●

●●●

●

●●

●●

●●●

●●

●

●

●

●●●

●

●●

●

●●

●

●

●●

●

●●

●

●
●

The following code will create a view of the UCSC genome browser:

> library(rtracklayer)

> f1d = as(f1, "RangedData")

> s1 = browserSession("UCSC")

> s1[["CPNE1"]] = f1d

> v1 = browserView(s1, GenomicRanges(3e+07, 4e+07, "chr20"))

13

2.4 Problems

2.4.1 Sample filtering and validity

The use of simple linear regression tests to assess eQTLs with the 90 CEPH CEU par-
ticipants is invalid because of the familial structure present.

a. Use the phenoData of hmceuB36.2021 to reduce the data to the parental units
of the various families (use the isFounder variable). Recompute the chromosome-wide
tests for eQTL for CPNE1 and compare to the results shown above.

b. A test that is valid (a priori) under the assumption that trios are independent
could be obtained if a random effect of family were incorporated. Use lme to carry this
out for the top scoring SNP. Compare the new p-value to the one naively obtained above.

Warning: the analyses performed in part b might make certain assumptions about
the samples with missing genotypes. Be careful.

c. The mixed effects model allows estimation of the intrafamilial correlation of ex-
pression after adjustment for covariates. What is the effect of adjusting for genotype on
estimated intrafamilial correlation of CPNE1?

2.4.2 SNP filtering and robustness

a. Use code resembling

> as(snps(hmceuB36.2021, chrnum(20))[, {

+ top_rsnum

+ }], "character")

14

to determine the distribution of genotypes for the putative eQTL determined using all
90 samples above.

b. Use plot_EvG to see the distribution of CPNE1 stratified by genotype for the top
SNP.

c. Use MAFfilter to limit SNPs tested to those with minor allele frequency greater
than 20%. Recompute the top SNP list. Perform again with a 10% minor allele frequency
limit and compare to the original list.

d. (Requires programming.) Emulate the code for MAFfilter in GGBase to define a
GTFfilter that filters on the frequencies of genotypes rather than alleles. Apply to the
CPNE1 screen and assess the effects of choice of the inclusion threshold.

2.4.3 Somatic deletion

In a multipopulation survey of copy number variation, a condition of “somatic deletion”
present in cultured cell lines was described (?):

[W]e sought signals of somatic deletions within the SNP genotypes of
HapMap trios. A somatic deletion in a parental genome manifests as a clus-
ter of SNPs at which alleles present in the offspring are not found in either
parent. We assessed all of our preliminary CNV calls in 120 trio parents and
found that 17 (of 4,758) fell in genomic regions that harbour highly signifi-
cant clusters of HapMap Phase II SNP genotypes compatible with a somatic
deletion in a parental genome (Supplementary Table 5A, Supplementary Fig.
5 and Supplementary Note).

The following code can be used to check a trio structure for evidence of somatic
deletion at a specific SNP.

> somDel = function (pan, fou, ind)

+ {

+ # pan is matrix with three rows of genotype data in form

+ # "[AB]/[AB]" (or ""); length(fou)==3, and fou == 1 for rows corresponding

+ # to parents; ind is the column to be checked

+ parg = pan[which(fou == 1), ind] # parental genotypes

+ if (any(nchar(parg) == 0))

+ return(NA) # bail out if parental genotypes incomplete

+ para = unique(unlist(strsplit(as.character(parg), "/")))

+ offg = pan[which(fou == 0), ind] # offspring genotype

+ offa = unique(unlist(strsplit(as.character(offg), "/")))

+ isTRUE(!all(offa %in% para)) # return TRUE if an offspring allele is de novo

+ }

A quick application:

15

> f1.20 = snps(hmyriB36, chrnum("20"))[1:3,]

> cf1.20 = as(f1.20, "character")

> psomd = which(sapply(1:5500, function(x) somDel(cf1.20, hmyriB36$isFounder[1:3],

+ x)))

> cf1.20[, psomd[1]]

NA18500 NA18501 NA18502

"A/B" "B/B" "B/B"

What is the total number of possible somatic deletion events for the first family’s cell
lines? Create a more general checking tool that operates over several families. Do
locations of putative somatic deletion events cluster in genomic coordinates?

2.4.4 gseQTL – gene set expression QTLs

The gglabpack package (distributed only for this lab) includes a serialization of the
Broad’s MSIGDB 2.5.

