

New sequencing technologies
Image analysis
Lasers and cross talk
Chemistry and phasing
AYB -- a new base calling algorithm
Quality calibration and sequencing errors

Capillary sequencing

AB 3730xI Cutting edge of capillary technology 96 capillaries in parallel

Images: http://www.appliedbiosystems.com/
http://en.wikipedia.org/wiki/File:Sanger sequencing read display.gif

454 Life Sciences (Roche)

454 GS FLX titanium
Current performance 1 million reads per run 400bp meanlength, at Q20

Future (454 lab demonstration) 650bp mean length (750 modal)

Figure 1: Example Read Length Distribution of 629.643 reads from E. coli K-12 (Genome size $\sim 4.5 \mathrm{Mb}$) with a modal read length of 504 bases.

Illumina GA II

Current performance

 14 Gb perrun 2×75 bp 20 Gb per run GA II_{x} software upgrade 150bp reads demonstrated outside llluminaFuture (2010) with new array technology "sub-micro semi-ordered array" 55 Gb -- 100 Gb $2 \times 125 \mathrm{bp}$,

The Genome Analyzer provides a powerful combination of high output quantity and quality. This graph depicts the high per base accuracy profile from a recent 14.1 Gb run with $2 \times 75 \mathrm{bp}$ paired-end sequencing. Both reads show equivalently high rates of internally generated using the current Genome Analyzer "System

Life Technologies' SOLiD

$$
\text { 20-30 Gb } 2 \times 50 \mathrm{bp}(\sim 2 \text { weeks) }
$$

Helicos

Single molecule sequencing -- no amplification

21-28 Gb per run, 105-140 Mb per hour Read length 20 to 55bp, 30-35bp average

Asynchronous: separate steps for A, C, G, T

- strands get sequenced at different rates
- base composition bias in length of read

Coming technology

Oxford Nanopore

Aims
50bp/sec per read Kb length reads

100 Gb per hour

Nanopore sequencing
No fluorophores

- use electrical properties of base passing through pore
Can detect methyl-cytosine

Pacific Biosciences

Zero-mode wave guide

Tiny illuminated volume

- only bound fluorophores
contribute
- watch incorporation in real-time, including errors

Limits on read length

DNA spaghetti

- knots
- snaps if tugged
- sticks to walls when cooked

Use chromatin to organise?

DNA replication

Images http://en.wikipedia.org/wiki/File:Spaghetti.jpg http://upload.wikimedia.org/wikipedia/commons/6/6a/30nm Chromatin Structures.png http://en.wikipedia.org/wiki/File:DNA replication.svg

Analysis pipeline

phasing then call bases phasing, then call bases

Image analysis

Registration

Filtering

- Sharpen clusters
- Edge detection

Normalization

- subtract background
- noise

Cluster identification

- deblend (split large clusters)
- remove local background

Warning: out of date, describes older version of pipeline
Based on notes prepared by Nava Whiteford,
http://sgenomics.org/mediawiki/upload/8/80/Pipeline.pdf

Image Registration

Three effects to compensate for

- Translation
- Rotation
- Scaling

Restricted form of affine transformation (procrustes transformation)

Basically a dynamic programming problem

Split image into regions
Estimate transformation for each region Take consensus

Image Registration

Read 1 $(214,714)$

Read 2 $(214,715)$

Do errors in read match their neighbour? p-value ~ le-4 (0.83)

	Maich	Mismaich
Observed	$12(8)$	$4(20)$
Expected	$4(7)$	$12(21)$

(Corresponding numbers for positions correct in read 2 are in brackets)

Filtering

Clusters become blurred

- emitted light not entirely coherent
- focal problems

Flurophore

Incident intensity

Need to correct for blurring to find position of cluster and emitted light

- sharpening
- edge detection

Convolution filters

Suppose we want to smooth an image
Replace each pixel by the mean of the surrounding pixels
Represent by matrix giving weights
for each pixel in neighbourhood

This is an example of a convolution filter Create new filters by changing the values in the matrix

