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Affymetrix A to Z

Lab Structure

Interactive walkthrough of Chapter 3: Processing Affymetrix
Expression Data from the book Bioconductor Case Studies by
Hahne et al.

Students encouraged to run R during lab and submit
commands as we go because there will be exercises along the
way.
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Bioconductor Packages Covered

affy - Methods for Affymetrix oligonucleotide arrays

CLL - Chronic Lymphocytic Leukemia gene expression data

simpleaffy - Simple high-level analysis of Affymetrix data

genefilter - Methods for filtering genes from microarray
experiments

affyPLM - Methods for fitting probe-level models

limma - Linear models for microarray data

annotate - Annotation for microarrays

annaffy - Annotation tools for Affymetrix biological metadata

hgu95av2.db - Affymetrix Human Genome U95 Set
annotation data (chip hgu95av2)

KEGG.db - A set of annotation maps for KEGG

geneplotter - Graphics related functions for Bioconductor

vsn - Variance stabilization and calibration for microarray data
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Background

Affymetrix GeneChip®Microarray Overview
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Background

Affymetrix GeneChip®Microarray Terminology

Each gene or portion of a gene is represented by 1 to 20
oligonucleotides of 25 base-pairs.

Probe: an oligonucleotide of 25 base-pairs, i.e., a 25-mer.

Perfect match (PM): A 25-mer complementary to a
reference sequence of interest (e.g., part of a gene).

Mismatch (MM): same as PM but with a single base change
for the middle (13th) base (transversion purine <->
pyrimidine, G <->C, A <->T). Used to measure non-specific
binding and background noise.

Probe-pair: a (PM,MM) pair.

Probe-pair set: a collection of probe-pairs (1 to 20) related
to a common gene or fraction of a gene.

Affy ID: an identifier for a probe-pair set.
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Background

Affymetrix GeneChip®Files

DAT file: Image file, 107 pixels, 50 MB.

CEL file: Cell intensity file, probe level PM and MM values.

CDF file: Chip Description File. Describes which probes go in
which probe sets and the location of probe-pair sets (genes,
gene fragments, ESTs).
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Background

Expression Measures

10-20K genes represented by 11-20 pairs of probe intensities
(PM & MM).

Obtain expression measure for each gene on each array by
summarizing these pairs.

Background adjustment and normalization are important
issues.

There are many methods.
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The input data: CEL files

Importing Affymetrix GeneChip®Data ...

Affymetrix GeneChip®CEL files are imported using ReadAffy
from the affy package.

> library("affy")

> myAB1 <- ReadAffy()

> myAB2 <- ReadAffy(filenames = c("a1.cel",

+ "a2.cel", "a3.cel"))

By default, all the CEL files from the current working
directory (CWD) are imported. CWD can be

found using getwd and
changed using setwd.

Alternatively, the filenames argument can be supplied.

list.celfiles can be used to select the list CEL file in the
directory.
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The input data: CEL files

... Into AffyBatch Objects

Affymetrix GeneChip®probe-level data are stored in
AffyBatch objects.

For more information on this class see
help("AffyBatch-class").

We will use pre-imported data from the CLL package.
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The input data: CEL files

Example Data Set

Chronic Lymphocytic Leukemia Gene Expression Data

24 samples run on HG-U95Av2 Affymetrix GeneChip®arrays

Large number of clinical measures collected, but we’ll use only
one.

> library("CLL")

> data("CLLbatch")

> CLLbatch

AffyBatch object
size of arrays=640x640 features (91212 kb)
cdf=HG_U95Av2 (12625 affyids)
number of samples=24
number of genes=12625
annotation=hgu95av2
notes=
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The input data: CEL files

CLL Sample Information

The sampleNames function extracts the name of the samples.

The sampleNames<- replacement function overwrites the
existing names.

> head(sampleNames(CLLbatch))

[1] "CLL10.CEL" "CLL11.CEL" "CLL12.CEL"
[4] "CLL13.CEL" "CLL14.CEL" "CLL15.CEL"

> sampleNames(CLLbatch) <- sub("\\.CEL$",

+ "", sampleNames(CLLbatch))

> head(sampleNames(CLLbatch))

[1] "CLL10" "CLL11" "CLL12" "CLL13" "CLL14"
[6] "CLL15"
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The input data: CEL files

CLL Disease State

> data("disease")

> head(disease)

SampleID Disease
1 CLL10 <NA>
2 CLL11 progres.
3 CLL12 stable
4 CLL13 progres.
5 CLL14 progres.
6 CLL15 progres.

