# MODEL-BASED QUALITY Assessment And BASECALLING FOR SECONDGENERATION SEQUENCING 

HÉctor Corrada Bravo \& RafaEl A. Irizarry Biostatistics Dept.
Bloomberg School of Public Health Johns Hopkins University

# SECOND-GENERATION SEQUENCING 

## Access

This article is part of Nature's premium content.
Published online 15 October 2008 | Nature 455, 847 (2008) | doi:10.1038/455847a
fiews

## The death of microarrays?

High-throughput gene sequencing seems to be stealing a march on microarrays. Heidi Ledford looks at a genome technology facing intense competition.

Heidi Ledford
Faster, cheaper DNA sequencing technology is revolutionizing the burgeoning field of personal genomics. But it is having another, more subtle effect.

| Tools |
| :--- |
| 8 Send to a Friend |

## SECOND-GENERATION SEQUENCING

- "Ultra high throughput" DNA sequencing
- 3 gigabases / week vs.
- 3 gigabases / 13 years...


## 1000 Genomes Project



## 1000 GENOMES PROJECT DATA RELEASE

SNP data downloads and genome browser representing four high coverage individuals

The first set of SNP calls representing the preliminary analysis of four genome sequences are now available to download through the EBI FTP site and the NCBI FTP site. The README file dealing with the FTP structure will help you find the data you are looking for.

The data can also be viewed directly through the 1000 Genomes browser at http://browser.1000genomes.org. Launch the browser and view a sample region here.

More information about the data release can be found in the data section of this web site.
Download the 1000 Genomes Browser Quick Start Guide
Quick start (pdf)

## PLATFORMS

## illumina

- Millions of short DNA fragments ( $\sim 36-70$ bp in Illumina platform) sequenced in parallel


## (THIRD-GENERATION) PLATFORMS

:8:8: Complete<br>00. Genomics

- Single-molecule sequencing
- "the 15-minute genome"


## OUTLINE

1. Second-generation sequencing (sec-gen) technology review (Illumina/ Solexa)
2. Genotyping w/ sec-gen sequencing
3. Statistical/Computational challenges
4. Model-based base-calling
5. Model-based quality assessment

## ILLUMINA/SOLEXA



1. PREPARE GENOMIC DNA SAMPLE


Randomly fragment genomic DNA and ligate adapters to both ends of the fragments.

## ILLUMINA/SOLEXA

4. FRAGMENTS BECOME DOUBLE-STRANDED


The enzyme incorporates nucleotides to build double-stranded bridges on the solid-phase substrate.
5. DENATURE THE DOUBLESTRANDED MOLECULES


Denaturation leaves single-stranded templates anchored to the substrate.
6. COMPLETE AMPLIFICATION


Several million dense clusters of double-stranded DNA are generated in each channel of the flow cell.

## ILLUMINA/SOLEXA

- Eight lanes
- 330 tiles / lane
- ~30K fragments per tile
- $\sim 80 \mathrm{M}$ short sequences per run


## A SET OF SHORT READS

> GTTGAGGCTTGCGTTTTTGGTACGCTGGACTTTGT GTACTCGTCGCTGCGTTGAGGCTTGCGTTTTTGGT ATGGTACGCTGGACTTTGTAGGATACCCTCGCTTT TTGCGTTTATGGTACGCTGGACTTTGTAGGATACC CTTGCGTTTATGGTACGCTGGACTTTGTAGGATAC TTGCGTTTATGGTACGCTGGACTTTGTAGGATACC GCGTTTATGGTACGCTGGACTTTGTAGGATACCCT GAGGCTTGCGTTTATGGTACGCTGGACTTTGTAGG GCGTTGAGGCTTGCGTTTATGGTACGCTGGATTTT CGTTTATGGTACGCTGGACTTTGTAGGATACCCTC ATGGTACGCTGGACTTTGTAGGATACCCTCGCTTT GTTTATGGTACGCTGGACTTTGTAGGATACCCTCG TCTCGTGCTCGTCGCTGCGTTGAGGCTTGCGTTTA TGCTCGTCGCTGCGTTGAGGCTTGCGTTTATGGTA GCTCGTCGCTGCGTTGAGGCTTGCGTTTATGGTAC TATGGTACGCTGGACTTTGTAGGATACCCTCGCTT TCGTGCTCGTCGCTGCGTTGAGGCTTGCGTTTTTG CGTCGCTGCGTTGAGGCTTGCGTTTATGGTACGCT GTTGAGGCTTGCGTTTATGGTACGCTGGGCTTTTT TTGCGTTTATGGTACGCTGGACTTTGTAGGATACC

