Outline	Introduction	Sequences 0000000	Ranges	Views 000	Interval Datasets 0000000

IRanges Bioconductor Infrastructure for Sequence Analysis

November 24, 2009

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Outline	Introduction	Sequences 0000000	Ranges 0000000000000	Views	Interval Datasets 0000000

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Introduction

Sequences Background RLEs

3 Ranges

Basic Manipulation Simple Transformations Ranges as Sets Overlap

4 Views

5 Interval Datasets

Motivation RangedData Representation Accessing interval data

Outline	Introduction	Sequences 0000000	Ranges Views 0000000000000	Interval Datasets 0000000
Outline				

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Introduction

2 Sequences Backgroup

Background RLEs

8 Ranges

Basic Manipulation Simple Transformations Ranges as Sets Overlap

4 Views

5 Interval Datasets

Motivation RangedData Representation Accessing interval data

Outline	Introduction	Sequences 0000000	Ranges 000000000000	Views 000	Interval Datasets 0000000
IRanges					

- Supports the manipulation and analysis of:
 - Sequences (ordered collections of elements)
 - Ranges of indices into sequences
 - Data on ranges
- Emphasis on efficiency in space and time
- Metadata scheme for self-documenting objects and reproducible analysis

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Outline	Introduction	Sequences 0000000	Ranges 00000000000000	Interval Datasets 0000000

IRanges and High-throughput Sequencing

- The basis of much of the sequence analysis functionality in Bioconductor
- Representation of information on chromosomes/contigs
 - Intervals with or without associated data
 - Piecewise constant measures (e.g. coverage)
- Vector and interval operations for these representations

- Interval overlap calculations
- Coverage within peak regions

The Two Towers of IRanges

- RleList coverage (or other piecewise constant measures) on chromosomes/contigs. RLE is an initialism for run length encoding, a standard compression method in signal processing.
- RangedData intervals and associated data on chromosomes/contigs. Essentially a data table that is sorted by the chromosomes/contigs indicator column.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Outline	Introduction	Sequences	Ranges Views 0000000000000	Interval Datasets 0000000
Outline				

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Introduction

2 Sequences

Background RLEs

8 Ranges

Basic Manipulation Simple Transformations Ranges as Sets Overlap

4 Views

5 Interval Datasets

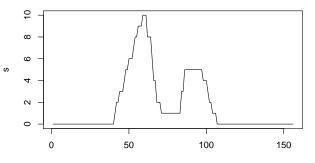
Motivation RangedData Representation Accessing interval data

Outline	Introduction	Sequences •••••	Ranges 000000000	Views	Interval Datasets 0000000
Background					
The Fo	oundation of	Ranges			

Almost every object manipulated by *IRanges* is a sequence:

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- Atomic sequences (e.g. R vectors)
- Lists
- Data tables (two dimensions)


Positional Piecewise Constant Measures

- The number of genomic positions in a genome is often in the billons for higher organisms, making it challenging to represent in memory.
- Some data across a genome tend to be sparse (i.e. large stretches of "no information")
- The *IRanges* packages solves the set of problems for positional measures that tend to have consecutively repeating values.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

 The *IRanges* package *does not* address the problem of positional measures that constantly fluxuate, such as conservation scores.

Outline	Introduction	Sequences	Ranges 000000000	Views	Interval Datasets 0000000
Background					
Examp	le sequence				

Index

シック 単 (中本) (中本) (日)

Outline	Introduction	Sequences	Ranges	Views	Interval Datasets
		000000	000000000		
RLEs					

Run-Length Encoding (RLE)

Our example has many repeated values:

Code
> sum(diff(s) == 0)
[1] 133

Good candidate for compression by run-length encoding:

Code					
> sRle <- Rle(s)					
> sRle					
'numeric' Rle of length 156 with 23 runs					
Lengths: 40 1 2 3 1 2 3 1 2 3					
Values : 0 1 2 3 4 5 6 7 8 9					

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Compression reduces size from 156 to 46.