> table(disease$Disease, useNA = "always")

progres. stable <NA>
14 9 1

> rownames(disease) <- disease$SampleID
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The input data: CEL files

Managing Phenotypic Data

Phenotypic data are stored in AnnotatedDataFrame objects.

These are essentially data.frame objects with metadata.

They can be created from other R objects using new or
imported from a file using read.AnnotatedDataFrame.

The phenoData and phenoData<- functions get and set the
phenotypic data in an AffyBatch object.

> mt <- match(rownames(disease), sampleNames(CLLbatch))

> vmd <- data.frame(labelDescription = c("Sample ID",

+ "Disease status: progressive or stable disease"))

> phenoData(CLLbatch) <- new("AnnotatedDataFrame",

+ data = disease[mt, ], varMetadata = vmd)
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The input data: CEL files

Sample Removal

Phenotypic data can be used to filter AffyBatch objects.

In this case we will remove the sample with an unknown
disease state.

> CLLbatch <- CLLbatch[, !is.na(CLLbatch$Disease)]
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Quality Assessment

QA/QC

Quality Assessment: computation and interpretation of
metrics that are intended to measure quality.

Quality Control: possible subsequent actions, such as
removing data from bad arrays or re-doing parts of an
experiment.
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Quality Assessment

Affymetrix Quality Assessment Metrics

Average Background: the average of the background values.

Scale Factor: The constant i which is the ratio of the trimmed
mean for array i to the trimmed mean of the reference array.

Percent Present: the percentage of spots that are present
according to Affymetrix detection algorithm.

3′/5′ ratios: for different quality control probe sets, such as
Actin and GAPDH, each represented by 3 probesets, one from
the 5′ end, one from the middle and one from the 3′ end of
the targeted transcript. The ratio of the 3′ expression to the 5′

expression for these genes serves as a measure of RNA quality.
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Quality Assessment

Recommended QA/QC Packages

The simpleaffy package computes a variety of statistics for
QA/QC.

The affyPLM package contains methods for fitting
probe-level models.

The arrayQualityMetrics and affyQCReport packages
contain recommended functionality for generating
comprehensive QA reports.

> library("simpleaffy")

> saqc <- qc(CLLbatch)
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Quality Assessment

Quality Control Plot
> plot(saqc)
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Quality Assessment

Clustering Arrays by Expression Data

Microarrays can be clustered based on expression profiles to
determine outlining samples.

genefilter’s dist2 calculates pairwise distances that can be
fed into cluster analysis software.

By default, dist2 calculates the mean of the absolute
differences between pairs of samples.

> library("genefilter")

> dd <- dist2(log2(exprs(CLLbatch)))
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Quality Assessment

Between-Array Distance Plot (1/2)

> diag(dd) <- 0

> dd.row <- as.dendrogram(hclust(as.dist(dd)))

> row.ord <- order.dendrogram(dd.row)

> library("latticeExtra")

> legend <- list(top = list(fun = dendrogramGrob,

+ args = list(x = dd.row, side = "top")))

> lp <- levelplot(dd[row.ord, row.ord],

+ scales = list(x = list(rot = 90)),

+ xlab = "", ylab = "", legend = legend)



Affymetrix A to Z

Quality Assessment

Between-Array Distance Plot (2/2)
> plot(lp)
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Quality Assessment

QA/QC Through Probe-Level Modeling

The affyPLM package provides another set of QA/QC
diagnostic measures:

Relative Log Expression (RLE) - For each gene, the across
array median log expression is subtracted from each individual
measurement.
Normalize Unscaled Standard Error (NUSE) - see
documentation for mathematical definition.

For both these measures, boxplots are used to highlight
aberrant samples.
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Quality Assessment

Probe-Level Diagnostics (1/3)

> library("affyPLM")

> dataPLM <- fitPLM(CLLbatch)

> boxplot(dataPLM, main = "NUSE", ylim = c(0.95,

+ 1.22), outline = FALSE, col = "lightblue",

+ las = 3, whisklty = 0, staplelty = 0)

> Mbox(dataPLM, main = "RLE", ylim = c(-0.4,

+ 0.4), outline = FALSE, col = "mistyrose",

+ las = 3, whisklty = 0, staplelty = 0)
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Quality Assessment

Probe-Level Diagnostics (2/3)
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Quality Assessment

Probe-Level Diagnostics (3/3)

Both diagnostic boxplots indicate that array CLL1 is
problematic.

We drop it from our further analysis.