## MATCHING

GTTGAGGCTTGCGTTTTTGGTACGCTGGACTTTGT GTACTCGTCGCTGCGTTGAGGCTTGCGTTTTTGGT

ATGGTACGCTGGACTTTGTAGGATACCCTCGCTTT
TTGCGTTTATGGTACGCTGGACTTTGTAGGATACC
CTTGCGTTTATGGTACGCTGGACTTTGTAGGATAC
TTGCGTTTATGGTACGCTGGACTTTGTAGGATACC
GCGTTTATGGTACGCTGGACTTTGTAGGATACCCT
GAGGCTTGCGTTTATGGTACGCTGGACTTTGTAGG GCGTTGAGGCTTGCGTTTATGGTACGCTGGATTTT

CGTTTATGGTACGCTGGACTTTGTAGGATACCCTC
ATGGTACGCTGGACTTTGTAGGATACCCTCGCTTT
GTTTATGGTACGCTGGACTTTGTAGGATACCCTCG
TCTCGTGCTCGTCGCTGCGTTGAGGCTTGCGTTTA
TGCTCGTCGCTGCGTTGAGGCTTGCGTTTATGGTA
GCTCGTCGCTGCGTTGAGGCTTGCGTTTATGGTAC
TATGGTACGCTGGACTTTGTAGGATACCCTCGCTT
TCGTGCTCGTCGCTGCGTTGAGGCTTGCGTTTTTG
CGTCGCTGCGTTGAGGCTTGCGTTTATGGTACGCT
GTTGAGGCTTGCGTTTATGGTACGCTGGGCTTTTT
TTGCGTTTATGGTACGCTGGACTTTGTAGGATACC

## ApplicAtions

- de novo sequencing, resequencing
- Genotyping, copy number variation
- RNA-seq, microRNA-seq: transcriptome analysis
- ChIP-seq: transcription factor binding sites
- Methyl-seq: methylation detection


## GENOTYPING

．．．TAACGATTC

－• Aワワワ

## GENOTYPING



... ATTGCTAAG ...
... TAACGATTC ...



## GENOTYPING

... TAACGATTC...
… ATTGGTAAG...
... tatcitittc...
$\cdots$ ATTGGTAAG...

## Genotyping





## Genotyping





## GENOTYPING


... TAACGATTC...


## SNPs

GTTGAGGCTTGCGTTTTTGGTACGCTGGACTTTGT GTACTCGTCGCTGCGTTGAGGCTTGCGTTTTTGGT

ATGGTACGCTGGACTTTGTAGGATACCCTCGCTTT
TTGCGTTTATGGTACGCTGGACTTTGTAGGATACC CTTGCGTTTATGGTACGCTGGACTTTGTAGGATAC TTGCGTTTATGGTACGCTGGACTTTGTAGGATACC

GCGTTTATGGTACGCTGGACTTTGTAGGATACCCT
GAGGCTTGCGTTTATGGTACGCTGGACTTTGTAGG GCGTTGAGGCTTGCGTTTATGGTACGCTGGATTTT

CGTTTATGGTACGCTGGACTTTGTAGGATACCCTC
ATGGTACGCTGGACTTTGTAGGATACCCTCGCTTT
GTTTATGGTACGCTGGACTTTGTAGGATACCCTCG
TCTCGTGCTCGTCGCTGCGTTGAGGCTTGCGTTTA
TGCTCGTCGCTGCGTTGAGGCTTGCGTTTATGGTA
GCTCGTCGCTGCGTTGAGGCTTGCGTTTATGGTAC
TATGGTACGCTGGACTTTGTAGGATACCCTCGCTT
TCGTGCTCGTCGCTGCGTTGAGGCTTGCGTTTTTG
CGTCGCTGCGTTGAGGCTTGCGTTTATGGTACGCT
GTTGAGGCTTGCGTTTATGGTACGCTGGGCTTTTT
TTGCGTTTATGGTACGCTGGACTTTGTAGGATACC

