ShortRead for quality assessment and data manipulation

Martin Morgan
Bioconductor / Fred Hutchinson Cancer Research Center Seattle, WA, USA

8-10 June 2009

Running examples

'ChIP-seq'

- Solexa GA-II; 36mer single-end reads
- Whole-genome coverage
- Preliminary 'ELAND' alignment
'Pooled'
- Solexa GA-II; 36mer single-end reads
- Pooled sample, high coverage of three genes
- Searching for polymorphisms - SNP-like
'Barcode’
- Roche / 454 barcode; two zones
- Target length 200-300bp
- ≈ 20 bar codes (5' 8mers)

Input and Output

- Diverse input types, e.g., Solexa intensity, base call, alignment; MAQ text or binary, Bowtie; SOAP; fasta / fastq; tabular > chip <- readAligned("./s_1_export.txt",
$+\quad$ type $=$ "SolexaExport")
> pool <- readAligend("./s_2.map", type = "MAQMap")
> bar <- read454("./454", ".*.fna\$", ".*qual\$")
- Ready access to data, leveraging standard R functionality
> reads <- sread(chip)
> qualities <- quality(chip)
> table(strand(chip))
- Output to fasta / fastq, tabular, genome browser tracks...

QA (quality assessment): reads per lane, Solexa GA-II

e.g., 'chip' data set

- Lane 5: internal control
- Typically 7-10M reads / lane
- 75-85\% survive internal filtering, 50-65\% align
- Lane 6: something amiss!

QA: base calls

- Uncalled nucleotides typically $<1 \%$
- Expected nucleotide frequency
sample-dependent

	A	C	G	T	N
1	0.25	0.24	0.24	0.26	0.0150
2	0.26	0.25	0.25	0.24	0.0060
3	0.25	0.25	0.25	0.25	0.0061
4	0.25	0.25	0.26	0.23	0.0065
5	0.29	0.22	0.23	0.25	0.0062
6	0.24	0.29	0.27	0.19	0.0063
7	0.24	0.26	0.26	0.23	0.0070
8	0.24	0.27	0.27	0.22	0.0069

QA: reagent exhaustion and unusual base calls

- 3' exhaustion directional trend in base call, e.g., due to reagent depletion; much less prevalent in GA-II
- Unusual base calls, e.g., due to machine malfunction
- Source: Chen et al., 2008, Cell 133:
1106-17. PMID:
18555785

QA: alphabet-by-cycle synchronicity

- Lane 5: control; very consistent base calls
- Lane 6: reads dominated by relatively few sequences
- Lane 7: typical sample results; early synchronicity
- GA-I: first 1-2 bases show strong bias

QA: tail quality

- Average base call quality (phred-like score) declines with cycle
- Sometimes abrupt changes (not illustrated)
- Often lane-specific, due to sample preparation and processing.
Consequences for downstream analysis, e.g., 'normalization'? processing

QA: quality / quantity trade-off

- Quality of base calls inversely related to quantity of reads

QA: frequent sequences

- Control lane, ϕ X174 deep coverage
- Left: unique or nearly unique sequencing errors, 10-15\%
- Right: highly repetitive, 5-10\%

QA: frequent sequences

- Control lane, ϕ X174 deep coverage
- Left: unique or nearly unique sequencing errors, 10-15\%
- Right: highly repetitive, 5-10\%
- Over-dispersion relative to uniform sampling: mappable genome, GC content, amplification bias, ...

QA: alignment odditities

- pool: high coverage of small regions
- Close inspection: regions of unexpected low coverage. Single and double strand.
- Explanations: unmappable (e.g., repetitive sequence); primer similarity (filtered by upstream analysis);
palindromes (failed sequencing PCR); poorly amplified (e.g., GC-rich)

ShortRead quality assessment report

- HTML quality assessment reports from diverse inputs
- Augments manufacturer reports
- Behind-the-scenes: the qa function distributes lane-level computations across MPI nodes, if available.

Examples

- Wang et al. Alternative isoform regulation in human tissue transcriptomes. Nature 2008 Nov 27;456(7221):470-6. PMID: 18978772
- http://cbsresource.fhcrc.org/~mtmorgan/proj/ GSE12946/qa_090502/
> qa <- qa("./GSE12946", ".*.gz", type = "fasta")
> rpt <- report(qa)
> browseURL (rpt)

454 QA: read length / read quality

- 'barcode' data set, one zone
- Larger symbols indicate more reads
- Length and quality variation \rightarrow quality gating

Common quality assessment issues

Illumina / Solexa

- Sample preparation artifacts, especially PCR prior to GA-II
- Base quality degradation, e.g., reagent exhaustion
- Read quality / quantity trade-off
- Nucleotide / dinucleotide bias?
- Sample-specific issues

Roche / 454 (preliminary)

- Terminal base quality
- Length heterogeneity
- Early indels

