
I/0 and Quality Assessment using ShortRead

Martin Morgan
Fred Hutchinson Cancer Research Center

Seattle, WA 98008

22 January 2009

Contents

1 Introduction 1

2 Aligned read input 2
2.1 SolexaPath: navigating Solexa output 2
2.2 readAligned and the AlignedRead class 4
2.3 Subsets and filters . 8
2.4 Cautions . 10

3 Additional input functions 11

4 Quality assessment 13
4.1 Generating a QA report . 14
4.2 Exploring qa . 15
4.3 Frequent sequences . 16
4.4 Cycle-specific qualities and base calls 19

5 An advanced note 20

6 Summary 21

7 Session information 22

1 Introduction

This portion of the course uses the ShortRead package to input aligned and other
short read data files, and illustrates some of the available Solexa-based quality
assessment tools. Activities during the lab are posed as exercises. So, as a first
exercise:

Exercise 1
Start an R session, and load the ShortRead package.

1

> suppressMessages(library(ShortRead))

> packageDescription("ShortRead")$Version

[1] "1.1.36"

Confirm that the version of your package is at least as recent as the version in
this document. Seek assistance from one of the course assistants if you need
help getting the current version of ShortRead.

The course also requires access to sample data.

Exercise 2
Copy the data from the distribution media to your local hard drive. In R change
the working directory to point to the data location, along the lines of

> setwd("c:/Documents and Settings/mtmorgan/Desktop/CourseData")

and confirm that the files have been copied correctly.

2 Aligned read input

This section illustrates input of aligned reads. It focuses on aligned reads pro-
duced by the Solexa Genome Analyzer ELAND software; reading data produced
by software such as MAQ or Bowtie (Bowtie or by other short read technolo-
gies is supported in the development version of ShortRead) is described in the
ShortRead ‘Overview’ vignette and on the readAligned help page.

2.1 SolexaPath : navigating Solexa output

This section introduces a way to conveniently navigate the hierarchy of files
produced by ELAND; this simplifies subsequent activities, but the full ELAND
output is not required to use ShortRead.

Solexa software processes data in a pipeline. Raw images are extracted to
image intensity files by the Firecrest software compoent. Image intensity files
are summarized as base calls using the Bustard base caller. Subsequent analysis
is performed by a diversity of software components called Gerald; one example
of a Gerald program is ELAND, a whole-genome aligner.

The pipepline provides (or can be configured to provide – the people running
the machine have quite a bit of control over this) exquisite detail about each
stage of the process. For instance, Firecrest scans each lane of a flow cell as 300
tiles, arranged in three serpentine columns. The Firecrest output is summarized
in two different file types for each tile, so there are 2 × 300 × 8 = 4800 files
produced by Firecrest alone.

A portion of a file hierarchy is provided as course data.

Exercise 3
Consult the help page for SolexaPath, and create an instance of this object,
e.g.,

2

> sp <- SolexaPath("extdata/ELAND/080828_HWI-EAS88_0003")

This command scans the file system rooted at the specified path (the final
directory name given above is a typical top level name for a Solexa run, encoding
the date and machine used, for instance), identifying likely paths associated with
each stage of the pipeline.

Exercise 4
Display this object, and query it for the paths were Gerald analysis results are
stored.

> sp

class: SolexaPath

experimentPath: extdata/ELAND/080828_HWI-EAS88_0003

dataPath: Data

scanPath: NA

imageAnalysisPath: C1-72_Firecrest...

baseCallPath: Bustard1.9.2_06...

analysisPath: GERALD_06-09-20..., GERALD_08-09-20...

> analysisPath(sp)

[1] "extdata/ELAND/080828_HWI-EAS88_0003/Data/C1-72_Firecrest1.9.2_06-09-2008_solexa/Bustard1.9.2_06-09-2008_solexa/GERALD_06-09-2008_solexa"

[2] "extdata/ELAND/080828_HWI-EAS88_0003/Data/C1-72_Firecrest1.9.2_06-09-2008_solexa/Bustard1.9.2_06-09-2008_solexa/GERALD_08-09-2008_solexa"

There are two analysis paths, because the data were generated by two separate
runs of the ELAND software. The analysis paths are nested inside baseCall-

Path(sp) as a Solexa convention, to indicate that the Gerald analyses both use
the results of the same application of the base calling software.

Note how the display of sp is compact, and the names in the display hint at how
to navigate the object. Short read objects can be very large. Most objects in
ShortRead and related packages have been designed to display a summary, rather
than the ‘big’ data. Accessing components of objects, such as with analysis-
Path in the example above, often returns the data in all its glory – frequently,
you’ll want to adopt a strategy of assigning such big data to a variable, and
inspecting it with functions like str or head.

A key functionality provided by ShortRead is input of a diversity of file types,
both of files from the Solexa pipeline and from other software and in formats
appropriate for other technologies. The interface to these input functions is
meant to facilitate reading one or more files into a single object, e.g., to read all
files containing image intensity produced by Firecrest. The interface is like that
for list.files: provide a directory path where relevant files are to be found,
plus a regular expression to select files you are interested in.

Exercise 5
Use list.files to display all files in the first Gerald analysis directory of the
sp object.