Outline	Introduction	Sequences	Ranges	Views	Interval Datasets
		0000000			
RLEs					
Rle op	erations				

The *Rle* object like any other sequence/vector:

Basic
> sRle > 0 / rev(sRle) > 0
'logical' Rle of length 156 with 3 runs
Lengths: 40 76 40
Values : FALSE TRUE FALSE

Summary

> sum(sRle > 0)

[1] 66

Statistics

> cor(sRle, rev(sRle))

[1] 0.5142557

Outline	Introduction	Sequences	Ranges 000000000	Views	Interval Datasets 0000000
RLEs					
Splitti	ng up <i>Rle</i> by	/ sequence			

Code

```
> print(sRleList <- split(sRle, rep(c("chr1",
      "chr2"), each = length(sRle)/2)))
+
CompressedRleList of length 2
$chr1
'numeric' Rle of length 78 with 16 runs
 Lengths: 40 1 2 3 1 2 3 1 2 3 ...
 Values : 0 1 2 3 4 5 6 7 8 9 ...
$chr2
'numeric' Rle of length 78 with 8 runs
  Lengths: 5 2 12 3 1 2 3 50
  Values : 1 3 5 4 3 2 1 0
```

RleList supports most Rle operations, element-wise.

▶ ▲ 臣 ▶ ▲ 臣 ▶ ○ 臣 ● の Q @

Outline	Introduction	Sequences	Ranges 000000000	Views	Interval Datasets 0000000
RLEs					
EXter	nal sequence	es			

- Sequences derived from XSequence are references
- Memory not copied when containing object is modified
- Example: *XString* in *Biostrings* package, for storing biological sequences efficiently

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Outline	Introduction	Sequences 0000000	Ranges Views	Interval Datasets 0000000
Outline				

▲□▶ ▲圖▶ ▲匡▶ ▲匡▶ ― 匡 … のへで

Introduction

Sequences Backgroun RLEs

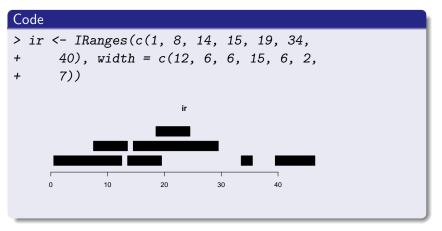
3 Ranges

Basic Manipulation Simple Transformations Ranges as Sets Overlap

4 Views

5 Interval Datasets

Motivation RangedData Representation Accessing interval data


Outline	Introduction	Sequences 0000000	Ranges •00000000000	Views 200	Interval Datasets 0000000
Basic Manipulation	1				
Ranges					

- Often interested in *consecutive* subsequences
- Consider the alphabet as a sequence:
 - {A, B, C} is a consecutive subsequence
 - The vowels would not be consecutive
- Compact representation: range (start and width)

• Ranges objects store a sequence of ranges

Outline	Introduction	Sequences 0000000	Ranges 0●00000000	Views 000000	Interval Datasets 0000000
Basic Manipul	ation				
Creati	ng a Ranges	object			

The IRanges class is a simple Ranges implementation.

Outline	Introduction	Sequences 0000000	Ranges 00€000000	Views 000000	Interval Datasets 0000000
Basic Manipul	ation				
Low le	vel data acc	ess			

Accessors	
> start(ir)	
[1] 1 8 14 15 19 34	- 40
> end(ir)	
[1] 12 13 19 29 24 35	46
> width(ir)	
[1] 12 6 6 15 6 2	2 7

◆□▶ ◆□▶ ◆ ≧▶ ◆ ≧▶ ○ ⊇ ○ の Q @

Outline	Introduction	Sequences 0000000	Ranges Views	Interval Datasets 0000000
Basic Manipula	ition			
Subset	ting			

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

Code

> ir[1:5]

IRanges of length 5					
	start	end	width		
[1]	1	12	12		
[2]	8	13	6		
[3]	14	19	6		
[4]	15	29	15		
[5]	19	24	6		

Outline	Introduction	Sequences	Ranges	Views	Interval Datasets
			0000000000		
Basic Manipul	ation				
C 11	0	1			

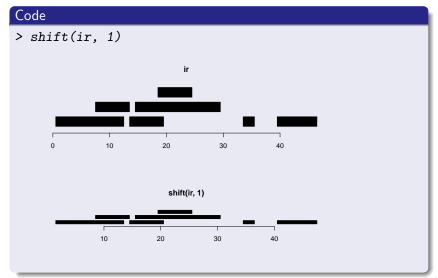
Splitting up *Ranges* by sequence

Code

```
> rl <- split(ir, c(rep("chr1", 2), rep("chr2",
+ 3), "chr1", "chr2"))
> rl[1]
CompressedIRangesList of length 1
$chr1
IRanges of length 3
   start end width
[1] 1 12 12
[2] 8 13 6
[3] 34 35 2
```