> library(gglabpack)

> data(msig2.5)

> irf2set = msig2.5[["V$IRF2_01"]]

> details(irf2set)

setName: V$IRF2_01

geneIds: MAPK6, ATF3, ..., DDX58 (total: 130)

geneIdType: Symbol

collectionType: Broad

bcCategory: c3 (Motif)

bcSubCategory: NA

setIdentifier: c3:1047

description: Genes with promoter regions [-2kb,2kb] around transcription start site containing the motif GAAAAGYGAAASY which matches annotation for IRF2: interferon regulatory factor 2

(longDescription available)

organism: Human,Mouse,Rat,Dog

pubMedIds:

urls: msigdb_v2.5.xml

contributor: Xiaohui Xie

setVersion: 0.0.1

creationDate: Mon Jul 6 11:51:51 2009

Rohan Williams and colleagues (Williams et al., 2007) report a “regulon analysis”
showing that genes with the IRF2 binding motif frequently exhibit eQTL on chromosome
8 when assayed in liver.

16

Using the Yoruba data, check whether this might be true for genes assayed in EBV-
transformed B-cells. You can use a transformation of irf2set to an annotation-identifier
gene set object as dependent variable in gwSnpTests. Limit testing to chromosome 8,
and eliminate 75% of genes with low variation to save time.

Here is the gene set and its modification:

> irf2sa = irf2set

> geneIdType(irf2sa) = AnnotationIdentifier("illuminaHumanv1.db")

We need the coercion method

> setAs("smlSet", "ExpressionSet", function(from) {

+ ex = exprs(from)

+ pd = phenoData(from)

+ ans = new("ExpressionSet", exprs = ex, phenoData = pd)

+ annotation(ans) = from@annotation

+ ans

+ })

> yex = as(hmyriB36, "ExpressionSet")

and then invoke filtering:

17

> library(genefilter)

> yex = yex[irf2sa,]

> yex = nsFilter(yex, require.entrez = FALSE, remove.dupEntrez = FALSE,

+ var.cutoff = 0.75)[[1]]

> yrlit = hmyriB36[chrnum(8),]

> yrlit@assayData = assayDataNew("lockedEnvironment", exprs = exprs(yex))

> irf2filt = GeneSet(geneIds = featureNames(yrlit))

> geneIdType(irf2filt) = AnnotationIdentifier("illuminaHumanv2.db")

Now we can check all genes in the filtered gene set for eQTL.

> irft8l = gwSnpTests(irf2filt ~ male, yrlit, chrnum(8))

> irft8l

3 Getting acquainted with affy’s genomewide 6.0

chip

3.1 Raw import and visualization

The hapmapsnp6 experimental data package includes CEL files from three 6.0 chips, to
which DNA from three HapMap CEU samples were hybridized. Here instead we use
gglabpack (custom for the course) as a source of CEL files from YRI.

> library(affyio)

> dir(system.file("celfiles", package = "gglabpack"))

[1] "NA18500_GW6_Y.CEL" "NA18501_GW6_Y.CEL" "NA18502_GW6_Y.CEL"

We can use standard CEL file import tools to import:

> library(affyio)

> f1 = dir(system.file("celfiles", package = "gglabpack"), full = TRUE)[1]

> cel1 = read.celfile(f1)

> names(cel1)

[1] "HEADER" "INTENSITY" "MASKS" "OUTLIERS"

> names(cel1[[2]])

[1] "MEAN" "STDEV" "NPIXELS"

18

Our job is to create meaningful estimates of genotypes and copy numbers using the
intensity data.

As a sanity check, we can recover some etching on the chip:

> image(matrix(cel1[[2]]$MEAN, nr = 2680)[200:1, 2372:2572])

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

3.2 Grouping intensities; the M vs S plot

The mean intensities will be used directly. We have a small quantity of metadata derived
from the pd.genomewidesnp.6 package.

> library(gglabpack)

> data(affmeta10k)

> affmeta10k[1:3,]

fsetid man_fsetid affy_snp_id dbsnp_rs_id chrom physical_pos strand x

1 1 SNP_A-2131660 NA rs2887286 1 1145994 0 1688

19

2 1 SNP_A-2131660 NA rs2887286 1 1145994 0 1689

3 1 SNP_A-2131660 NA rs2887286 1 1145994 0 262

y pos fid allele allele_a allele_b cytoband

1 218 6 585929 1 C T p36.33

2 218 5 585930 0 C T p36.33

3 938 4 2514103 1 C T p36.33

The fid column indexes the raw intensities, which can be grouped by allele within
featureset.