3

> list.files(analysisPath(sp)[[1]])

[1] "s_1_1_export.txt" "s_1_1_export_head.txt"

[3] "s_1_1_sequence_head.txt" "s_1_2_export.txt"

[5] "s_2_1_export.txt"

A full Gerald data set would contain hundreds of files. We’ll select just one file
to use in subsequent analysis, based on files matching the regular expression
.*_export.txt. These files are produced using ELAND software run in eland-
extended mode. This mode produces files, one for each lane (and ‘end’ of paired
end reads) that summarize diverse features of all reads, and is a very convenient
starting point for analysis.

Exercise 6
We’ll use an abbreviated file for most parts of this lab. The abbreviated file
contains the first 500,000 reads from a single lane of a Solexa paired-end run.
It is from lane 1, will use the first end only. The name of the file is s_1_1_-

export_head.txt. We will use this as the ‘pattern’ to match, and check that
we’ve specified the pattern appropriately

> pattern <- "s_1_1_export_head.txt"

> list.files(analysisPath(sp), pattern)

[1] "s_1_1_export_head.txt"

Our success shouldn’t be too surprising in this case, but it often pays to check.
For instance, the pattern above also matches a file with the same name but with
.tar.gz appended!

2.2 readAligned and the AlignedRead class

The readAligned function can be used to input aligned reads. The first ar-
gument is a directory path where alignment files are to be found. The second
argument is the regular expression to select files to be read. The default for this
argument reads all files. An optional third argument allows the user to specify
which type of file is to be read in.

Exercise 7
Use readAligned to read in our abbreviated version of lane 1. readAligned

is smart enough to know where alignemnt files are located in the Solexa file
hierarchy.

> aln <- readAligned(sp, pattern)

The sp argument could have been replaced by a directory path, e.g., "." (if the
file were in the current working directory) or analysisPath(sp).

The third argument (unspecified in the above) allows input of diverse Solexa
alignment files, in addition to input of MAQ text and binary alignment files
and, in the development version of ShortRead, Bowtie. See the help page for
readAligned for additional details.

4

What does readAligned input? It inputs the short read sequences and base
call qualities, and the chromosome, position, and strand information associated
with short read alignments. This information is expected to be provided by all
short read alignemnt software.

Exercise 8
Display the object we’ve read in.

> aln

class: AlignedRead

length: 500000 reads; width: 35 cycles

chromosome: 255:255:255 255:255:255 ... QC QC

position: NA NA ... NA NA

strand: NA NA ... NA NA

alignQuality: NumericQuality

alignData varLabels: run lane ... y filtering

There are 500000 reads in the object, each read consisting of 35 nucleotides.
View the first several reads and query information about, e.g., the number of
reads that align to each strand, or the number of positions recorded as NA.

> head(sread(aln))

A DNAStringSet instance of length 6

width seq

[1] 35 AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

[2] 35 AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

[3] 35 AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

[4] 35 AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

[5] 35 AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

[6] 35 GCAAGTTAAGAAGAGAGCAGAGAAGAACGTTTTTA

> table(strand(aln), useNA = "ifany")

- + * <NA>

119313 119685 0 261002

> sum(is.na(position(aln)))

[1] 261002

Notice how elements of the aln object are extracted using accessors such as
sread and strand; these are described on the help page for the class of the aln

object (indicated in the display of aln, above, as class AlignedRead); note that
the help page refers to the help page for accessors to enumerate additional
ways of accessing the data.

5

What are all the NA values returned by strand and position? These corre-
spond to reads that did not align to the reference genome used by ELAND; that
about 1/2 the reads do not align is below normal, making this an interesting
opportunity for quality assessment. The strand function returns a factor with
three levels. The first two describe reads aligned to the plus and minus strands,
the third (*) is available for successful alignments where strand information is
irrelevant.

Aligned reads contain several different kinds of information about ‘quality’.
Individual bases are assessed for quality during base calling. These ‘raw’ base
qualities are ‘calibrated’ during ELAND alignment; details of calibration are
to be found in Illumina documentation. The alignments themselves also have
qualities associated with them, with the details of alignment quality differing
between alignment algorithms.

Exercise 9
Retrieve calibrated base quality from aln.

> head(quality(aln))

class: SFastqQuality

quality:

A BStringSet instance of length 6

width seq

[1] 35 ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZUUUUU

[2] 35 ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZUUUUU

[3] 35 ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZUUUUU

[4] 35 ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZUUUUU

[5] 35 ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZUUUUU

[6] 35 ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZUUUUU

These qualities are string-encoded −10 log10 probabilities. The encoding in this
case follows a convention established by Solexa. The details of the encoding
can be obtained by querying quality(aln) for its alphabet; the letter A cor-
responds to a −10log10 score of 1.

Numeric values are readily retrieved as a matrix, with rows corresponding to
reads and columns to cycles. These are easily manipulated, e.g., to determine
average calibrated quality scores as a function of cycle.