RangesList supports most Ranges operations, element-wise.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●


Outline	Introduction	Sequences 0000000	Ranges ○○○○●○○○○	Views	Interval Datasets 0000000
Simple Transfo	ormations				
Shiftin	g intervals				

If your interval bounds are off by 1, you can shift them.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Outline	Introduction	Sequences	Ranges	Views	Interval Datasets
			00000000000	000000	
Simple Transfo	ormations				
Shiftin	g intervals				

・ロト・日本・山田・山田・山口・

Outline	Introduction	Sequences	Ranges	Views	Interval Datasets
		0000000	000000000000000000000000000000000000000	000000	0000000
Simple Transfe	ormations				
Resizir	ng intervals				

One common operation in ChIP-seq experiments is to "grow" an alignment interval to an estimated fragment length.

Code

> ir15 <- resize(ir, 15) > print(ir15 <- resize(ir, 15, start = FALSE))						
IRanges of length 7						
start end width						
[1] -2 12 15						
[2] -1 13 15						
[3] 5 19 15						
[4] 15 29 15						
[5] 10 24 15						
[6] 21 35 15						
[7] 32 46 15						

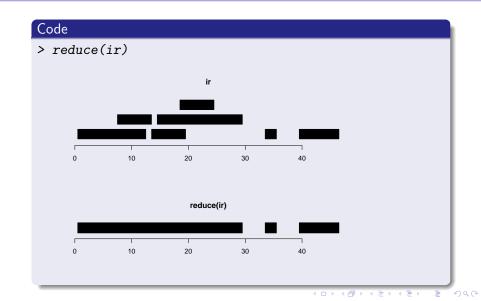
Outline	Introduction	Sequences	Ranges	Views	Interval Datasets	
			0000000000000			
Simple Transf	ormations					
Restric	cting interva	l bounds				

The previous operation created some negative start values. We can "clip" those negative values.

C	ode	Э			
>	re	estric	t(ir1	5,1)	
IF	IRanges of length 7				
		start	end	width	
[1	1]	1	12	12	
[2	2]	1	13	13	
[3	3]	5	19	15	
[4	1]	15	29	15	
[5	5]	10	24	15	
[6	5]	21	35	15	
E7	7]	32	46	15	

Outline	Introduction	Sequences 0000000	Ranges ○○○○○○○●○	Views	Interval Datasets 0000000
Ranges as Set	s				
Norma	lizing ranges	5			

- Ranges can represent a set of integers
- *NormallRanges* formalizes this, with a compact, normalized representation


▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

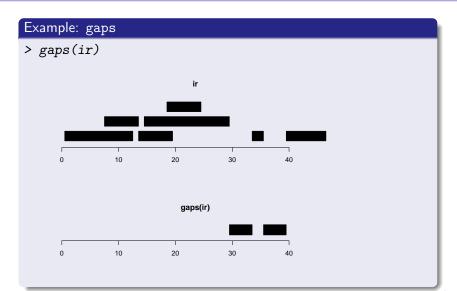
reduce normalizes ranges

Code

> reduce(ir)

Outline	Introduction	Sequences 0000000	Ranges ○○○○○○○●○	Views	Interval Datasets 0000000
Ranges as Sets					
Norma	lizing ranges	5			

Outline	Introduction	Sequences 0000000	Ranges Views	Interval Datasets 0000000
Ranges as Sets				
Set ope	erations			


- Ranges as set of integers: intersect, union, gaps, setdiff
- Each range as integer set, in parallel: pintersect, punion, pgap, psetdiff

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

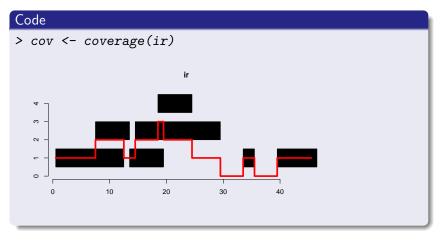
Example: gaps

> gaps(ir)

Outline	Introduction	Sequences 0000000	Ranges Views	s Interval Datasets 0000000
Overlap				
Disjoir	ning ranges			

- Disjoint ranges are non-overlapping
- disjoin returns the widest ranges where the overlapping ranges are the same

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで


Outline	Introduction	Sequences	Ranges	Views	Interval Datasets
				00000	
Overlap					
Overla	p detection				

- overlap detects overlaps between two Ranges objects
- Uses interval tree for efficiency

