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1 Introduction

Our goal in this section of the course is to describe the use of Bioconductor software to perform some basic
tasks in the analysis of ChIP-Seq data. We will use tools from the Iranges and ShortRead packages, and also
use the lattice package for visualization. The next release of Bioconductor is set to include a new package called
chipseq that will provide a more high-level interface to common tasks relevant for ChIP-Seq data analysis.

> library(ShortRead)

> library(lattice)

1.1 Example data

The data folder contains two data files, each containing data for three chromosomes from one Solexa lane, one
from a CTCF mouse ChIP-Seq, and one from a GFP mouse ChIP-Seq (a background control). The raw reads
were aligned to the reference genome (mouse in this case) using an external program (MAQ), and the results
read in using the readAligned function in the ShortRead package. All duplicate reads were removed and a
quality score cutoff of 5 was used.

> load("../data/ctcf.rda")

> load("../data/gfp.rda")
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ctcf and gfp are objects of class AlignedRead .

> ctcf

class: AlignedRead
length: 484957 reads; width: 24 cycles
chromosome: chr10 chr10 ... chr12 chr12
position: 3011944 3012936 ... 121253739 121255103
strand: - + ... + +
alignQuality: IntegerQuality
alignData varLabels: nMismatchBestHit mismatchQuality nExactMatch24 nOneMismatch24

> gfp

class: AlignedRead
length: 316176 reads; width: 24 cycles
chromosome: chr10 chr10 ... chr12 chr12
position: 3002512 3008979 ... 121255999 121256287
strand: + - ... + +
alignQuality: IntegerQuality
alignData varLabels: nMismatchBestHit mismatchQuality nExactMatch24 nOneMismatch24

Further information on each alignment can be obtained using various accessor functions whose names are hinted
at in the summarized display. For example,

> table(strand(ctcf))

- + *
240633 244324 0

> table(chromosome(gfp))

chr10 chr11 chr12
104970 120707 90499

1.2 The mouse genome

The data we have refer to alignments to a genome, and only makes sense in that context. Bioconductor has
genome packages containing the full sequences of several genomes. The one relevant for us is

> library(BSgenome.Mmusculus.UCSC.mm9)

> mouse.chromlens <- seqlengths(Mmusculus)

> head(mouse.chromlens)

chr1 chr2 chr3 chr4 chr5 chr6
197195432 181748087 159599783 155630120 152537259 149517037

We will only make use of the chromosome lengths, but the actual sequence will be needed for motif finding, etc.

1.3 Extending reads

Solexa gives us the first few (24 in this example) bases of each fragment it sequences, but the actual fragment is
longer. By design, the sites of interest (transcription factor binding sites) should be somewhere in the fragment,
but not necessarily in its initial part. Although the actual lengths of fragments vary, extending the alignment
of the short read by a fixed amount in the appropriate direction, depending on whether the alignment was to
the positive or negative strand, makes it more likely that we cover the actual site of interest. We will extend
all reads to be 150 bases long.
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2 Coverage, islands, and depth

The extended aligned reads can be summarized by their coverage, that is, how many times each base in the
genome was covered by one of these reads.

> cov.ctcf <- coverage(ctcf, width = mouse.chromlens, extend = 126L)

> cov.ctcf

A GenomeData instance
chromosomes(3): chr10 chr11 chr12

> cov.ctcf$chr10

'integer' Rle instance of length 129987169 with 310772 runs
Lengths: 150 882 86 5 3 3 2 6 8 4 ...
Values : 1 0 1 2 3 4 5 6 7 8 ...

For efficiency, the result is stored in a run-length encoded form.

The regions of interest are contiguous segments of non-zero coverage, also known as islands. Islands can be
identified by slicing the coverage at a depth of 1:

> islands <- slice(cov.ctcf$chr10, lower = 1)

> islands

Views on a 129987169-length Rle subject

views:
start end width

[1] 1 150 150 [1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ...]
[2] 1033 1403 371 [1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ...]
[3] 6647 6796 150 [1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ...]
[4] 8949 9098 150 [1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ...]
[5] 11202 11351 150 [1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ...]
[6] 11423 11677 255 [1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ...]
[7] 20769 20918 150 [1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ...]
[8] 25704 25853 150 [1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ...]
[9] 26560 26709 150 [1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ...]
... ... ... ... ...

