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Alignment



Short-read algorithms: Seed matches

Maq claims to find all alignments with up to 2 
mismatches and may find alignments with more than 
two mismtaches. 

How does it work?



Aligning hashed reads

Naive algorithm:
• Make a hash table of the first 28mers of each read, 

so that for each 28mer, we can look up quickle 
which reads start with it.

• Then, go through the genome, base for base. For 
each 28mer, look up in the hash table whether 
reads start with it, and if so, add a note of the 
current genome position to these reads.

Problem: What if there are read errors in the first 28 
base pairs?



Spaced seeds

Maq prepares six hash table, each indexing 28 of the 
first 36 bases of the reads, selected as follows:

0 3614

Hence, Maq finds all alignments with at most 2 
mismatches in the first 36 bases.



Coverage vectors



Coverage 

• In resequencing, we hope to sequence uniformly, 
i.e., see each part of the genome represented by the 
same amount of reads.

• Due to the random nature of shotgun sequencing, 
we need to “cover the genome several times” in 
order to see each position at least once. 

• In other techniques (ChIP-Seq, RNA-Seq, Tag-Seq, 
CNV-Seq, etc.), the local coverage is what we are 
interested in.



Coverage vectors

<-- coverage vector

Figure taken from Zhang et al., PLoS Comp. Biol. 2008

<-- Solexa reads, 
  aligned to genome



Coverage vectors

• A coverage (or: “pile-up”) vector is an integer 
vector with on element per base pair in a 
chromosome, tallying the number of reads (or 
fragments) mapping onto each base pair.

• It is the essential intermediate data type in assays 
like ChIP-Seq or RNA-Seq

• One may ever count the coverage by the reads 
themselves, or extend to the length of the 
fragments



Calculating coverage vectors

Extending reads to fragments:



Chip-Seq coverage: examples

Figure courtesy of Christiana Spyrou (CR UK)



Genome browsers

• Genoviz Integrated Genome Browser (IGB)
• ...



File formats

• Sequences, reads:
• FASTA
• FASTQ

• Alignments:
• SAM
• …

• Features, annotations, scores:
• GFF, GTF
• BED
• Wiggle



The issue with multiple reads

If one finds several reads with the exact same 
sequence, does this mean
• that many fragments from this locus were 

precipitated and often got  got cut at the exact same 
place, or

• that there was only a single fragment, but it was 
amplified more efficiently than fragments from 
other loci in the PCR (or more efficiently 
transcribed to cDNA)?
• If you consider the latter more likely, you should count these 

reads only once. However, this dramatically compresses your 
dynamic range.



Ambiguous matches and mappability

• If a read matches at several places in the reference, 
the best match should be used.

• If there are several equally good matches, an aligner 
may
• chose an alignment at random
• discard the read
• report all alignments and delay the choice to downstream 

analysis

• It is useful to know which regions in the genome 
are repetitive on the scale of the read length and 
hence give rise to alignment ambiguities.



Biases in RNA-Seq



Coverage in RNA-Seq

• When sequencing genomic DNA, the coverage 
seems reasonably even.

• In RNA-Seq, this quite different



RNA-Seq: Base calls by position in read
     (Illumina's standard RNA-Seq protocol)



Solexa standard protocol for RNA-Seq



Strand-specific RNA-Seq with random 
hexamer priming



Strand-specific RNA-Seq with random 
hexamer priming



Are the random hexamers at fault?

Not all protocols use random hexamers, 
though.



Strand-specific RNA-Seq with adapter ligation



Strand-specific RNA-Seq with random 
hexamer priming



Problem solved?

Not so fast ...



Coverage of a single-exon gene  (PGK1 in yeast)

Data from Stefan Wilkening, EMBL



Coverage in RNA-Seq

• Coverage in RNA-Seq is highly non-uniform
• Within a single exon, there are regions with high 

coverage and regions with zero coverage.
• These patterns are reproducible.
• They change when the library preparation protocol 

is changed.
• The binding preferences of random hexamer 

primers explain them only partially.

• So far, we simply hope that this averages out over 
the whole transcript.



RNA-Seq: Other biases

• Depending on transcript and fragment length, and 
on the protocol, coverage also depends on distance 
to the ends.

[show slides]



Back to RNA-Seq alignment



Spliced alignment

• When aligning RNA-Seq data to the genome, a read 
might straddle an intron.

• Most aligner will not be able to align this properly.

• Hence, special tools for RNA-Seq have been 
developed. 



RNA-Seq alignments: Basic strategy
(as used e.g.  by TopHat/Cufflinks)

• Try to align all reads to the genomes.
• Split those reads that could not be aligned into 

pieced (of ~25 bp); try to align each piece 
separately.

• For pieced that are still unaligned, look for gapped 
alignments next to their neighbours.

• Use coverage gaps and intron-straddling reads to 
infer a parsimonous set of gene models (Dilworth's 
theorem).

• Infer isoform abundance ratios by likelihood 
maximization.



The TopHat tool chain

    FASTQ file
→ TopHat (which internally calls Bowtie)

 → SAM file with mapped reads,
    GFF file with inferred splice junctions,
    Wiggle file with coverage vector
→ Cufflinks

 → GFF file with gene models and 
        isoform abundances and uncertainties



Other tools for splica-aware RNA-Seq 
alignment

• ERange
• TopHat

• SpliceMap
• GSNAP

• SPA
• QPALMA / PALMapper
• MapNext



RPKM, FPKM, raw counts

• Mortazavi et al. Suggested to do state mRNA 
abundances as RPKM:
Reads per kilobase of transcript length per one 
million mapped reads

• The Cufflinks author criticize that the transcript 
length depends on isoform inference. To 
emphasize, they call their measure FPKM: 
Fragments per …

• Raw counts side-step the issues.



Raw counts

• Raw counts: Simply count how many readfs were 
mapped onto any of the exons of a given gene.

• This side-steps the transcript-length issue.
• However, expression of different genes is no longer 

comparable.
• As advantage, raw counts allow to quantify shot 

noise.



Ambiguities with raw counts



Ambiguities in counting



RNA-Seq count table

•
Gene       GliNS1  G144    G166    G179    CB541   CB660
13CDNA73   4       0       6       1       0       5
A2BP1      19      18      20      7       1       8
A2M        2724    2209    13      49      193     548
A4GALT     0       0       48      0       0       0
AAAS       57      29      224     49      202     92
AACS       1904    1294    5073    5365    3737    3511
AADACL1    3       13      239     683     158     40
[...]



*
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