Code							
> ol <- fi	ndOverlaps(ir,	, reduce(ir))					
> as.matri	x(ol)						
query	query subject						
[1,] 1	1						
[2,] 2	1						
[3,] 3	1						
[4,] 4	1						
[5,] 5	1						
[6,] 6	2						
[7,] 7	3						

Outline	Introduction	Sequences 0000000	Ranges	Views 000●00	Interval Datasets 0000000
Overlap					
Counti	ing overlapp	ing Ranges			

coverage counts number of ranges over each position

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへ⊙

Outlin	e Introduction	Sequences 0000000	Ranges 0000000000000000	Views o●o	Interval Datasets 0000000
Overla	p				
Co	verage over mul	tiple sequer	ices		
	coverage also work	s for <i>RangesLis</i>	t:		
	Code				
	> covL <- covera	ge(rl)			
	> covL				
	SimpleRleList of	length 2			
	\$chr1	0			
	'integer' Rle of	length 35 wi [.]	th 5 runs		
	Lengths: 7 5	1 20 2			
	Values : 1 2	1 0 1			
	\$chr2				
	'integer' Rle of	length 46 wi	th 8 runs		

Lengths: 13 1 4 1 5 5 10 7 Values : 0 1 2 3 2 1 0 1

Outline	Introduction	Sequences 0000000	Ranges	Views ○00000●	Interval Datasets 0000000
Overlap					
Findin	g nearest ne	ighbors			

- nearest finds the nearest neighbor ranges (overlapping is zero distance)
- precede, follow find non-overlapping nearest neighbors on specific side

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Outline	Introduction	Sequences 0000000	Ranges Views	Interval Datasets 0000000
Outline				

▲□▶ ▲圖▶ ▲匡▶ ▲匡▶ ― 匡 … のへで

Introduction

2 Sequences Backgrou

RLEs

8 Ranges

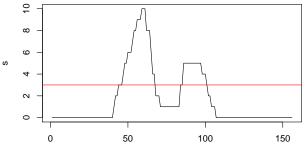
Basic Manipulation Simple Transformations Ranges as Sets Overlap

4 Views

6 Interval Datasets

Motivation RangedData Representation Accessing interval data

Outline	Introduction	Sequences 0000000	Ranges Views	Interval Datasets 0000000
Range	s on Sequen	ces: Views		


Ranges on Sequences: Views

- Associates a Ranges object with a sequence
- Sequences can be *Rle* or (in Biostrings) *XString*
- Extends Ranges, so supports the same operations

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Outline	Introduction	Sequences 0000000	Ranges 000000000	Views	Interval Datasets 0000000
Slicing	a Sequence	into Views			

Goal: find regions above cutoff of 3

Index

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Outline	Introduction	Sequences 0000000	Ranges 0000000000	Views	Interval Datasets 0000000
Slicing	a Sequence	into Views			

Goal: find regions above cutoff of 3

Using Rle				
<pre>> Views(sRle, as(sRle > 3, "IRanges"))</pre>				
Views on a 156-length Rle subject				
views:				
start end width				
[1] 47 67 21 [4 5 5 6 6 6 7]				
[2] 86 100 15 [5 5 5 5 5 5 5 5 5 5 5]				

Convenience

> sViews <- slice(sRle, 4)</pre>

Outline	Introduction	Sequences 0000000	Ranges 000000000	Views	Interval Datasets 0000000				
Slicing	Slicing multiple sequences into views								

Like many *Rle* operations, slice also works on *RleList*.

```
Slicing a RleList
> sViewsList <- slice(sRleList, 4)</pre>
> sViewsList[1]
SimpleRleViewsList of length 1
$chr1
Views on a 78-length Rle subject
views:
    start end width
[1]
   47 67 21 [ 4 5 5 6 6 6 7 ...]
Most RleViews methods also work on RleViewsList.
```

Outline	Introduction	Sequences 0000000	Ranges 0000000000	Views	Interval Datasets 0000000		
Summarizing windows							

- Could sapply over each window
- Native functions available for common tasks: viewMins, viewMaxs, viewSums, ...

Outline	Introduction	Sequences 0000000	Ranges	Views	Interval Datasets 0000000		
Summarizing windows							

- Could sapply over each window
 - Native functions available for common tasks: viewMins, viewMaxs, viewSums, ...