[99715] 126961408 126961640 233 [1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 ...]
[99716] 126963046 126963195 150 [1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ...]
[99717] 126963758 126963907 150 [1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ...]
[99718] 126966852 126967001 150 [1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ...]
[99719] 126967442 126967704 263 [1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ...]
[99720] 126968486 126968635 150 [1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ...]
[99721] 126970140 126970289 150 [1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ...]
[99722] 126970563 126970712 150 [1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ...]
[99723] 126975203 126975352 150 [1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ...]

For each island, we can compute the area (sum) under the island, and the maximum coverage depth within that
island.

> viewSums(head(islands))

[1] 150 2100 150 150 150 300
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> viewMaxs(head(islands))

[1] 1 13 1 1 1 2

> nread.tab <- table(viewSums(islands) / 150L)

> depth.tab <- table(viewMaxs(islands))

> head(nread.tab, 10)

1 2 3 4 5 6 7 8 9 10
80172 13548 2756 797 324 209 185 119 116 93

> head(depth.tab, 10)

1 2 3 4 5 6 7 8 9 10
80230 14750 2124 472 240 184 153 121 115 107

Exercise 1
Repeat these steps for the gfp dataset.

2.1 Processing multiple lanes

Although data from one chromosome within one lane is often the natural unit to work with, we typically want
to apply any procedure to all chromosomes in all lanes. We can recursively apply a summary function to all
chromosomes using the lapply function. Here is a simple summary function that computes the frequency
distribution of the number of reads per island.

> islandReadSummary <- function(cov)

+ {

+ s <- slice(cov, lower = 1)

+ tab <- table(viewSums(s) / 150)

+ ans <- data.frame(nread = as.numeric(names(tab)),

+ count = as.numeric(tab))

+ ans

+ }

Applying it to our test-case, we get

> head(islandReadSummary(cov.ctcf$chr10))

nread count
1 1 80172
2 2 13548
3 3 2756
4 4 797
5 5 324
6 6 209

We can now use it to summarize the full dataset.

> nread.islands <- lapply(cov.ctcf, islandReadSummary)

> nread.islands <- do.call(make.groups, nread.islands)

> head(nread.islands)

nread count which
chr10.1 1 80172 chr10
chr10.2 2 13548 chr10
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chr10.3 3 2756 chr10
chr10.4 4 797 chr10
chr10.5 5 324 chr10
chr10.6 6 209 chr10

> xyplot(log(count) ~ nread | which, data = nread.islands,

+ subset = (nread <= 20), pch = 16, type = c("p", "g"))
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If reads were sampled randomly from the genome, then the null distribution of the number of reads per
island would have a geometric distribution; that is,

P (X = k) = pk−1(1− p)

where p is the probability a random read starts within an interval of length 150. In other words, log P (X = k)
is linear in k. Although our samples are not random, we can estimate p if we assume that the islands with just
one or two reads are representative of the null distribution.

> xyplot(log(count) ~ nread | which, data = nread.islands,

+ subset = (nread <= 20),

+ pch = 16,

+ panel = function(x, y, ...) {

+ panel.grid(h = -1, v = -1)

+ panel.lmline(x[1:2], y[1:2], col = "black")

+ panel.xyplot(x, y, ...)

+ })
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We can create a similar plot of the distribution of depths.

> islandDepthSummary <- function(cov)

+ {

+ s <- slice(cov, lower = 1)

+ tab <- table(viewMaxs(s))

+ ans <- data.frame(depth = as.numeric(names(tab)), count = as.numeric(tab))

+ ans

+ }

> depth.islands <- lapply(cov.ctcf, islandDepthSummary)

> depth.islands <- do.call(make.groups, depth.islands)

> xyplot(log(count) ~ depth | which, depth.islands,

+ subset = (depth <= 20), pch = 16,

+ panel = function(x, y, ...) {

+ panel.grid(h = -1, v = -1)

+ lambda <- 2 * exp(y[2]) / exp(y[1])

+ null.est <- function(xx) {

+ xx * log(lambda) - lambda - lgamma(xx + 1)

+ }

+ log.N.hat <- null.est(1) - y[1]

+ panel.lines(1:10, -log.N.hat + null.est(1:10), col = "black")

+ panel.xyplot(x, y, ...)

+ })

This assumes that the null distribution of depths has a Poisson distribution, which is not strictly true, but seems
to give a reasonble fit.
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Exercise 2
Produce similar plots for the gfp dataset. What qualitatitve differences do you see? Based on your findings,
what would be a reasonbale cutoff for deciding that the depth of an island is too high to be explained by chance,
and hence is likely to contain a CTCF binding site?
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2.2 Peaks

Going back to our example of chr10 of the first sample, we can define “peaks” to be contiguous regions of the
genome where coverage is 8 or more.