> int = cel1[[2]]$MEAN

> oint = int[affmeta10k$fid]

> isA = which(affmeta10k$allele == 0)

> isB = which(affmeta10k$allele == 1)

> oint.A = oint[isA]

> oint.B = oint[isB]

> set.A = affmeta10k$man_fsetid[isA]

> set.B = affmeta10k$man_fsetid[isB]

> sintA = split(oint.A, set.A)

> sintB = split(oint.B, set.B)

> medA = sapply(sintA, median)

> medB = sapply(sintB, median)

> medA[1:4]

SNP_A-1782432 SNP_A-1786207 SNP_A-1813299 SNP_A-1815814

645 358 1496 2181

> medB[1:4]

SNP_A-1782432 SNP_A-1786207 SNP_A-1813299 SNP_A-1815814

724 2453 207 1975

> M = log(medA) - log(medB)

> S = 0.5 * (log(medA) + log(medB))

The M vs S plot is an analog of the M vs A plot that we saw with expression arrays. It
shows data on many SNP on one chip.

> plot(S, M)

20

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●

●

●

●
●

●

●● ●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●●
●

● ●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

● ●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●●

●

●

●

●
●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

6.0 6.5 7.0 7.5 8.0 8.5

−
3

−
2

−
1

0
1

2
3

S

M

3.3 crlmm for genotyping

The latest genotyping algorithm due to Irizarry, Carvalho and colleagues at Johns Hop-
kins SPH, is called CRLMM. It can produce calls at a rate of 10000 chips/day. Here we
apply it to three CEL files.

> library(crlmm)

> allf = dir(system.file("celfiles", package = "gglabpack"), patt = "CEL$",

+ full = TRUE)

> c1 = crlmm(allf)

|

|======================= | 33%

|

|=== | 67%

|

21

|==| 100%

Calling 906600 SNPs for recalibration... Calling 906600 SNPs...

> getClass(class(c1))

Class "SnpSet" [package "Biobase"]

Slots:

Name: assayData phenoData featureData

Class: AssayData AnnotatedDataFrame AnnotatedDataFrame

Name: experimentData annotation protocolData

Class: MIAME character AnnotatedDataFrame

Name: .__classVersion__

Class: Versions

Extends:

Class "eSet", directly

Class "VersionedBiobase", by class "eSet", distance 2

Class "Versioned", by class "eSet", distance 3

> calls(c1)[1:10,]

NA18500_GW6_Y.CEL NA18501_GW6_Y.CEL NA18502_GW6_Y.CEL

SNP_A-2131660 2 2 2

SNP_A-1967418 3 3 3

SNP_A-1969580 3 3 3

SNP_A-4263484 1 2 1

SNP_A-1978185 2 2 1

SNP_A-4264431 2 2 1

SNP_A-1980898 3 3 2

SNP_A-1983139 1 1 1

SNP_A-4265735 1 1 1

SNP_A-1995832 3 3 3

3.4 Problems

3.4.1 M vs S granularity

What is the difference between this approach to the M vs S plot and the one given
above?

22

> data(affmeta10k)

> affmeta10k[1:3,]

> c1 = dir(system.file("celfiles", package = "gglabpack"), full = TRUE)[1]

> library(affyio)

> rc1 = read.celfile(c1)

> data(affmeta10k)

> ss = split(affmeta10k, affmeta10k[, 2])

> fid1 = lapply(ss, function(x) x$fid[x$allele == 1])

> fid0 = lapply(ss, function(x) x$fid[x$allele == 0])

> int1 = sapply(1:1611, function(x) rc1[[2]]$MEAN[fid1[[x]]])

> int0 = sapply(1:1611, function(x) rc1[[2]]$MEAN[fid0[[x]]])

> uint1 = unlist(int1)

> uint0 = unlist(int0)

> plot(0.5 * log(uint1 * uint0), log(uint1/uint0))

3.4.2 Calling via clustering

Use k-means clustering on an M vs S plot for a HapMap sample to call genotypes for
SNP identified in affmeta10k. Compare your calls to those of crlmm.

4 Imputation

Missing data are common in genotyping studies, and when data from different platforms
or populations are to be combined, harmonization of SNP panels by using the intersection
of sets of SNPs covered entails loss of information. The correlation structure among SNPs
can be exploited to informatively impute missing genotypes.