> alf <- alphabet(quality(aln))

> m <- as(quality(aln), "matrix")

> colMeans(m)

[1] 21.45995 19.91676 17.98661 19.67178 18.27315 18.61814

[7] 18.99522 18.81180 18.69941 18.47509 19.12563 17.39689

[13] 18.26270 18.85640 17.82326 17.43106 17.95288 17.01137

[19] 17.56018 17.73439 16.51199 16.99086 17.80355 16.38983

[25] 17.35305 17.15449 15.99980 16.38890 16.59765 16.18294

[31] 13.48905 13.03266 13.00785 12.75729 11.96461

6

Alignment quality

D
en

si
ty

0.00

0.01

0.02

0.03

0 20 40 60 80

Figure 1: Alignment quality

Alignment qualities are accessible with alignQuality. This returns an ob-
ject that can contain quality scores in different formats; to extract the actual
quality scores, use quality. Reads failing to align or to align in multiple lo-
cations (in this run of ELAND, detailed alignment information is provided only
for reads that align to unique locations in the genome).

Exercise 10
Retrieve the alignment quality scores, determine how many align poorly, and
visualize the distribution (figure 1) of scores.

> alignQuality(aln)

class: NumericQuality

quality: 0 0 ... 0 0 (500000 total)

> q <- quality(alignQuality(aln))

> sum(q == 0)

[1] 295387

> print(densityplot(q[q > 1], plot.points = FALSE,

+ xlab = "Alignment quality", log = "y"))

Alignment algorithms produce information in addition to basic data about
chromosome, position, and strand alignment. The exact content varies between
algorithms, and is available with alignData. alignData returns an Aligned-
DataFrame object that contains this data and a metadata description of it. For
instance, ELAND includes information about whether the read passed a base-
calling filter (based on strength and consistency of early bases in the read), in
addition to the lane, tile, x and y coordinate of each read.

7

Exercise 11
Use the alignData function to extract the additional information in the ELAND
alignment file. The underlying data in this object can be accessed as though it
were a data frame, for instance to tally the number of reads passing Solexa base
calling filter.

> alignData(aln)

An object of class "AlignedDataFrame"

readName: 1, 2, ..., 500000 (500000 total)

varLabels and varMetadata description:

run: Analysis pipeline run

lane: Flow cell lane

...: ...

filtering: Read successfully passed filtering?

(6 total)

> table(alignData(aln)$filtering)

Y N

287222 212778

2.3 Subsets and filters

A very common operation is to reduce the number of reads used for subsequent
analysis. This can be done in a coordinated fashion by creating a subset of aln.

Exercise 12
Select just the aligned reads passing Solexa filtering, and aligning to the reference
genome.

> filtIdx <- alignData(aln)$filtering == "Y"

> alignedIdx <- !is.na(strand(aln))

> aln[filtIdx & alignedIdx]

class: AlignedRead

length: 197432 reads; width: 35 cycles

chromosome: chr11.fa chr9.fa ... chr8.fa chr4.fa

position: 104853312 3036336 ... 44295163 47191474

strand: - - ... - -

alignQuality: NumericQuality

alignData varLabels: run lane ... y filtering

A different approach to subsetting is to use objects of class SRFilter . These
can be particularly useful as an argument to readAligned, in addition to use
in interactive sessions.

8

Exercise 13
Construct instances of built-in filters to select reads passing the Solexa filtering
criterion, and uniquely aligning to a fully assembled chromosomes. These can
be ‘composed’ into a single overall filter, and applied to restrict available reads.

> filt1 <- alignDataFilter(expression(filtering ==

+ "Y"))

> filt2 <- chromosomeFilter("chr[0-9XYM]+.fa")

> filt <- compose(filt1, filt2)

> caln <- aln[filt(aln)]

> caln

class: AlignedRead

length: 195719 reads; width: 35 cycles

chromosome: chr11.fa chr9.fa ... chr8.fa chr4.fa

position: 104853312 3036336 ... 44295163 47191474

strand: - - ... - -

alignQuality: NumericQuality

alignData varLabels: run lane ... y filtering

The filters developed above could be used to filter reads while being read in to
R, e.g,. with

> readAligned(sp, pattern, filter = filt)

The srFilter function can be used to create custom filters. The idea is that
filter functions accept a single argument x that is an object to be filtered, and
returns a logical vector that can be used to select elements of the object.

Exercise 14
As a first example, write and use a filter to select only a single read from all
that align to a particular chromosome, position, and strand.

> ualignFilter <- srFilter(function(x) {

+ ## create a numerical index of reads. Divide the index, position,

+ ## and strand information between chromosomes. Select the index of

+ ## a single read at each unique position and strand. Return the

+ ## selected index as a logical vector with the same length as x

+ oindex <- seq_len(length(x))

+ index <- tapply(oindex, chromosome(x), c)

+ pdup <- tapply(position(x), chromosome(x), duplicated)

+ sdup <- tapply(strand(x), chromosome(x), duplicated)

+ keep <- oindex %in% unlist(mapply(function(i, p, s) {

+ i[!(p & s)]

+ }, index, pdup, sdup))

+ }, name="select only one read per position & strand ")

> caln[ualignFilter(caln)]

9

class: AlignedRead

length: 188219 reads; width: 35 cycles

chromosome: chr11.fa chr9.fa ... chr8.fa chr4.fa

position: 104853312 3036336 ... 44295163 47191474

strand: - - ... - -

alignQuality: NumericQuality

alignData varLabels: run lane ... y filtering

The filter functions built-in to ShortRead use a ‘factory’ pattern to create in-
stances of each filter that ‘remember’ how the filters were created. For instance,
chromosomeFilter("chr2.fa") creates an instance of the chromosome filter to
select only chromosomes matching chr2.fa.