Sums

```
> viewSums(sViews)
```

```
[1] 150 72
```

```
> viewSums(sViewsList)
```

```
SimpleNumericList of length 2
[["chr1"]] 150
[["chr2"]] 72
```

Maxima

Outline	Introduction	Sequences 0000000	Ranges 000000000	Views	Interval Datasets 0000000			
Summ	Summarizing windows							

- - Could sapply over each window
 - Native functions available for common tasks: viewMins, viewMaxs, viewSums, ...

Sums

Maxima

```
> viewMaxs(sViews)
```

[1] 10 5

> viewMaxs(sViewsList)

```
SimpleNumericList of length 2
[["chr1"]] 10
[["chr2"]] 5
```

Outline	Introduction	Sequences 0000000	Ranges 000000000	Views	Interval Datasets 0000000		
Summarizing windows							

- Could sapply over each window
- Native functions available for common tasks: viewMins, viewMaxs, viewSums, ...

Maxima	
Maxima	

But how do we associate the summarized values with the original intervals?

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Outline	Introduction	Sequences 0000000	Ranges Views	Interval Datasets
Outline				

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Introduction

2 Sequences Backgrou

RLEs

8 Ranges

Basic Manipulation Simple Transformations Ranges as Sets Overlap

4 Views

Interval Datasets

Motivation RangedData Representation Accessing interval data

Outline	Introduction	Sequences 0000000	Ranges Views	Interval Datasets ●000000
Motivation				
Interva	al datasets			

- Genomic coordinates consist of chromosome, position, and potentially strand information
- Each coordinate or set of coordinates may have additional values associated with it, such as GC content or alignment coverage
- A collection of intervals with data are commonly called tracks in genome browsers

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Naive representation of interval dataset (1/2)

Tables in R are commonly stored in *data.frame* objects.

data.frame approach

```
> chr <- c("chr1", "chr2", "chr1")</pre>
> strand <- c("+", "+", "-")
> start <- c(3L, 4L, 1L)
> end <- c(7L, 5L, 3L)
> score <- c(1L, 3L, 2L)
> naiveTable <- data.frame(chr, strand,</pre>
    score, start, end)
+
> naiveTable
   chr strand score start end
1 chr1
           +
                  1
                        3
                            7
           + 3
                        4 5
2 chr2
                  2
                        1
                            3
3 chr1
            _
```


data.frame objects are poorly suited for this data because operations are constantly performed within chromosome/contig.

Using by to loop over data.frame

```
> getRange <- function(x) range(x[c("start",</pre>
```

```
+ "end")])
```

```
> by(naiveTable, naiveTable[["chr"]], getRange)
```

```
naiveTable[["chr"]]: chr1
```

[1] 1 7

naiveTable[["chr"]]: chr2

[1] 4 5

Outline	Introduction	Sequences 0000000	Ranges 000000000	Views	Interval Datasets
RangedData F	Representation				
Range	dData const	ruction			

- Instances are created using the RangedData constructor.
- Interval starts and ends are wrapped in an *IRanges* constructor.
- Chromosome/contig information is supplied to space argument.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Code

- > rdTable <- RangedData(IRanges(start, end),</pre>
- + strand, score, space = chr)

Outline	Introduction	Sequences 0000000	Ranges 000000000	Views 000000	Interval Datasets
RangedData F	Representation				
Range	dData displa	v			

RangedData sacrifices row order flexibility for efficiency.

C	Code						
>	rdTable						
R	angedData wi	th 3 rows	and	2 value co	lumns across	2 spac	ces
	space	e range	s	strand	score		
	<character></character>	<iranges< td=""><td>;> </td><td><character></character></td><td><integer></integer></td><td></td><td></td></iranges<>	;>	<character></character>	<integer></integer>		
1	chr1	[3, 7	']	+	1		
2	chr1	[1, 3	3]	-	2		
3	chr2	. [4, 5	;]	+	3		

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Outline	Introduction	Sequences	Ranges	Views	Interval Datasets
		0000000	000000000	000000	0000000
RangedData R	epresentation				

RangedData class decomposition

- RangedData
 - *RangesList* intervals on chromosomes/contigs. Extracted using the ranges function.
 - *Ranges* intervals for a specific chromosome/contig. Most common subclass is *IRanges*.

- *SplitDataFrameList* data on chromosomes/contigs. Extracted using the values function.
 - DataFrame data for a specific chromosome/contig.