> badArray <- match("CLL1", sampleNames(CLLbatch))

> CLLB <- CLLbatch[, -badArray]
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Quality Assessment

Exercise 3.1

Repeat the calculation of the NUSE and RLE plots for the
data with the array CLL1 removed.
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Quality Assessment

Solution Exercise 3.1 (1/2)

> dataPLMx <- fitPLM(CLLB)

> boxplot(dataPLMx, main = "NUSE", ylim = c(0.95,

+ 1.3), outline = FALSE, col = "lightblue",

+ las = 3, whisklty = 0, staplelty = 0)

> Mbox(dataPLMx, main = "RLE", ylim = c(-0.4,

+ 0.4), outline = FALSE, col = "mistyrose",

+ las = 3, whisklty = 0, staplelty = 0)
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Quality Assessment

Solution Exercise 3.1 (2/2)
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Preprocessing

Expression Microarray Preprocessing Tasks

Background correction; increases sensitivity by removing
non-specific signal

Between-array normalization; adjusts for technical variability
within an experiment. Between experiment variability
should be modeled, not normalized away.

Reporter summarization; summarize gene expression value for
each gene from all array features that target its transcripts.
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Preprocessing

RMA Preprocessing

Robust multi-array analysis (RMA) techniques provides all
three of the preprocessing tasks.

Works with n = 2 or more chips.

Method provided and documented in affy package as the rma
function.

The threestep function in the affyPLM package allows for
more flexibility in performing these three tasks.

> CLLrma <- rma(CLLB)
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Preprocessing

RMA Results

The rma function returns an ExpressionSet object.

These expression values are on the log2 scale.

The sample information is transferred to the output.

> exprs(CLLrma)[1:3, 1:3]

CLL11 CLL12 CLL13
100_g_at 7.997251 7.939522 8.068330
1000_at 8.351710 8.560025 8.206671
1001_at 4.565553 4.466520 4.645425

> pData(CLLrma)[1:3, ]

SampleID Disease
CLL11 CLL11 progres.
CLL12 CLL12 stable
CLL13 CLL13 progres.
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Preprocessing

Exercise 3.2

How many probe sets are there in this dataset?
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Preprocessing

Solution Exercise 3.2

There are lots of solutions. Here are some:

> e <- exprs(CLLrma)

> dim(e)[1]

[1] 12625

> nrow(e)

[1] 12625

> dim(exprs(CLLrma))[1]

[1] 12625

> nrow(CLLrma)

Features
12625

> length(featureNames(CLLrma))

[1] 12625
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Ranking and filtering probe sets

Non-Specific Filtering After RMA

Genome-wide microarrays are sensitive up to 50% of the genes
being differentially expressed.

Non-informative genes add noise and filtering them out
benefits downstream analyses.

The nsFilter function from the genefilter package filters
probe sets on various criteria.

Let’s filter out genes with small variance across samples, no
Entrez Gene identifiers, and Affymetrix control probes.

> CLLf <- nsFilter(CLLrma, remove.dupEntrez = FALSE,

+ var.cutof = 0.5)$eset
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Ranking and filtering probe sets

Individual t-tests

Average log-fold change within phenotypic groups are a good
naive measure to compare.

The rowMeans function can calculate these statistics from an
expression matrix.

The rowttests function from the genefilter performs
Student’s t-test on each row of a matrix using the average
log-fold changes from two groups.

Similarly, the rowFtests function performs F -tests for
comparing multiple groups.

> a <- rowMeans(exprs(CLLf))

> CLLtt <- rowttests(CLLf, "Disease")

> names(CLLtt)

[1] "statistic" "dm" "p.value"
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Ranking and filtering probe sets

Exercise 3.3

Does the variability of the log-ratio values depend on the
average intensity?

Plot the log-ratio against the average intensity

Plot log-ratio versus the rank of the average intensity

> par(mfrow = c(1, 2))

> myPlot <- function(...) {

+ plot(y = CLLtt$dm, pch = ".", ylim = c(-2,

+ 2), ylab = "log-ratio", ...)

+ abline(h = 0, col = "blue")

+ }

> myPlot(x = a, xlab = "average intensity")

> myPlot(x = rank(a), xlab = "rank of average intensity")
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Ranking and filtering probe sets

Solution Exercise 3.3
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Ranking and filtering probe sets

Pooled t-tests

Previous t-tests treated each probe set separately, resulting in
little data used to estimate variance.

t-statistics sensitive to variance estimate.

Can improve testing using pooled probe set variances in
classical linear model or in an empirical Bayesian approach.