Exercise 15
As an advanced example, the following filter subsamples a (user-specified) num-
ber of reads. The samplingFilter function uses the factory pattern, so filters
created with it remember how many reads to sample.

> samplingFilter <- function(sampleSize) {

+ srFilter(function(x) {

+ idx <- seq_len(length(x))

+ idx %in% sample(idx, sampleSize)

+ }, name = "Martin's demo sampling filter")

+ }

> sample100 <- samplingFilter(100)

> caln[sample100(caln)]

class: AlignedRead

length: 100 reads; width: 35 cycles

chromosome: chr4.fa chr17.fa ... chr13.fa chr2.fa

position: 152844856 35197700 ... 86362072 163646486

strand: + - ... - +

alignQuality: NumericQuality

alignData varLabels: run lane ... y filtering

2.4 Cautions

There are several confusing areas associated with reading data aligned with
various software packages. (1) Some alignment programs and genome resources
start numbering nucleotides of the subject sequence at 0, whereas others start
at 1. (2) Some alignment programs report matches on the minus strand in
terms of the ‘left-most’ position of the read (i.e., the location of the 3’ end of
the aligned read), whereas other report ‘five-prime”matches (i.e., in terms of
the 5’ end of the read), regardless of whether the alignment is on the plus or
minus strand. (3) Some alignment programs reverse complement the sequence
of reads aligned to the minus strand. (4) Base qualities are sometimes encoded

10

as character strings, but the encoding differs between ‘fastq’ and ‘solexa fastq’.
It seems that all combinations of these choices are common ‘in the wild’.

The help page for readAligned attempts to be explicit about how reads are
formatted. Briefly:

� Subject sequence nucleotides are numbered starting at 1, rather than zero.
readAligned adjusts the coordinate system of input reads if necessary
(e.g., reading MAQ alignments).

� ELAND and Bowtie alignments on the minus strand are reported in ‘left-
most’ coordinates systems.

� ELAND and Bowtie alignments on the minus strand are not reverse com-
plemented.

� Character-encoded base quality scores are interpreted as the default for
the software package being parsed, e.g., as ‘Solexa fastq’ for ELAND. The
object returned by quality applied to an AlignedRead object is either
FastqQuality or SFastqQuality .

Alignment programs sometimes offer the opportunity to customize output; such
customization needs to be accommodated when reads are input using ShortRead.

3 Additional input functions

ShortRead, Biostrings, and the standard input functions from R provide addi-
tional tools for reading Solexa and other alignment formats. The readXString-
Columns function provides a convenient way to read DNA and quality sequences
in to compact data structures. readFasta and its counterpart readFastq pro-
vide tools for reading fastq- or fastq- (i.e., including quality annotation) format-
ted files.

Exercise 16
Files _sequence.txt contain fastq-formatted sequence and quality scores. A
sample of this file type is available. Read these in to data structured defined
in ShortRead. The content of reads can be retrieved with functions id, sread,
and quality.

> ap <- analysisPath(sp)[[1]]

> reads <- readFastq(ap, "s_1_1_sequence_head.txt$")

> head(id(reads))

A BStringSet instance of length 6

width seq

[1] 24 HWI-EAS88_3:1:1:33:484/1

[2] 24 HWI-EAS88_3:1:1:33:272/1

[3] 24 HWI-EAS88_3:1:1:31:594/1

[4] 24 HWI-EAS88_3:1:1:33:383/1

11

[5] 24 HWI-EAS88_3:1:1:35:216/1

[6] 25 HWI-EAS88_3:1:1:883:458/1

The readPrb functions reads ‘raw’ base call quality scores from _prb files in
the baseCallPath directory; the result is a BStringSet object that compactly
represents the quality scores in a way analogous to the results of quality applied
to aln.

Exercise 17
The _export.txt files read by readAligned are tab-delimited text files. The
goal of this exercise is to read the DNA sequence and quality score columns in
to R as DNAStringSet and BStringSet objects DNAStringSet and BStringSet
contain classes the represent DNA or ‘biological’ strings; the content extends
from the base class XString.

Start by parsing the first line of a _prb file to get a sense of its content.
Specify the colClasses to be imported, using NULL to indicate that a column
should be skipped, and DNAString or BString to indicate columns that are to
be read as corresponding sets. Then read the file with readXStringColumns.

> fl <- list.files(ap, pattern, full = TRUE)

> cols <- strsplit(readLines(fl, 1), "\t")[[1]]

> length(cols)

[1] 22

> cols[9:10]

[1] "AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA"

[2] "ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZUUUUU"

> colClasses <- rep(list(NULL), 22)

> colClasses[9:10] <- c("DNAString", "BString")

> strings <- readXStringColumns(ap, pattern, colClasses = colClasses)

> head(strings[[2]])

A BStringSet instance of length 6

width seq

[1] 35 ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZUUUUU

[2] 35 ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZUUUUU

[3] 35 ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZUUUUU

[4] 35 ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZUUUUU

[5] 35 ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZUUUUU

[6] 35 ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZUUUUU

For each column in colClasses, readXStringColumns parses the correspond-
ing column in all files matching the function argument pattern into a single
XStringSet, i.e., concatenating the content of all files into a single object.