Convolution filters

Take a region around pixel
Multiply every pixel in region by corresponding value in filter F Sum

$$
x_{n e w}=1^{T}(R \circ F) 1
$$

$$
\begin{aligned}
\text { E.g. } \quad F & =\left(\begin{array}{ccc}
-1 & -1 & -1 \\
-1 & 8 & -1 \\
-1 & -1 & -1
\end{array}\right), \quad R=\left(\begin{array}{lll}
0.33 & 1.73 & 2.56 \\
1.18 & 4.70 & 7.36 \\
2.17 & 6.76 & 10.1
\end{array}\right) \\
x_{\text {new }} & =\operatorname{sum}\left(\begin{array}{ccc}
-1 \times 0.33 & -1 \times 1.73 & -1 \times 2.56 \\
-1 \times 1.18 & 8 \times 4.70 & -1 \times 7.36 \\
-1 \times 2.17 & -1 \times 6.76 & -1 \times 10.1
\end{array}\right) \\
& =
\end{aligned}
$$

Normally do calculations in Fourier space - more efficient

Mexican hat $=$ smoothing + edge detection

Apply filter to each channel

Normalization - background and noise

Background fluorescence: flow cell, unincorporated dyes, etc

Normalization - background and noise

Robust estimates of mean and standard deviation

Cluster identification

Warning: based on old version of pipeline;
this bit has probably changed more than any other
Thresholded tile

"Blank slide" model

Background fluorescence Noise estimate
mean variance

Keep pixels 4 standard deviations above mean 4 sd ~Q45 (30 errors per 1 million pixels)

Background and noise estimated in regions

Cluster identification

- Find cluster

Cluster identification

- Find cluster
- Expand

Cluster identification

- Find cluster
- Expand
- Find border

Cluster identification

- Find cluster
- Expand
- Find border
- Deblend (split) large clusters

Cluster identification

- Find cluster
- Expand
- Find border
- Deblend (split)
large clusters
- Discard
extremely large (probably contamination)

Local background

10×10 window

 around clusterTake pixels not part of any cluster

Calculate new background noise

Correct cluster
Find brightest pixel for base caller

Analysis pipeline

Cross Talk

- RGB dichroic mirror

0 RGB dichroic mirror
OO Argon (457 nm) laser
-O Argon (488 nm) lase
O- HeNe (543 nm) las

Excitation spectra shows efficiency of wave-length absorption Emission spectra shows wave-length of emitted light Wave-length of emission ~ independent of absorption

Cross Talk

${ }^{\text {d Remo }}$
O RGB dichroic mirror

- O Argon (457 nm) lase

OO Argon (488 nm) lase
OO HeNe (543 nm) lase

Pick lasers to excite as few fluorophores as possible

- Each putative laser excites two fluorophores
- Laser 1 excites Texas Red and Cy5 a small amount

Cross Talk

d Remove
0 RGB dichroic mirror
OO Argon (457 nm) laser

- Argon (488 nm) laser

OO HeNe (543 nm) lase

Exciting both FITC and Cy3 with laser -- mixed emission

Use a filter to block Cy3 wave lengths, so observed signal is pure

Cross Talk

Exciting both Texas Read and Cy5 with laser -- mixed emission

Emission spectra have strong overlap, hard to construct filter to only allow one through

Cross talk

Channel = specific combination of laser and filter

Observe channels rather than nucleotides

Represent cross talk by a matrix

Entries represent how bright each fluorophore appears in each channel

Nucleotides

Laser = coherent light,
Regular patterns of light and dark depending on wavelength Use a mode scrambler to even out

Mode scrambler problems, bright and dark patches

Bubble in flow cell, All clusters lost here for this cycle

Variation in luminescence

Original image

log Mod FT

Fourier transform

Variation in luminescence

Intensity changes slowly compared to presence / absence of cluster

Original image

log Mod FT

Low pass filter Keep only slowly varying changes

"optimal filtering"

- a step function

Variation in luminescence

Filtered image

log Mod FT

Fourier transform

Variation in luminescence

Channel A
IQR: $-3.5 \times 10^{-5}--4.8 \times 10^{-3}$

Filtered, normalized
IQR: $3.1 \times 10^{-6}--8.2 \times 10^{-6}$

Normalized accentuate differences

Variation in laser intensity across flow cell

- three different lasers, different variation in intensity
- variation in cross talk

Nucleotides

Variation between cycles/tiles

Laser warming up, becomes more efficient
Changes in focus
Changes in mode scrambler
Background fluorescence