> peaks <- slice(cov.ctcf$chr10, lower = 8)

> peaks

Views on a 129987169-length Rle subject

views:
start end width

[1] 1146 1287 142 [ 8 8 8 8 9 10 11 11 11 11 11 11 11 ...]
[2] 222982 223074 93 [ 8 8 8 8 8 8 8 8 8 8 8 8 8 ...]
[3] 258257 258261 5 [8 8 8 8 8]
[4] 258266 258443 178 [ 8 8 8 8 8 9 9 9 9 9 9 10 11 ...]
[5] 265866 265999 134 [ 8 8 8 8 8 8 8 8 8 8 8 8 9 ...]
[6] 449049 449111 63 [ 8 8 8 8 8 8 8 8 8 8 8 8 8 ...]
[7] 606027 606130 104 [ 8 8 8 8 8 8 9 9 9 9 9 9 9 ...]
[8] 639945 640155 211 [ 8 8 10 10 10 12 12 12 12 12 12 12 12 ...]
[9] 1298612 1298858 247 [ 8 9 9 10 10 10 11 11 11 11 11 11 12 ...]
... ... ... ... ...

[1746] 125974702 125974806 105 [8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 9 ...]
[1747] 125974827 125974830 4 [8 8 8 8]
[1748] 125974835 125974835 1 [8]
[1749] 126047124 126047135 12 [8 8 8 8 8 8 8 8 8 8 8 8]
[1750] 126518227 126518373 147 [ 8 8 8 8 8 8 8 8 9 9 9 9 9 ...]
[1751] 126521514 126521564 51 [8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 ...]
[1752] 126653571 126653753 183 [ 8 8 8 8 8 8 8 9 10 10 11 11 11 ...]
[1753] 126654948 126655088 141 [8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 9 ...]
[1754] 126738854 126738991 138 [ 8 8 8 8 8 8 9 9 9 9 9 9 9 ...]

Interesting properties of peaks are their maximum depth and area under the peak (a relative measure of how
localized the peak is).

> peak.depths <- viewMaxs(peaks)

> peak.areas <- viewSums(peaks)

> xyplot(peak.areas ~ peak.depths)
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Exercise 3
Produce a similar plot for the gfp dataset. What differences do you see, particularly in terms of the number of
peaks and the distribution of depths?

We can order the peaks by depth

> wpeaks <- tail(order(peak.depths), 4)

> peaks[wpeaks]

Views on a 129987169-length Rle subject

views:
start end width

[1] 72283211 72283502 292 [ 8 8 8 8 8 8 8 8 8 10 10 10 10 11 ...]
[2] 123344361 123344655 295 [ 8 8 8 8 8 8 8 10 10 10 10 11 11 11 ...]
[3] 74863897 74864200 304 [ 8 8 9 9 9 9 10 10 11 10 10 10 10 10 ...]
[4] 77738717 77739014 298 [ 8 8 8 8 8 8 9 10 11 12 13 13 13 13 ...]

and plot individual peaks using this function:

> coverageplot <- function (peaks, xlab = "Position", ylab = "Coverage", ...)

+ {

+ pos1 <- seq(start(peaks[1]), end(peaks[1]))

+ cov1 <- as.integer(peaks[[1]])

+ pos1 <- c(head(pos1, 1), pos1, tail(pos1, 1))

+ cov1 <- c(0, cov1, 0)

+ xyplot(cov1 ~ pos1, ..., panel = panel.polygon,
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+ col = "lightgrey", xlab = xlab, ylab = ylab)

+

+ }

> coverageplot(peaks[wpeaks[1]])

Position
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40
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60

72283200 72283250 72283300 72283350 72283400 72283450 72283500

Exercise 4
How does the amount by which each read is extended affect the analysis? In calls to coverage, We have used
extend=126L to get a total length of 150 for each read. Try lengths of 100 and 200 and see how the results
change.

3 Version information

• R version 2.9.0 Patched (2009-05-27 r48659), x86_64-unknown-linux-gnu

• Locale: C

• Base packages: base, datasets, grDevices, graphics, methods, stats, utils

• Other packages: BSgenome 1.12.0, BSgenome.Mmusculus.UCSC.mm9 1.3.11, Biostrings 2.12.3, IRanges 1.2.2,
ShortRead 1.2.0, lattice 0.17-25

• Loaded via a namespace (and not attached): Biobase 2.4.1, grid 2.9.0, hwriter 1.1
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