12

Many of the files produced by Solexa are simple text files. These can be read in
using standard R input commands.

Exercise 18
The _int files in the imagaAnalysisPath are tab- and space-delimited records
of intensities measured along cycles of reads. Each line corresponds to a single
cluster (i.e., putative read). The first four numbers indicate the lane, tile, x,
and y. Subsequent numbers come in groups of 4, corresponding the intensities
of the A, C, G, and T nucleotides over successive cycles. Here are coordinates
of the first read, followed by the first 3 sets of intensities.

> fl <- list.files(imageAnalysisPath(sp), ".*_int.*",

+ full = TRUE)

> strsplit(readLines(gzfile(fl, open = "rb"), 1),

+ "\t")[[1]][1:7]

[1] "1"

[2] "1"

[3] "33"

[4] "484"

[5] "5571.5 40.1 153.0 12.9"

[6] "5017.6 22.9 141.5 7.5"

[7] "4565.6 56.2 159.9 16.2"

The files are compressed, so we wrap the file in a gzfile function call to unzip
the file prior to parsing. We now read the files into an object, and then convert
the intensities into a standard array:

> int <- readIntensities(sp)

> arr <- as(intensity(int), "array")

Perhaps surprisingly, the intensities for the four nucleotides are not indepen-
dent of one another (figure 2). At later cycles, the amplitude of the intensities
shrink toward zero and become less orthogonal. This presumably contributes
to decreased quality of base calls.

> print(splom(arr[, , 5], pch = ".", log = "xy"))

4 Quality assessment

This part of the course addresses ShortRead facilities for assessing quality, pri-
marily of Solexa data. The ShortRead functionality is mean to complement
rather than replace QA tools provided by the ELAND pipeline.

13

Scatter Plot Matrix

A2000

3000

4000 200030004000

−1000

0

1000

−10000 1000

C2000

3000

4000 200030004000

0

1000

2000

0 10002000

G
3000

4000

5000
300040005000

0

1000

2000

0 10002000

T
4000

6000

8000
400060008000

0

2000

4000

0 20004000

Figure 2: Intensities from cycle 5

4.1 Generating a QA report

.
Creating a QA report is a two-step process. The first step is to visit necessary

files to collate information in a compact representation. The second step is to
present the information in a useful format.

The qa function collates information for the QA report. It visits each _ex-
port.txt file, and extracts information on reads and their qualities. Evaluation
of the function is straight-forward, e.g., qa <- qa(sp), to visit all files in the sp
SolexaPath. The process of collating files can be time consuming (each export
file must be parsed, taking 3-4 minutes per file) and memory intensive (lanes
are processed independently of one another, but a full lane consumes 2-3 GB of
memory). The return value of the qa function is actually quite compact, and
easy to work with.

Exercise 19
Rather than collating information during the lab, we load the data from a
previously stored instance.

> load(file.path("data", "qa_080828_081110.rda"))

> qa

class: SolexaExportQA(9)

QA elements (access with qa[["elt"]]):

readCounts: data.frame(8 3)

baseCalls: data.frame(8 5)

readQualityScore: data.frame(12288 4)

baseQuality: data.frame(752 3)

alignQuality: data.frame(629 3)

14

frequentSequences: data.frame(1200 4)

sequenceDistribution: data.frame(4540 4)

perCycle: list(2)

baseCall: data.frame(1400 4)

quality: data.frame(6664 5)

perTile: list(2)

readCounts: data.frame(7200 4)

medianReadQualityScore: data.frame(7200 4)

One feature of ShortRead that can speed this stage of the operation is the use of
clustered computer resources and the Rmpi package; qa uses the srapply func-
tion to automatically detect and distribute collation tasks across pre-established
nodes. This is outlined in more detail in a subsequent section.

The QA information collated from the _export.txt files is summarized into
a PDF report using the Rfunctionreport function. This function currently re-
quires a LATEX installation, although the intention is that the report will even-
tually be generated in different formats. The command to create the report is
rpt <- report(qa, dest=tempfile()). This creates a PDF file at the loca-
tion specified by the argument dest.

Exercise 20
Rather than create a report, we provide a sample, derived from the qa object
loaded in the previous exercise. The sample is at docs/qa 080828 081110.pdf.

The QA report provides summary statistics about the numbers of reads and
alignments, base calls and qualities, characteristics of per-lane and per-tile read
quality, and other information. The QA report is self-documenting, providing a
narrative description of each section.

4.2 Exploring qa

The qa object is a list-like structure with several entities.

Exercise 21
The readCounts element of qa is a simple data frame summarizing, on a per-
lane bases, the total number of reads, the number reads passing Solexa internal
filtering, and the number of aligned reads.

> qa[["readCounts"]]

read filtered aligned

s_1_1_export.txt 3668433 2278945 1910666

s_2_1_export.txt 4230424 3239956 2771169

s_3_1_export.txt 4003465 3089375 1720396

s_4_1_export.txt 4521919 3446177 2571235

s_6_1_export.txt 4004807 3127297 1985855

s_7_1_export.txt 3546869 2732974 1368590

15

s_8_1_export.txt 4232977 3291627 2379709

s_5_1_export.txt 2842633 2399387 2320140

Lanes 1-4 and 6-8 correspond to biologically interesting samples; lane 5 is the
Solexa ϕX-174 control lane. The number of reads (between 2.8 and 4.5 mil-
lion) is low for a typical experiment (official guidelines are provided in Solexa
documentation).