Effects mostly ignored

Tendency for molecules to get out of step with others in cluster
Signal from cluster becomes a mixture of previous and future bases
Blurs and becomes harder to tell what current base is

Primarily a chemistry problem

Illumina chemistry

Source: illumına www.illumina.com/sequencing

Chemistry/Physics

Source: illumına www.illumina.com/sequencing

Ideal data

Ideally, signal is strong
(green arrows)

Real data

Laser cross-talk:

changes in measured light emissions, leading to distorted signal (blue arrows)

Real data

Phasing:

some strands lead (red) or lag behind (blue), leading to mixed signal

Source: $\begin{gathered}\text { scsif } \\ \substack{\text { chis }} \\ \text { Erlich et al. (2008) Nature Methods 5:679-682 }\end{gathered}$

Real data

Sources of error

laser cross-talk

phasing

dimming
Intensity of Brightest Channel

+ contamination
+ flow cell artefacts
+ random error

AYB statistical model

Hidden linear relationship

$$
\operatorname{Vec}(I)=\left(P^{T} \otimes M\right) \operatorname{Vec}(S)+\operatorname{Vec}(\varepsilon)
$$

$$
\operatorname{vec}(w)=\left|\begin{array}{l}
v \\
v
\end{array}\right|
$$

Sequence inference

Noise removal

Raw data

AYB processed

134358/135856 reads mapped (98.9 \%)

Accuracy

134358/135856 reads mapped (98.9 \%)

75 cycle comparison

AYB

92218/93100 reads mapped (99 \%)

No purity values for Swift because of bug, ordered by purity for AYB

100 cycle accuracy

AYB

142913/144426 reads mapped (99 \%)

100 cycle accuracy

Number of correct reads

75 cycle phiX data

Swift
1109 reads unmapped (1.2\%) from 93100 of 75 cycle data

AYB
883 reads unmapped (0.95%) from 93100 of 75 cycle data

AYB improvement (BWA alignments, edit distance 7)

- 4% more reads aligned
- 25% more perfect reads

Number of correct reads

AYB improvement (BWA alignments, edit distance 7)

- 15% more reads aligned
- 180\% more perfect reads

Will show later that $\sim 25 \%$ of reads in this data set have contamination at final cycle

Additional step attaches permanent blockers to reads that where not extended

SOLiD trades phasing for dimming

- less opportunity for correction
- may still be able to improve calls

Determines colour

Cleaved along with fluorophore

Errors

- Failure to ligate probe sequence
- Ligate multiple probe sequences (blocker failure)
- Incorrect cleavage (stop sequencing entirely, or leave additional bases)

All these are captured by phasing matrix

- Bad incorporation (similar but incorrect probe)
- only problem if first two bases affected
- transient error

AYB on SOLiD

Same model as before, using colours rather than bases

Permutation of read position to cycle

- permute phasing matrix

Primer reset

- intensity increases each primer round? Less
dimming
All these covered since phasing is estimated empirically

Calibration

Measure confidence in each base call
AYB - fit of each possible call to model $\quad \mathbf{P}$ (data I base is A)

Use robustified Bayesian approach

$$
\mathbf{P}(\text { base is } \mathrm{A})=\frac{\mathbf{P}(\text { data } \mid \text { base is } \mathrm{A})+\eta}{\sum_{j \in\{A, C, G, T\}} \mathbf{P}(\text { data } \mid \text { base is } j)+\eta}
$$

η represents "contamination" from other sources
η ~ Q50 by default
If none of the bases fit well, then posterior probability tends to 0.25
Confidence resets when data does not look like sequence

Calibration

Assessing quality

Unmodelled effects are upper bound on quality
From:

Other effects
Base calling error

Get:

$$
\min \left(Q_{\text {Base }}, Q_{\text {Effect }}\right) \geq Q_{\text {Total }} \geq \min \left(Q_{\text {Base }}, Q_{\text {Effect }}\right)-3
$$

E.g. polymerase error ~ Q40

Early polymerase errors

Polymerase error during sample preparation or early amplification

Indistinguishable from a SNP

- sequence with a difference from reference
- call sequence in cluster correctly but get error

Errors in read

- Stuff that looks like sequence
- E. coli, H. sapiens etc sequence contamination
- Bits of replication machinery
- Adapter sequence