Both approaches tend to perform equally well with ten or
more samples in each group.

The lmFit and eBayes functions from the limma package
perform the former and later respectively.

> library("limma")

> design <- model.matrix(~CLLf$Disease)

> CLLlim <- lmFit(CLLf, design)

> CLLeb <- eBayes(CLLlim)
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Ranking and filtering probe sets

Exercise 3.4

Compare the t-statistics obtained under the classical linear
model and (moderated) empirical Bayes approaches.

> plot(CLLtt$statistic, -CLLeb$t[, 2],

+ xlim = c(-6, 6), ylim = c(-6, 6),

+ xlab = "Classical Linear Model",

+ ylab = "Empirical Bayes", main = "Comparison of t Statistics",

+ pch = ".")

> abline(a = 0, b = 1)
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Ranking and filtering probe sets

Solution Exercise 3.4
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Ranking and filtering probe sets

Volcano Plot (1/2)

A volcano plot displays statistic, like t-statistic p-value, used
for ranking against log-fold change.

Reference lines are often added to plot to determine statistical
and/or biological significance.

> plot(CLLtt$dm, -log10(CLLtt$p.value),

+ pch = ".", xlab = "log-ratio", ylab = expression(-log[10] ~

+ p))

> abline(h = 2)
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Ranking and filtering probe sets

Volcano Plot (2/2)
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Ranking and filtering probe sets

Exercise 3.5

Generate a volcano plot using a moderated empirical Bayesian
t-statistic.

Does it look similar to the plot using the classical t-statistic?
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Ranking and filtering probe sets

Solution Exercise 3.5 (1/2)

> plot(CLLtt$dm, -log10(CLLeb$p.value[,

+ 2]), pch = ".", xlab = "log-ratio",

+ ylab = expression(log[10] ~ p))

> abline(h = 2)



Affymetrix A to Z

Ranking and filtering probe sets

Solution Exercise 3.5 (2/2)
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Ranking and filtering probe sets

Exercise 3.6

Use a volcano plot to highlight the top 25 genes with the
smallest classical linear model p-value.

> plot(CLLtt$dm, -log10(CLLtt$p.value),

+ pch = ".", xlab = "log-ratio", ylab = expression(log[10] ~

+ p))

> o1 <- order(abs(CLLtt$dm), decreasing = TRUE)[1:25]

> points(CLLtt$dm[o1], -log10(CLLtt$p.value)[o1],

+ pch = 18, col = "blue")
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Ranking and filtering probe sets

Solution Exercise 3.6
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Ranking and filtering probe sets

Multiple Testing Problem

Due to high number of statistical tests, rule of thumb cutoffs
like 0.01 for p-values yield many false positives.

For example, using if none of the 6098 probe sets in CLLf
were differentially expressed, the above cutoff would yield on
average around 61 false positive significant test results.
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Ranking and filtering probe sets

Exercise 3.7

How many probe sets with p <= 0.01 are there in the
classical linear model t-tests?

How many with the moderated empirical Bayesian t-tests?
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Ranking and filtering probe sets

Solution Exercise 3.7

> sum(CLLtt$p.value <= 0.01)

[1] 242

> sum(CLLeb$p.value[, 2] <= 0.01)

[1] 260
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Ranking and filtering probe sets

Adjusting for Multiple Tests

Many methods exist for dealing with the multiple testing
problem.

The multtest package provides implementation of many of
these methods.

Alternatively, the topTable function from the limma package
contains multiple testing adjustment methods, including
Benjamini and Hochberg’s false discovery rate FDR, simple
Bonferroni correction, and several others.

> tab <- topTable(CLLeb, coef = 2, adjust.method = "BH",

+ n = 10)

> genenames <- as.character(tab$ID)

> genenames

[1] "1303_at" "33791_at" "37636_at" "36131_at"
[5] "36939_at" "36129_at" "551_at" "41776_at"
[9] "39400_at" "36122_at"
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Ranking and filtering probe sets

Microarry Annotations

The annotate package provides facilities to navigate
microarray annotations.

Many packages like hgu95av2.db contain platform-specific
annotations.

> library("annotate")

> annotation(CLLf)

[1] "hgu95av2"

> suppressMessages(library("hgu95av2.db"))
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Ranking and filtering probe sets

EntrezGene ID and Gene Symbol
The getEG and getSYMBOL functions from the annotate
package return the EntrezGene ID and gene symbol for a
specified annotation package respectively.