It can be difficult to scan large numbers, so the QA report template defines
functions that help to display the information in a more comprehensible fashion.
Source these files into your current R session, and view the second and third
columns a proportion of the first.

> source(file.path("scripts", "qa_solexa.R"))

> ppnCount(qa[["readCounts"]])

read filtered aligned

s_1_1_export.txt 3668433 0.6212312 0.5208398

s_2_1_export.txt 4230424 0.7658703 0.6550570

s_3_1_export.txt 4003465 0.7716753 0.4297267

s_4_1_export.txt 4521919 0.7621050 0.5686159

s_6_1_export.txt 4004807 0.7808858 0.4958678

s_7_1_export.txt 3546869 0.7705314 0.3858586

s_8_1_export.txt 4232977 0.7776151 0.5621833

s_5_1_export.txt 2842633 0.8440720 0.8161940

Refer to the QA report for further commentary on this and other aspects of the
report

4.3 Frequent sequences

A feature of raw reads, and of many subsequent stages of short read analysis, is a
power law-like relationship between the number of times a read occurs, and the
number of occurrences of a particular sequence in the sample. This information
is contained in the sequenceDistribution element of qa, and is the result of
running the tables command (defined in ShortRead) on a DNAStringSet object.

Exercise 22
Retrieve the sequenceDistribution element from qa; it is a simple data frame.
Look at the contents of the data frame using head, and select just lane 5 raw
reads. plot the power-law relationship between the number of reads and number
of times reads occur. As an alternative display of the same information, plot the
cumulative number of reads as a function of the number of times a read occurs.

> df <- qa[["sequenceDistribution"]]

> df5raw <- df[df$lane == "s_5_1_export.txt" & df$type ==

+ "read",]

> head(df5raw)

16

Copies per read (log 10)

U
ni

qu
e

re
ad

s
(lo

g
10

)

0

1

2

3

4

5

0 1 2 3 4 5

●

●

●

●

●

●
●

●
●
●
●
●●

●●
●●●●

●
●●
●●●
●●●●

●

●

●●
●
●
●●

●●

●
●
●
●
●
●

●●●
●●

●
●
●
●
●

●
●
●●

●

●
●●
●
●
●

●
●

●

●
●
●
●
●
●●

●●

●
●

●
●
●
●

●

●

●
●●
●●

●
●
●●

●

●
●●
●
●
●●●
●●●
●

●
●

●●●●●
●●●●
●●
●
●●

●

●

●●●

●
●●●

●●
●●
●●●
●●●

●
●●●
●
●●
●●●●●●●●●
●●●●
●
●
●
●●●●●●●
●●●●
●●
●●
●●●●
●●
●
●●●
●●●●
●
●

●●
●●●
●●
●●●●●●●
●

●

●●
●●
●
●
●

●

●
●
●●●●●
●
●●
●
●●●●●
●●
●
●
●
●●

●

●●●●●
●
●●●
●●●
●●
●
●●●
●
●
●
●
●

●
●
●●●
●
●
●●
●●

●

●●
●

●
●

●

●

●

●
●
●
●●
●●
●
●

●

●

●

●

●

●
●
●

●

●

●

●●

●

●

●

●
●●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●●
●

●

●
●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●●

●

●

●●

●

●

●●

●

●●●

●●

●

●

●

●●

●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ● ●●● ●●●● ●● ●

Copies per read (log 10)

C
um

ul
at

iv
e

pr
op

or
tio

n
of

 r
ea

ds

0.2

0.4

0.6

0.8

1.0

0 1 2 3 4 5

Figure 3: Number of copies of unique reads

nOccurrences nReads type lane

3337 1 450124 read s_5_1_export.txt

3338 2 26810 read s_5_1_export.txt

3339 3 8366 read s_5_1_export.txt

3340 4 3806 read s_5_1_export.txt

3341 5 2166 read s_5_1_export.txt

3342 6 1417 read s_5_1_export.txt

> print(xyplot(log10(nReads) ~ log10(nOccurrences),

+ df5raw, xlab = "Copies per read (log 10)",

+ ylab = "Unique reads (log 10)"))

> csum <- with(df5raw, cumsum(nReads * nOccurrences))

> csum <- csum/csum[length(csum)]

> print(xyplot(csum ~ log10(nOccurrences), df5raw,

+ xlab = "Copies per read (log 10)", ylab = "Cumulative proportion of reads",

+ type = "l"))

Results appear in figure 3. The cumulative form of this figure appears in the
QA report.

The power-law relationship between copies per read and number of unique
reads in the control lane consists of three components. At the left of the graph
are > 105 reads that are each represented by only one copy. These likely corre-
spond to sequencing, base calling, or other errors associated with the technology.
At the right of the figure are a small number of reads represented many times.
These ‘frequent’ sequences are summarized in the frequentSequences element
of qa; frequent sequences are also reported by the tables function of ShortRead.

17

Exercise 23
Discover the frequent sequences amongst the raw and aligned reads of lane 5.