Filtering artefacts

Observation: contaminates are much brighter than ordinary sequence

Reject 0.8% of bases

Filtering artefacts

Notice over-correction of phasing and prephasing - clue that peak is not due to sequence

Second peak "G" has same intensity as rest of sequence

Might be possible to correct read (but probably not worth it)

Fragment ligation

Two fragments of DNA can ligate before sequencing

- Apparently good read
- High error rate
- Rare

TCTTTTTGCGTTCTGCTTCAATATCTGGTTGAACGGCGTCGCGTCGTAACCCAGCTTGGTAAGTTGGATTAAGCA PhiX 5190 -ve
 TCTTTTTGCGTTCTGCTTCAATATCTGGTTGAACGGCGTTATAACCTCACACTCAATCTTTTATCACGAAGTCAT Read
 CCTCAGCGGCAAAAATTAAAATTTTTACCGCTTCGGCGTTATAACCTCACACTCAATCTTTTATCACGAAGTCAT PhiX 2273 -ve

Polymerase slippage

A) Slippage Event (A) During replication, polymerase

B) No Slippage

Polymerase slips during replication causing a region to be repeated

Note: Adapter sequence derived from study of Sanger Institute reads, yours may differ

A crude method to locate adapters

Search for read tails

- Starting with AGAT
->90\% ID with adapter sequence
Best ungapped hit of adapter to phiX
PhiX
AGAACGAGAAGACGGTTACGCAGTTTTGCCG

- Length at least 8 bases

75 cycle data: about 0.08% of bases, 0.3% of reads
71% bases miscalled for adapter set c.f. 6% bases miscalled for non-adapter set

Affect on quality
44 cycles
Q40
1 in 10,000
75 cycles
Q31 8 in 10,000
100 cycles

Length of Identified Adapter Sequence

Average. Worse as cycle number increases

100 cycle data

Adapter contamination is accumulative

- starts rare but total effect can be large

Extrapolate number of adapters to final 7 sites

- ~ 45\% of final cycle errors are due adapter sequence
- median purity still high; missing other effects?

Other attractions in the sequence zoo

Sick sequence: rapidly dies

Lazarus sequence: dies and rises again

Error frequencies

Manual look at all errors in 27 tiles of high quality sequence (Q34 bases) Rates in Qphred

	Good read	Bad read	Indel	Adapiter	Ligation	Unknown
Rate	36.9	40.1	47.7	46.3	47.0	45.6
Lower	36.5	39.5	46.3	45.1	45.7	44.5
Upper	37.4	40.8	49.4	47.8	48.5	46.9

Good read: only error is high quality base. Bad read: otherwise messy, several errors. Indel: presence of insertion of deletion
Adapter: undetected adapter sequence (after filtering)
Ligation: strong evidence of ligation

Error frequencies

Manual look at all errors in 27 tiles of high quality sequence (Q34 bases) Rates in Qphred

| Goodread | | Bad read | Indel | Adapier | Ligation | Unknown |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Rate | 36.9 | 40.1 | 47.7 | 46.3 | 47.0 | 45.6 |
| Lower | 36.5 | 39.5 | 46.3 | 45.1 | 45.7 | 44.5 |
| Upper | 37.4 | 40.8 | 49.4 | 47.8 | 48.5 | 46.9 |

Implementation and availability

http://www.ebi.ac.uk/goldman/AYB/

Written in R

Licensed under GPL (version 3) Plug-in replacement for Bustard

- Single change to Makefile

Acceptable performance

2 hours per lane on an 8 core machine(~ 128 CPU hours per run)

- Faster if phasing and cross-talk assumed to constant (ala Bustard)
- Due to be rewritten with focus on performance and reliability

GAPipeline (Illumina) v. 0.3 Makefile

Thanks to:
Core

Thanks

Thanks to：

－EBI：
－Ewan Birney
－Paul Flicek（1000 Genomes Project）
－EMBL Genomics Core Facilities，Heidelberg：
－Vladimir Benes
－Jonathon Blake
－Sanger Institute：
－Nava Whiteford （now at Oxford Nanopore Technologies）
－Tom Skelly
－Irini Abnizova
－Institute of Cell and Molecular Science， Queen Mary University of London：
－David Van Heel
－Illumina：
－Tony Cox
君達の基地は，全て

