Transcriptional variation and regulatory feedback in Saccharomyces

Rachel Brem Department of Molecular and Cell Biology University of California, Berkeley

www.kew.org/science/directory/teams/Myrtaceae/images/Myrtaceae.jpg

animaldiversity.ummz.umich.edu/site/resources/Grzimek_fish/v04_id132_con_sexdimo.jt

.

d

2

Q

phe.rockefeller.edu/.../joronmallettree982.gif

Expression and phenotype

Genetic and developmental basis of evolutionary pelvic reduction in threespine sticklebacks

A Single P450 Allele Associate

with Insecticide Resistance in Michae Drosophila

P. J. Daborn,¹ J. L. Yen,¹ M. R. Bogwitz,² G. Le Goff,¹ E. Feil,¹ S. Jeffers,² N. Tijet,⁴ T. Perry,² D. Heckel,² P. Batterham,² R. Feyereisen,⁵ T. G. Wilson,² R. H. ffrench-Constant¹⁴

An IRF8-binding promoter variant and AIRE control CHRNA1 promiscuous expression in thymus

Matthieu Giraud^{1,2}, Richard Taubert³, Claire Vandiedonck¹, Xiayi Ke⁴, Matthieu Lévi-Strauss¹, Franco Pagani⁵, Francisco E. Baralle⁵, Bruno Eymard⁶, Christine Tranchant⁷, Philippe Gajdos⁸, Angela Vincent², Nick Willcox², David Beeson², Bruno Kyewski³ & Henri-Jean Garchon¹

Genetic variation in human *wrr* expression arrects stress response and emotion

Zhifeng Zhou¹⁺, Guanshan Zhu¹⁺†, Ahmad R. Hariri², Mary-Anne Enod Matti Virkkunen³, Deborah C. Mash⁶, Robert H. Lipsky¹, Xian-Zhang Hi Beata Buzas¹, Qiaoping Yuan¹, Pei-Hong Shen¹, Robert E. Ferrell², Stepi Richard L. Hauger², Christian S. Stohler⁸, Jon-Kar Zubieta³ & David Gol

Morphological evolution through multiple *cis*-regulatory mutations at a single gene

†, Isabelle Delon²†, Jennifer Zanet², Dayalan G. Srinivasan¹,

A cis-acting regulatory mutation causes premature hair graying and susceptibility to melanoma in the horse

Gerli Rosengren Pielberg¹, Anna Golovko^{1,12}, Elisabeth Sundström^{2,12}, Ino Curik³, Johan Lennartsson⁴, Monika H Seltenhammer⁵, Thomas Druml⁶, Matthew Binns⁷, Carolyn Fitzsimmons¹, Gabriella Lindgren², Kaj Sandberg², Roswitha Baumung⁶, Monika Vetterlein⁸, Sara Strömberg⁹, Manfred Grabherr¹⁰, Claire Wade^{10,11}, Kerstin Lindblad-Toh^{1,10}, Fredrik Pontén⁹, Carl-Henrik Heldin⁴, Johann Sölkner⁶ & Leif Andersson^{1,2}

Expression variation between yeast strains

Mapping expression variation

Gene expression as a mappable trait

AMN1 linking to intergenic marker, chrom II

Variant affects its own expression: feedback

How common is feedback and why?

Feedback and quantitative behaviors

Genetic switch

Other properties (synthetic circuits)

- Robustness to expression, input noise
- Homeostatic regulation
- Response timing
- Oscillation

A screen for feedback across yeast TFs

A screen for feedback across yeast TFs

Widespread evidence for feedback

Most feedback is direct

Positive feedback and stress

200

YAP3: nutrient starvation HOGI: osmotic stress CIN5: osmotic stress URC2: uracil catabolism INO4: phospholipid metabolism

Transition from hypoxia: some cells "on," some "off"

Confirming a novel feedback loop: MOT3

www.kew.org/science/directory/teams/Myrtaceae/images/Myrtaceae.jpg

animaldiversity.ummz.umich.edu/site/resources/Grzimek_fish/v04_id132_con_sexdimo.jt

.

d

2

Q

phe.rockefeller.edu/.../joronmallettree982.gif

Cis-acting variant

Sign imbalance across genes of a pathway

Sign imbalance across genes of a pathway

Expression variation between yeast species

S. bayanus

diverged 20 Mya

S. cerevisiae

Expression variation between species

. . . .