## SNPs

TCTCGTGCTCGTCGCTGCGTTGAGGCTTGCGTTTA TCGTGCTCGTCGCTGCGTTGAGGCTTGCGTTTTTG

GTACTCGTCGCTGCGTTGAGGCTTGCGTTTTTGGT
TGCTCGTCGCTGCGTTGAGGCTTGCGTTTATGGTA
GCTCGTCGCTGCGTTGAGGCTTGCGTTTATGGTAC
CGTCGCTGCGTTGAGGCTTGCGTTTATGGTACGCT
GCGTTGAGGCTTGCGTTTATGGTACGCTGGATTTT
GTTGAGGCTTGCGTTTTTGGTACGCTGGACTTTGT
GTTGAGGCTTGCGTTTATGGTACGCTGGGCTTTTT
GAGGCTTGCGTTTATGGTACGCTGGACTTTGTAGG
CTTGCGTTTATGGTACGCTGGACTTTGTAGGATAC TTGCGTTTATGGTACGCTGGACTTTGTAGGATACC TTGCGTTTATGGTACGCTGGACTTTGTAGGATACC TTGCGTTTATGGTACGCTGGACTTTGTAGGATACC GCGTTTATGGTACGCTGGACTTTGTAGGATACCCT CGTTTATGGTACGCTGGACTTTGTAGGATACCCTC GTTTATGGTACGCTGGACTTTGTAGGATACCCTCG

TATGGTACGCTGGACTTTGTAGGATACCCTCGCTT ATGGTACGCTGGACTTTGTAGGATACCCTCGCTTT
ATGGTACGCTGGACTTTGTAGGATACCCTCGCTTT

## SNPs



## ERROR RATE AND REPORTED QUALITY



## SYSTEMATIC BIASES



## ILLUMINA/SOLEXA

4. FRAGMENTS BECOME DOUBLE-STRANDED


The enzyme incorporates nucleotides to build double-stranded bridges on the solid-phase substrate.
5. DENATURE THE DOUBLESTRANDED MOLECULES


Denaturation leaves single-stranded templates anchored to the substrate.
6. COMPLETE AMPLIFICATION


Several million dense clusters of double-stranded DNA are generated in each channel of the flow cell.

## ILLUMINA/SOLEXA

## 7. DETERMINE FIRST BASE



The first sequencing cycle begins by adding four labeled reversible terminators, primers, and DNA polymerase.
8. IMAGE FIRST BASE


After laser excitation, the emitted fluorescence from each cluster is captured and the first base is identified.
9. DETERMINE SECOND BASE


The next cycle repeats the incorporation of four labeled reversible terminators, primers, and DNA polymerase.

## FLUORESCENCE INTENSITY

| ints[1:10,1:4] |  |  |  |  |
| :--- | ---: | ---: | ---: | ---: |
|  | A.1 | C.1 |  |  |
| 1 | 154.8 | T.1 |  |  |
| 1 | 122.1 | 119.3 | 13001.9 |  |
| 2 | 1093.5 | 6186.6 | -798.4 | 208.3 |
| 3 | 892.3 | 4028.2 | -367.9 | -463.9 |
| 4 | 590.5 | 2607.9 | -81.6 | 188.7 |
| 5 | 979.4 | 6411.0 | 943.5 | 454.9 |
| 6 | 945.5 | 4943.1 | 19.7 | -1170.8 |
| 7 | 255.0 | 213.3 | 15.5 | 4358.8 |
| 8 | 1085.2 | 5834.5 | -384.7 | -94.1 |
| 9 | 267.6 | 340.3 | 6866.2 | 5788.6 |
| 10 | 1162.6 | 6424.4 | -497.6 | -149.2 |