The snp.imputation man page from snpMatrix package reads in part:

The routine first carries out a series of step-wise regression

analyses in which each Y SNP is regressed on the nearest 'try'
regressor (X) SNPs. If 'phase' is 'TRUE', the regressions are

calculated at the chromosome (haplotype) level, variances being

simply p(1-p) and covariances estimated using the same algorithm

used in 'ld.snp'. Otherwise, the analysis is carried out at the

diplotype level based on conventional variance and covariance

estimates using the '"all.obs"' missing value treatment (see

'cov'). New SNPs are added to the regression until either (a) the

value of R^2 exceeds the first parameter of 'stopping', (b) the

number of "tag" SNPs has reached the maximum set in the second

parameter of 'stopping', or (c) the change in R^2 does not achieve

the target set by the third parameter of 'stopping'. If the third

parameter of 'stopping' is 'NA', this last test is replaced by a

23

test for improvement in the Akaike information criterion (AIC).

If the prediction as measure by R^2, has not achieved a

threshold (the first parameter of 'use.hap') using more than one

tag SNP, then a second imputation method is tried. Phased

haplotype frequencies are estimated for the Y SNP plus the tag

SNPs. The R^2 for prediction of the Y SNP using these haplotype

frequencies is then calculated. If the (1-R^2) is reduced by a

proportion exceeding the second parameter of 'use.hap', then the

haplotype imputation rule is saved in preference to the faster

regression rule. The argument 'em.cntrl' controls convergence

testing for the EM algorithm for fitting haplotype frequencies.

The first parameter is the maximum number of iterations, and the

second parameter is the threshold for the change in log likelihood

below which the iteration is judged to have converged.

SNP locations are important for this process (distance may be specified by base-pair
addressing or linkage disequilibrium measures). Here add a little bit of code to compute
base-pair addresses.

> snpAddr = function(x, c) {

+ df = getSNPlocs(c)

+ intg = as.integer(gsub("rs", "", x))

+ ans = df[which(df[, 1] %in% intg),]

+ nms = paste("rs", ans[, 1], sep = "")

+ locs = ans[, 3]

+ names(locs) = nms

+ locs

+ }

How does this work with the YRI data? Let’s see how well this imputation procedure
works to recover known genotypes.

First we use snpMatrix to develop the imputation rules:

> h20p = MAFfilter(hmyriB36[chrnum(20),], lower=.01)

> y20 = snps(h20p, chrnum("20"))

> set.seed(1234)

> y20dropinds = sample(1:ncol(y20), size=5)

> dropids = colnames(y20)[y20dropinds]

> dropmat = y20[,y20dropinds]

> droplocs = snpAddr(dropids, "chr20")

> kpids = colnames(y20)[-y20dropinds]

> kpmat = y20[,-y20dropinds]

> kplocs = snpAddr(kpids, "chr20")

24

> # not all snps have locations

> impeq = snp.imputation(kpmat[,names(kplocs)], dropmat, kplocs, droplocs,

+ stopping=c(.98, 4, NA))

> impeq

rs6085565 ~ rs6117275 (MAF = 0.02247191, R-squared = 1)

rs1033643 ~ rs2425464+rs3092525+rs6072574+rs2206419 (MAF = 0.07777778, R-squared = 0.2592408)

rs12625460 ~ rs6102897+rs1157347+rs2064677+rs6102891 (MAF = 0.1222222, R-squared = 0.2076096)

rs6093682 ~ rs6030354+rs13039393+rs6102919+rs6030350 (MAF = 0.2333333, R-squared = 0.6629063)

rs6099033 ~ rs6069635 (MAF = 0.01666667, R-squared = 1)

Now perform the imputations based on the kept SNP:

> imps = impute.snps(impeq, kpmat)

> dim(imps)

[1] 90 5

> table(getAlleles(h20p, rsid(dropids[4])), round(imps[, 4], 0))

0 1 2

A/A 1 3 0

A/B 1 30 3

B/B 0 7 41

Other predictive procedures can be constructed for this task. In the following we
use physical distance to identify candidate predictors and then let CART prune to a
parsimonious set.

> impByTree = function(targ, radius, sms, chrnum, ...) {

+ if (!is(targ, "rsid"))

+ stop("targ must be instance of rsid")

+ preds = snpsNear(rsid(targ), radius, chrnum)

+ snm = smList(sms)[[chrnum]]

+ actual = c(targ, intersect(preds, colnames(snm)))

+ df = data.frame(as(snm[, actual], "character"))

+ fmla = x ~ .

+ fmla[[2]] = as.name(as(targ, "character"))

+ rpart(fmla, data = df, ...)