> ll <- getEG(genenames, "hgu95av2")

1303_at 33791_at 37636_at 36131_at 36939_at
"6452" "10301" "9767" "1192" "2823"

36129_at 551_at 41776_at 39400_at 36122_at
"9905" "2033" "475" "23102" "5687"

> sym <- getSYMBOL(genenames, "hgu95av2")

1303_at 33791_at 37636_at 36131_at
"SH3BP2" "DLEU1" "PHF16" "CLIC1"
36939_at 36129_at 551_at 41776_at
"GPM6A" "SGSM2" "EP300" "ATOX1"
39400_at 36122_at
"TBC1D2B" "PSMA6"
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Ranking and filtering probe sets

HTML Reporting of Top Genes (1/2)

The htmlpage from the annotate package creates an HTML
table containing both static information as well as links to
various online annotation sources.

> tab <- data.frame(sym, signif(tab[, -1],

+ 3))

> htmlpage(list(ll), othernames = tab,

+ filename = "GeneList1.html", title = "HTML report",

+ table.center = TRUE, table.head = c("Entrez ID",

+ colnames(tab)))

> browseURL("GeneList1.html")
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Ranking and filtering probe sets

HTML Reporting of Top Genes (2/2)

The aafTableAnn from the annaffy package creates an
alternative HTML table containing both static information as
well as links to various online annotation sources.

The colnames argument can be used to select a subset of the
metadata for the specified probe IDs.

> library("annaffy")

> library("KEGG.db")

> atab <- aafTableAnn(genenames, "hgu95av2.db",

+ aaf.handler())

> saveHTML(atab, file = "GeneList2.html")

> atab <- aafTableAnn(genenames, "hgu95av2.db",

+ aaf.handler()[c(2, 5, 8, 12)])

> saveHTML(atab, file = "GeneList3.html")

> browseURL("GeneList2.html")

> browseURL("GeneList3.html")
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Advanced Preprocessing

Bioconductor provides functionality for performing custom
preprocessing.

This preprocessing task starts with the “raw” feature intensity
data from the CEL files and the assignment of features to
target genes information from CDF files.
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Probe-Level Data

Probe-level data from Affymetrix GeneChip®Microarrays
originate from CEL files in the form of PM and MM probe
intensities.

The pm and mm functions from the affy package extract data
from PM and MM probes respectively.

> pms <- pm(CLLB)

> mms <- mm(CLLB)
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Exercise 3.8 (1/3)

For the first array in the CLL data, make a scatterplot of the
PM values versus the MM values and interpret the results.

How many MM probes have larger intensities than their
corresponding PM probes?

> smoothScatter(log2(mms[, 1]), log2(pms[,

+ 1]), xlab = expression(log[2] * "MM values"),

+ ylab = expression(log[2] * "PM values"),

+ asp = 1)

> abline(a = 0, b = 1, col = "red")
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Exercise 3.8 (2/3)
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Exercise 3.8 (3/3)

In a large number of cases, the MM value is larger than the
PM value.

This complicates the simple story that hybridization to the
perfect match probe exceeds that of the mismatch probe.

> table(sign(pms - mms))

-1 0 1
1414590 31828 2993182
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Exercise 3.9 (1/2)

For the second array, make a histogram of the MMs for which
PM > 2000?

Compare it to the histogram where the PM values are less
than 2000.

> library("geneplotter")

> grouping <- cut(log2(pms)[, 2], breaks = c(-Inf,

+ log2(2000), Inf), labels = c("Low",

+ "High"))

> multidensity(log2(mms)[, 2] ~ grouping,

+ main = "", xlab = "", col = c("red",

+ "blue"), lwd = 2)

> legend("topright", levels(grouping),

+ lty = 1, lwd = 2, col = c("red",

+ "blue"))
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Exercise 3.9 (2/2)
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Optical noise and cross-hybridizations results in positive
feature intensities from Affymetrix microarrays even when
expected to be zero.

Background correction is essential to obtain good sensitivity.

We will explore robust multi-array analysis (RMA) and
variance-stabilizing normalization (VSN) methods.
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Background Correction using RMA

In RMA, background modeled using a Normal-Exponential
mixture.

PM intensity values corrected by subtracting background
estimate of each probe.

Corrected PM values guaranteed to be positive.

> bgrma <- bg.correct.rma(CLLB)

> exprs(bgrma) <- log2(exprs(bgrma))
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Background Correction using VSN

In VSN, one overall background estimate is computed for the
whole array.