> df <- qa[["frequentSequences"]]

> head(df[df$lane == "s_5_1_export.txt" & df$type ==

+ "read", 1:2])

sequence count

1051 AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 70947

1052 ANNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN 13320

1053 TNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN 11892

1054 CNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN 8978

1055 GNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN 7670

1056 GATCTTTGGCGGCACGGAGCCGCGCATCACCTGTA 7561

Frequent sequences include poly-A reads, reads where only a few bases were
called, and reads with close similarity to the Solexa primer or adapter sequence
used in sample preparation.

Exercise 24
Many of the primer sequences are filtered out by Solexa criteria, but it is worth
discovering how many reads are ‘similar’ to this sequence. Use the srdistance

function to identify such reads, e.g., amongst those reads that contain no N

nucleotides.

> seq <- "CGGTTCAGCAGGAATGCCGAGATCGGAAGAGCGGT"

> dist <- srdistance(clean(aln), seq)[[1]]

> head(table(dist))

dist

0 1 2 3 4 5

218 107 59 31 25 17

srdistance returns the edit distance between each read and the reference se-
quence, where the edit distance is defines so that each base mismatch represents
an additional increment of 1. There are 78 reads that differ at 2 or fewer loca-
tions, from amongst the 370049 reads in the cleaned sample used in this exercise.

Reads represented many times may be problematic for downstream analysis. For
instance, sample preparation protocols may involve a PCR step that results in
differential amplification, whereas the analysis assumes reads are represented in
proportion to their occurrence. The ualignFilter function defined above, and
the srduplicated function in ShortRead represent two approaches to dealing
with this problem by ensuring that reads are represented exactly once (by some
definition of ‘once’ !).

Sequences in the middle portion of the graph in figure 3 will often, depending
on the nature of the investigation, represent the sequences of main biological
interest. These are sequences represented an intermediate number of times, as

18

might be required for reasonable coverage in a SNP discovery or ChIP-seq ex-
periment. The right-hand graph in figure 3 shows a relatively abrupt transition
between reads represented rarely and those represented many times.

The sample QA report shows that the non-control lanes show much broader
transitions from rarely to frequently represented reads. This could represent
technical shortcomings of this run (e.g., inadequate enrichment of sample DNA)
or features of intrinsic biological interest (e.g., wide variability in ChIP abun-
dance between binding sites). Regardless of ultimate source, the broad distribu-
tion of read occurrences implies significant effort may be required to distinguish
‘noise’ (reads corresponding to those in the left and right portions of the control
lane graph) from signal.

Finally, while the control lane shows a relatively abrupt transition between
reads that occur rarely and those that are common (figure 3), the distribution
is in fact 3- or 4-fold broader than expected under a naive model of random
read starts along the ϕX-174 genome. This is reinforced by alignments to the
reference genome, where clear patterns (e.g., unequal representation on plus and
minus strands; non-uniform coverage) are apparent.

Exercise 25
As an advanced exercise, simulate reads selected uniformly along both strands
of the 5200bp long ϕX-174 genome. Compare the times each read is represented
in your sample with those from the actual control lane. Hint: use sample with
replace=TRUE to generate the reads, and table(table(reads)) to summarize
their occurrence; this should take less than 5 lines of R code.

4.4 Cycle-specific qualities and base calls

As a final foray into the details of quality assessment, consider base calls and
quality, and how these change across cycles (see the second table and section 4
of the QA report).

The table in the QA report suggests that the control lane (lane 5) is enriched
for A and T; this is confirmed by the figure in section 4. This likely reflects
underlying differences in the genomic regions represented in each lane.

Exercise 26
Use alphabetFrequency to summarize nucleotide use in the short reads in aln,
from the first part of this lab.

> alphabetFrequency(sread(aln), collapse = TRUE,

+ baseOnly = TRUE, freq = TRUE)

A C G T other

0.25588029 0.22092086 0.20225720 0.22800937 0.09293229

The frequency of ‘other’ (i.e., uncalled) nucleotides (> 9%) is very high; typical
runs are < 3%; recent runs with GAII technologies after 36 cycles are < 1%.

19

An unexpected aspect of the figure in section 4 of the QA report is apparent
trends in nucleotide frequency with cycle. For instance, all lanes show a marked
decrease in A and increase in C across cycles. This is unexpected in this ex-
periment, where the a priori expectation is that sequences start at essentially
arbitrary locations in the sequenced DNA: an A is expected as frequently at the
beginning of the sequence as at the end.

Exercise 27
Use alphabetByCycle to extract the number of each nucleotide sequenced at
each cycle. Convert the matrix into a data frame containing only the called
nucleotides, and plot these counts as a function of cycle.