+ }

25

Appendix

> sessionInfo()

R version 2.10.0 Under development (unstable) (2009-06-22 r48823)

x86_64-apple-darwin9.7.0

locale:

[1] C

attached base packages:

[1] splines stats graphics grDevices datasets tools utils

[8] methods base

other attached packages:

[1] genomewidesnp6Crlmm_1.0.2

[2] affyio_1.13.3

[3] genefilter_1.25.7

[4] gglabpack_0.0.3

[5] crlmm_1.3.15

[6] GGtools_3.3.4

[7] annaffy_1.17.1

[8] KEGG.db_2.3.0

[9] GO.db_2.3.0

[10] rpart_3.1-44

[11] RColorBrewer_1.0-2

[12] hmyriB36_0.99.1

[13] GGBase_3.5.5

[14] snpMatrix_1.9.1

[15] survival_2.35-4

[16] GSEABase_1.7.1

[17] graph_1.23.3

[18] annotate_1.23.1

[19] illuminaHumanv1.db_1.3.2

[20] pd.genomewidesnp.6_0.4.2

[21] oligoClasses_1.7.7

[22] SNPlocs.Hsapiens.dbSNP.20080617_0.99.1

[23] org.Hs.eg.db_2.3.0

[24] RSQLite_0.7-1

[25] DBI_0.2-4

[26] AnnotationDbi_1.7.7

[27] Biobase_2.5.5

[28] BSgenome.Hsapiens.UCSC.hg18_1.3.11

26

[29] BSgenome_1.13.10

[30] Biostrings_2.13.28

[31] IRanges_1.3.43

[32] weaver_1.11.0

[33] codetools_0.2-2

[34] digest_0.3.1

loaded via a namespace (and not attached):

[1] KernSmooth_2.23-2 XML_2.5-3 ellipse_0.3-5

[4] mvtnorm_0.9-7 preprocessCore_1.7.4 xtable_1.5-5

References

Vivian G Cheung, Richard S Spielman, Kathryn G Ewens, Teresa M Weber, Michael
Morley, and Joshua T Burdick. Mapping determinants of human gene expression
by regional and genome-wide association. Nature, 437(7063):1365–9, Oct 2005. doi:
10.1038/nature04244.

Anna L Dixon, Liming Liang, Miriam F Moffatt, Wei Chen, Simon Heath, Kenny C C
Wong, Jenny Taylor, Edward Burnett, Ivo Gut, Martin Farrall, G Mark Lathrop,
Gonçalo R Abecasis, and William O C Cookson. A genome-wide association study of
global gene expression. Nat Genet, 39(10):1202–1207, Oct 2007. doi: 10.1038/ng2109.

Harald H H Göring, Joanne E Curran, Matthew P Johnson, Thomas D Dyer, Jac
Charlesworth, Shelley A Cole, Jeremy B M Jowett, Lawrence J Abraham, David L
Rainwater, Anthony G Comuzzie, Michael C Mahaney, Laura Almasy, Jean W Mac-
cluer, Ahmed H Kissebah, Gregory R Collier, Eric K Moses, and John Blangero.
Discovery of expression qtls using large-scale transcriptional profiling in human lym-
phocytes. Nat Genet, 39(10):1208–1216, Oct 2007. doi: 10.1038/ng2119.

Dan Kliebenstein. Quantitative genomics: analyzing intraspecific variation using global
gene expression polymorphisms or eqtls. Annual review of plant biology, 60:93–114,
Jan 2009. doi: 10.1146/annurev.arplant.043008.092114.

Barbara E Stranger, Alexandra C Nica, Matthew S Forrest, Antigone Dimas, Christine P
Bird, Claude Beazley, Catherine E Ingle, Mark Dunning, Paul Flicek, Daphne Koller,
Stephen Montgomery, Simon Tavaré, Panos Deloukas, and Emmanouil T Dermitzakis.
Population genomics of human gene expression. Nat Genet, 39(10):1217–1224, Oct
2007. doi: 10.1038/ng2142.

R. B.H Williams, E. K.F Chan, M. J Cowley, and P. F.R Little. The influence of genetic
variation on gene expression. Genome Research, 17(12):1707–1716, Dec 2007. doi:
10.1101/gr.6981507.

27

	Introduction
	Key resources for discovering and interpreting eQTL
	General metadata
	Consensus sequence
	Gene enumeration, location, and other mappings
	SNP enumeration and location
	SNP chip annotation
	Expression array metadata

	A HapMap-based integrative genomics package for the YRI cohort
	GGtools and rtracklayer: eQTL discovery and context
	Problems
	Sample filtering and validity
	SNP filtering and robustness
	Somatic deletion
	gseQTL – gene set expression QTLs

	Getting acquainted with affy's genomewide 6.0 chip
	Raw import and visualization
	Grouping intensities; the M vs S plot
	crlmm for genotyping
	Problems
	M vs S granularity
	Calling via clustering

	Imputation