This estimate can be larger than some of the smaller feature
intensities on the array, resulting in some of the
background-subtracted values ≤ 0.

Generalized logarithm transformation, which handles
nonpositive values, applied to corrected values.

The justvsn function from the vsn package fits the vsn
model.

> library("vsn")

> bgvsn <- justvsn(CLLB)
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Exercise 3.10 (1/3)

Compare the results of the two background-correction
methods to the original values and between each other. Use a
subset of 500 randomly selected PM probes to speed up
calculations.

> sel <- sample(unlist(indexProbes(CLLB,

+ "pm")), 500)

> sel <- sel[order(exprs(CLLB)[sel, 1])]

> yo <- exprs(CLLB)[sel, 1]

> yr <- exprs(bgrma)[sel, 1]

> yv <- exprs(bgvsn)[sel, 1]
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Exercise 3.10 (2/3)

> par(mfrow = c(1, 3))

> plot(yo, yr, xlab = "Original", ylab = "RMA",

+ log = "x", type = "l", asp = 1)

> plot(yo, yv, xlab = "Original", ylab = "VSN",

+ log = "x", type = "l", asp = 1)

> plot(yr, yv, xlab = "RMA", ylab = "VSN",

+ type = "l", asp = 1)
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Exercise 3.10 (3/3)
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VSN Preprocessing

The vsnrma function from the vsn package summarizes the
probe sets after performing probe-wise background correction
and between-array normalization using VSN.

Its output is derived from the affy’s rma function.

> vsnrma

> CLLvsn <- vsnrma(CLLB)
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Non-Specific Filtering After VSN

We can repeat the non-specific filtering and testing for
differential expression that was performed after RMA.

> CLLvsnf <- nsFilter(CLLvsn, remove.dupEntrez = FALSE,

+ var.cutoff = 0.5)$eset

> CLLvsntt <- rowttests(CLLvsnf, "Disease")
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Exercise 3.11 (1/2)

Compare the results in CLLvsntt with those obtained for the
RMA derived CLLtt.

Produce a scatterplot between the t-statistics obtained for
both cases.

> inboth <- intersect(featureNames(CLLvsnf),

+ featureNames(CLLf))

> plot(CLLtt[inboth, "statistic"], CLLvsntt[inboth,

+ "statistic"], pch = ".", xlab = "RMA",

+ ylab = "VSN", asp = 1)
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Exercise 3.11 (2/2)
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Reporter Summarization

Bioconductor provides functionality for performing custom
probe set (reporter) summarization.

This is performed using data are obtained from the CDF file.

> pns <- probeNames(CLLB)

> indices <- split(seq(along = pns), pns)

> length(indices)

[1] 12625

> indices[["189_s_at"]]

[1] 15714 15715 15716 15717 15718 15719 15720
[8] 15721 15722 15723 15724 15725 15726 15727
[15] 15728 15729
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Exercise 3.12 (1/2)

Can you plot the PM and MM intensities for the probes of
one probe set across a set of arrays?

> colors <- brewer.pal(8, "Dark2")

> Index <- indices[["189_s_at"]][seq(along = colors)]

> matplot(t(pms[Index, 1:12]), pch = "P",

+ log = "y", type = "b", lty = 1, main = "189_s_at",

+ xlab = "samples", ylab = expression(log[2] ~

+ Intensity), ylim = c(50, 2000),

+ col = colors)

> matplot(t(mms[Index, 1:12]), pch = "M",

+ log = "y", type = "b", lty = 3, add = TRUE,

+ col = colors)
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Exercise 3.12 (2/2)
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Naive Summary Method

One naive (robust) summarization of the probe sets is to take
the median difference between the PM and MM values for
each sample.

> newsummary <- t(sapply(indices, function(j) rowMedians(t(pms[j,

+ ] - mms[j, ]))))

> dim(newsummary)

[1] 12625 22
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Exercise 3.13

What percent of probe sets, for each array, yield negative
values for each array? Will this concern biologist who are
unhappy with negative expression estimates?

> colMeans(newsummary < 0) * 100

[1] 20.19802 19.60396 19.39010 18.26535
[5] 21.03762 22.62970 21.65545 19.63564
[9] 21.73465 21.05347 18.85941 18.70891
[13] 20.62574 23.06535 19.56436 21.04554
[17] 18.63762 21.56040 21.43366 19.63564
[21] 19.69109 19.75446
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Looking Forward

Chapter 4 addresses these same issues for two-color arrays.

Chapter 5 contains more on variance stabilization and
calibration for microarray data.

Questions?
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