- For read $n$, cycle $i$, we observe an intensity vector of size 4


## A THOUGHT EXPERIMENT



Four-channel fluorescence intensity, cycle 1

Color coded by call made: A, C, G, T

## FLUORESCENCE INTENSITY



Color coded by call
made: $\mathrm{A}, \mathrm{C}, \mathrm{G}, \mathrm{T}$

Four-channel fluorescence intensity, cycle 1

## FLUORESCENCE INTENSITY



Four-channel fluorescence intensity, cycle 1


Four-channel fluorescence intensity, cycle 25

Color coded by call made: A, C, G, T

## SNPs



## SNP INTENSITIES



## CHALLENGES

- Base-calling is the result of a complicated procedure on noisy data
- Not all base-calls are made with the same certainty
- Statistical: What is the proper way of modeling this uncertainty?
- Computational: Can we use this model at sec-gen data scale?


## CAPTURING

## UNCERTAINTY

- For read $n$, we observe over $k$ cycles, a $4-b y-k$ matrix of intensities $y_{n}$
- Genome is a set of candidates $\Theta \subseteq\{A, C, G, T\}^{k}$
- Denote the "true" $k$-mer in genome sequenced by read $n$ as $\tilde{\theta} \in \Theta$
- Probability profile is given by

$$
\operatorname{Pr}(\theta=\tilde{\theta} \mid y)
$$

## BASE IDENTITY PROBABILITY PROFILES



## Getting Probability Profiles

## FLUORESCENCE INTENSITY



Four-channel fluorescence intensity, cycle 1


Four-channel fluorescence intensity, cycle 25

Color coded by call made: A, C, G, T

## THE READ EFFECT



## The Cycle Effect



## ReAD \& CYCLE EfFECTS



## Intensity Model

- We use the following model for read $i$, cycle $j$ :

$$
h\left(y_{i j}\right)=M u_{i j}
$$

- started log transform: $h\left(y_{i j}\right)$


## INTENSITY MODEL

- We use the following model for read $i$, cycle $j$ :

$$
h\left(y_{i j}\right)=M u_{i j}
$$

- started log transform: $h\left(y_{i j}\right)$
- cross-talk matrix

$$
M=\left[\begin{array}{cccc}
1 & m_{A C} & m_{A G} & m_{A T} \\
m_{C A} & 1 & m_{C G} & m_{C T} \\
m_{G A} & m_{G C} & 1 & m_{G T} \\
m_{T A} & m_{T C} & m_{T G} & 1
\end{array}\right]
$$

## INTENSITY MODEL

- We use the following model for read $i$, cycle $j$ :

$$
h\left(y_{i j}\right)=M u_{i j}
$$

- actual $\log$ intensity read $i$, cycle $j$, channel $c$

$$
u_{i j c}=\Delta_{i j c}\left(x_{j}^{T} \alpha_{i}+\epsilon_{i j c}^{\alpha}\right)+\left(1-\Delta_{i j c}\right)\left(x_{j}^{T} \beta_{i}+\epsilon_{i j c}^{\beta}\right)
$$

## INTENSITY MODEL

- We use the following model for read $i$, cycle $j$ :

$$
h\left(y_{i j}\right)=M u_{i j}
$$

- actual $\log$ intensity read $i$, cycle $j$, channel $c$

$$
u_{i j c}=\Delta_{i j c}\left(\underline{x_{j}^{T} \alpha_{i}+\epsilon_{i j c}^{\alpha}}\right)+\left(1-\Delta_{i j c}\right)\left(\underline{x_{j}^{T} \beta_{i}+\epsilon_{i j c}^{\beta}}\right)
$$

- read-specific linear models

$$
\epsilon_{i j c}^{\alpha} \sim N\left(0, \sigma_{\alpha i}^{2}\right) \quad \epsilon_{i j c}^{\beta} \sim N\left(0, \sigma_{\beta i}^{2}\right)
$$