> abc <- alphabetByCycle(sread(aln))

> dim(abc)

[1] 17 35

> abc[1:4, 1:5]

cycle

alphabet [,1] [,2] [,3] [,4] [,5]

A 145955 147044 128640 140609 135751

C 117538 106357 98356 109948 101961

G 118619 109879 100303 112267 102233

T 115666 118470 106223 112917 107716

> abc <- abc[rowSums(abc) != 0,]

> df <- as.data.frame(t(abc[1:4,]))

> print(xyplot(A + C + G + T ~ 1:nrow(df), df, type = "l",

+ auto.key = list(x = 0.75, y = 0.95, points = FALSE,

+ lines = TRUE), xlab = "Cycle", ylab = "Count"))

There are a number of possible contributors to cycle-dependent nucleotide fre-
quencies, including inadequate reagent volume, and nucleotide-specific differen-
tial accumulation of fluorescent dyes. Figure 4 and the figure in section 4 of
the PDF contain additional features that are moderately unexpected, and un-
explained. For instance, the frequency of a nucleotide such as A changes very
systematically across cycles, first increasing and then decreasing; this seems
more regular than expected. Patterns of nucleotide change also seem to echo
one another at similar cycles but in different lanes, even when the lanes have
different biological material. This occurs for instance in lanes 1-4 of the QA
report, where the last 5 cycles of the C nucleotide seem to change in (compara-
tive!) unison.

5 An advanced note

Several functions are designed to use the Rmpi package for distributed compu-
tation, if installed. For instance

20

Cycle

C
ou

nt

100000

110000

120000

130000

140000

0 10 20 30

A
C
G
T

Figure 4: Nucleotide frequency per cycle, lane 1

> library(Rmpi)

> mpi.spawn.Rslaves(nsl = 8)

> qa <- qa(sp)

> mpi.close.Rslaves()

distributes the calculation of quality assurance summaries across 8 processors.
The srapply function can be used to distribute your own calculations.

6 Summary

This portion of the course provides an overview of the input and quality as-
sessment functionality available in the ShortRead package. A summary of the
insights learned might be reflected in simple, and somewhat naive, work flows.

The first work flow simply performs quality assessment on ELAND aligned
data.

> sp <- SolexaPath("extdata/ELAND/080828_HWI-EAS88_0003")

> rpt <- report(qa(sp), dest = "reports/my_report.pdf")

Performing QA on ELAND data does not commit us to using ELAND alignments
in subsequent steps.

The second work flow reads aligned data in to R. The work flow might start
with aligned reads created by one of many aligners; we start with ELAND _-
export.txt files. There are many possible issues highlighted in the forgoing
discussion. We choose to establish a series of filters to eliminate some reads at
the very start of our work flow. We eliminate reads with ambiguous base calls
and failing Solexa’s internal filtering criteria. Reads aligning to multiple loca-
tions in the genome are not straight-forward to deal with, and are not essential

21

for ChIP-seq style experiments (this is not the case for expression or RNA-seq
experiments), so we remove these. Most close matches to the Solexa primer se-
quence are flagged as not passing Solexa base call filters, but we eliminate reads
near to this as well. Finally, we restrict our attention to those reads that align
to assembled chromosomes, putting aside for the moment those reads aligning
to organelle genomes (the X and Y chromosomes also require special consider-
ation, and we might often eliminate these from our initial work flow, too). Our
second work flow is thus:

> filt1 <- nFilter()

> filt2 <- alignDataFilter(expression(filtering=="Y"))

> filt3 <- alignQualityFilter(threshold=1)

> filt4 <- srdistanceFilter("CGGTTCAGCAGGAATGCCGAGATCGGAAGAGCGGT", 4)

> filt5 <- chromosomeFilter("chr[0-9XY]+.fa")

> filt <- compose(filt1, filt2, filt3, filt4, filt5)

> aln <- readAligned(sp, "s_1_1_export.txt$", filter=filt)

This work flow applies equally to MAQ aligned data, with the exception that
Solexa filtering criteria are not available and the chromosome naming convention
in the MAQ-aligned reads in our sample are different:

> maqDir <- file.path("extdata", "MAQ")

> filt5 <- chromosomeFilter("chr[0-9XY]+$")

> filt <- compose(filt1, filt3, filt4, filt5)

> maq <- readAligned(maqDir, "s_8.map", "MAQMap",

+ filter = filt)

Each of the filters represents a decision. The decision may be inappropriate for
particular analyses, and may be revisited as understanding of the data matures;
indeed, analyses in other portions of this course are based on different subsets
of the data!

7 Session information

> sessionInfo()

R version 2.9.0 Under development (unstable) (2009-01-12 r47568)
i686-pc-linux-gnu

locale:
LC_CTYPE=C;LC_NUMERIC=C;LC_TIME=C;LC_COLLATE=C;LC_MONETARY=C;LC_MESSAGES=en_US.UTF-8;LC_PAPER=en_US.UTF-8;LC_NAME=C;LC_ADDRESS=C;LC_TELEPHONE=C;LC_MEASUREMENT=en_US.UTF-8;LC_IDENTIFICATION=C

attached base packages:
[1] stats graphics grDevices utils datasets
[6] methods base

other attached packages:

22

[1] ShortRead_1.1.36 lattice_0.17-20 BSgenome_1.11.9
[4] Biobase_2.3.9 Biostrings_2.11.25 IRanges_1.1.34

loaded via a namespace (and not attached):
[1] Matrix_0.999375-18 grid_2.9.0

23

	Introduction
	Aligned read input
	SolexaPath: navigating Solexa output
	readAligned and the AlignedRead class
	Subsets and filters
	Cautions

	Additional input functions
	Quality assessment
	Generating a QA report
	Exploring qa
	Frequent sequences
	Cycle-specific qualities and base calls

	An advanced note
	Summary
	Session information