Jim Bullard

Solexa sequence dependence

Observed read counts

 π_{c} (A) = .37, π_{c} (C)=.17, π_{c} (G)=.21, π_{c} (T)=.25

Adaptation via cis-acting variation?

Sign imbalance across genes of a pathway

Use pre-defined gene clusters

. . . YER014W YDR047W YOR278W Cluster Histidine"c" YER055C YBR248C YCL030C YFR025C YIL116W YOR202W YIL020C YKR099W Cluster Isoleucine"c" YJR148W YHR208W YMR108W

• • •

Sign imbalance in a pathway

S. bay

→ S.ba

N/S

S ha

S. bay

N'-[5'phosphoribosyl]-ATP

Phosphoribulosyl formimino-5-amino imidazole carboxamide ribonucleotide

5-phosphoribosyl-1-phyrophosphate

HIS7

HIS1

HIS4

HIS6

Imidazole glycerol phosphate

HIS3

HIS5

Imidazole acetol phosphate

L-Histidinol

HIS2

Sign sum over genes = -7

Significance of sign imbalance

Name	Sign sum	Group p	Annotation
Cluster_Histidine	-7	0.00007	Histidine biosynthesis
Cluster_NRG1	-7	0.0011	Stress-induced transport
Node 73	70	0.0016	Ribosome biogenesis
Cluster_adata-Respiration	-8	0.0057	Respiration
Cluster_Lysine	-5	0.0059	Lysine biosynthesis
Node 45	-9	0.0072	Respiration
Cluster_RTG1	-7	0.015	Ribosome and osmotic stress
Cluster_FKH1	8	0.018	Cell cycle
Cluster_RCS1	-5	0.028	Iron transport
Node 67	-6	0.031	Redox and secretion
Node 80	-4	0.044	AA biosynthesis
Node 68	-5	0.050	Proteasome

187 total groups tested

Significance of sign imbalance

Name	Sign sum	Group p	Annotation
Cluster_Histidine	-7	0.00007	Histidine biosynthesis
Cluster_NRG1	-7	0.0011	Stress-induced transport
Node 73	70	0.0016	Ribosome biogenesis
Cluster_adata-Respiration	-8	0.0057	Respiration
Cluster_Lysine	-5	0.0059	Lysine biosynthesis
Node 45	-9	0.0072	Respiration
Cluster_RTG1	-7	0.015	Ribosome and osmotic stress
Cluster_FKH1	8	0.018	Cell cycle
Cluster_RCS1	-5	0.028	Iron transport
Node 67	-6	0.031	Redox and secretion
Node 80	-4	0.044	AA biosynthesis
Node 68	-5	0.050	Proteasome

187 total
 groups
 tested,
expect ~1
 false

Repeat with Gene Ontology

38 total groups tested, expect ~0.2 false

Name	Sign sum	Group p	Annotation
GO:00042254	78	0.000001	Ribosome biogenesis
GO:0006725	-9	0.0074	Aromatic compound metabolism
GO:0016070	124	0.011	RNA metabolic process
GO:0006996	114	0.050	Organelle organization

Adaptive tuning of gene expression

Thanks

Jackie Whittle Leonid Kruglyak

Charles Denby Rich Yu Roger Brent Bhupinder Bhullar/ HIP Jim Bullard Yulia Mostovoy Sandrine Dudoit Oliver Zill Oh Kyu Yoon

Burroughs-Wellcome Fund