## INTENSITY MODEL

- We use the following model for read $i$, cycle $j$ :

$$
h\left(y_{i j}\right)=M u_{i j}
$$

- actual $\log$ intensity read $i$, cycle $j$, channel $c$ $u_{i j c}=\Delta_{i j c}\left(x_{j}^{T} \alpha_{i}+\epsilon_{i j c}^{\alpha}\right)+\left(1-\Delta_{i j c}\right)\left(x_{j}^{T} \beta_{i}+\epsilon_{i j c}^{\beta}\right)$
- indicators of nucleotide identity, read $i$, pos. $j$

$$
\Delta_{i j c}= \begin{cases}1 & \text { if } c \text { is the nucleotide in read } i \text { position } j \\ 0 & \text { otherwise }\end{cases}
$$

## INTENSITY MODEL


cycle

## INTENSITY MODEL

- We use the following model for read $i$, cycle $j$ :

$$
h\left(y_{i j}\right)=M u_{i j}
$$

- actual $\log$ intensity read $i$, cycle $j$, channel $c$ $u_{i j c}=\Delta_{i j c}\left(x_{j}^{T} \alpha_{i}+\epsilon_{i j c}^{\alpha}\right)+\left(1-\Delta_{i j c}\right)\left(x_{j}^{T} \beta_{i}+\epsilon_{i j c}^{\beta}\right)$
- get Maximum Likelihood estimates with EM algorithm, also estimates

$$
z_{i j c}:=\mathrm{E}\left\{\Delta_{i j c}=1 \mid u_{i j}\right\}=P\left(\Delta_{i j c}=1 \mid u_{i j}\right)
$$

## INTENSITY MODEL

- EM-algorithm also estimates

$$
z_{i j c}:=\mathrm{E}\left\{\Delta_{i j c}=1 \mid u_{i j}\right\}=P\left(\Delta_{i j c}=1 \mid u_{i j}\right)
$$

## INTENSITY MODEL

- After removing effects, we use a standard normal mixture clustering model
- Initizalized by probability profiles estimated by effects model ( $z_{i j c}$ )
- Clustering refines probability profiles from effects model by drawing from other reads and cycles


## INTENSITY MODEL



## MODEL Estimates



## QUALITY METRICS

1. Entropy: Certainty according to probability profiles in each read position

## QUALITY METRICS

1. Entropy: Certainty according to probability profiles in each read position

$$
H_{i j}=-\sum_{c} z_{i j c} \log z_{i j c}
$$

## QUALITY METRICS

1. Entropy: Certainty according to probability profiles in each read position

$$
\begin{aligned}
H_{i j} & =-\sum_{c} z_{i j c} \log z_{i j c} \\
H_{i} & =-\sum_{j c} z_{i j c} \log z_{i j c}
\end{aligned}
$$

## QUALITY METRICS

1. Entropy: Certainty according to probability profiles in each read position
2. SNR: How easy is it to distinguish signal and noise linear models?

$$
S N R_{i}=\frac{1 / N\left\|X\left(\alpha_{i}-\beta_{i}\right)\right\|_{2}^{2}}{1 / 2\left(\sigma_{\alpha i}^{2}+\sigma_{\beta i}^{2}\right)}
$$

## QUALITY METRICS



## QUALITY METRICS



## GENOTYPING

- A very simple solution: get expected proportion of nucleotides at each position


## GENOTYPING

- Use expected proportion of each nucleotide at genomic position

$$
T_{j c}=\sum_{i} z_{i j c}
$$

## GENOTYPING



## COMPUTATIONAL CHALLENGES

- Efficient model estimation (robust estimates of effects use linear programming, fast clustering)
- Parallel computation
- Storage \& retrieval
- Matching


## CONCLUSION

- Described model-based solution to handle uncertainty inherent in sec-gen data analysis
- Particularily important for genotyping
- Now the fun starts...


## Thanks!