Outline	Introduction	Sequences 0000000	Ranges 000000000	Views	Interval Datasets ○○○○○●
Accessing inte	erval data				
Prima	ry accessors				

Get the ranges

```
> ranges(rdTable)[1]
```

```
CompressedIRangesList of length 1
$chr1
IRanges of length 2
start end width
[1] 3 7 5
[2] 1 3 3
```

Get the data values

Outline	Introduction	Sequences 0000000	Ranges 000000000	Views	Interval Datasets ○○○○○●
Accessing inte	erval data				
Prima	ry accessors				

Get the ranges

Get the data values

```
> values(rdTable)[1]
```

```
CompressedSplitDataFrameList of length 1

$chr1

DataFrame with 2 rows and 2 columns

strand score

<character> <integer>

1 + 1

2 - 2
```

Outline	Introduction	Sequences 0000000	Ranges 000000000	Views	Interval Datasets
Accessing inte	erval data				
Access	sing built-in	attributes			

Each built-in feature attribute has a corresponding accessor method: start, end, strand, chrom, genome

Example	
> start(rdTable)	
[1] 3 1 4	

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Outline	Introduction	Sequences 0000000	Ranges 000000000	Views	Interval Datasets
Accessing inte	rval data				
Access	ing data col	umns			

Any data column (including strand) is accessible via \$ and [[.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Overview of RangedData subsetting

- Often need to subset track features and data columns.
- Example: limit the amount transferred to a genome browser
- Matrix style: rd[i, j], where i is feature index and j is column index
- By chromosome: rd[i], where i indexes the chromosome

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Outline	Introduction	Sequences 0000000	Ranges Views	Interval Datasets
Subsetting				
A 1				

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Subsetting examples and exercises

Examples

```
> first10 <- rdTable[1:2, ]
> pos <- rdTable[rdTable$strand == "+",
+ ]
> chr1Table <- rdTable[1]
> scoreTable <- rdTable[, "score"]</pre>
```

Outline	Introduction	Sequences 0000000	Ranges Views 0000000000000	Interval Datasets 0000000
Outline				

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Introduction

2 Sequences Backgrow

RLEs

8 Ranges

Basic Manipulation Simple Transformations Ranges as Sets Overlap

4 Views

6 Interval Datasets

Motivation RangedData Representation Accessing interval data

Outline	Introduction	Sequences 0000000	Ranges 000000000	Views 000000	Interval Datasets 0000000
<u> </u>	the tower	S st and RangedDa			

Various paths between piecewise constant measures (*Rle(List)*) and interval datasets (*RangedData*)

Rle(List) to RangedData

Via *RleViews(List)*

Outline	Introduction	Sequences 0000000	Ranges 000000000	Views	Interval Datasets 0000000
Dutilutu	. ika ia ia				

Bridging the towers Transitioning between *RleList* and *RangedData*

Rle(List) to RangedData					
> head(as(sRleList, "RangedData"), 3)					
RangedData with 3 rows and 1 value column across 2 spaces					
space ranges score					
<character> <iranges> <numeric></numeric></iranges></character>					
1 chr1 [1, 40] 0					
2 chr1 [41, 41] 1					
3 chr1 [42, 43] 2					

ヘロン 人間 とくほとく ほど

э

Via RleViews(List)

Outline	Introduction	Sequences 0000000	Ranges 00000000000000	Views 000	Interval Datasets 0000000

Bridging the towers Transitioning between *RleList* and *RangedData*

Rle(List) to RangedData

Via RleViews(List)

- > height <- unlist(viewMaxs(sViewsList))</pre>
- > RangedData(sViewsList, height)

RangedData wit	th 2 rows a	nd 1 value	column	across	2 spaces
space	ranges	height	t		
<character></character>	<iranges></iranges>	<pre> <numeric></numeric></pre>	>		
1 chr1	[47, 67]	10	C		
2 chr2	[8, 22]	5	5		

Outline	Introduction	Sequences 0000000	Ranges 000000000000	Views 000	Interval Datasets 0000000
_					

Bridging the towers Transitioning between *RleList* and *RangedData*

Rle(List) to RangedData

Via RleViews(List)

```
> coverage(rdTable, weight = "score")[1]
```

```
SimpleRleList of length 1
$chr1
'integer' Rle of length 7 with 3 runs
Lengths: 2 1 4
Values : 2 3 1
```

Outline	Introduction	Sequences 0000000	Ranges Views	Interval Datasets 0000000
Final (Comments			

- Just scratching the surface much more under the hood. Exploration is encouraged.
- Trying to work around performance issues in R, but not entirely successful.
- Still in active development. Missing features or performance problems, let us know.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @