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1 Introduction

Microarray expression data from 128 individuals with acute lymphoblastic leukemia
has been provided as a comma separated file exprsMat.csv. Several covariates
such as age, sex, type, stage of the disease etc. have been provided as another
comma separated file pData.csv. Our goal in this exercise is to

• Read in the expression data and the covariates into R objects.

• Perform data manipulations such as subsetting to arrive at a smaller ex-
pression dataset with samples that we are interested in.

• Generate MA plots from our subsetted data using the lattice package.
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2 Load Microarray Expression data into an Rsession

We shall proceed to load the data for microarray expression values and the
covariates from the supplied csv files into an R session. The expression data is
contained in the file exprsMat.csv and the covariates are in the file pData.csv.
These files are located in the extdata folder of the SeattleIntro2010 package.

A convenient way to get to the path of the files is to make use of the sys-

tem.file function after loading the SeattleIntro2010 package using the library

function.
R provides several functions such as read.table for reading in meta data

files into a data.frame with appropriate column and row names from the header
information provided in the file. Convenience functions such as count.fields

are also available for discovering problems in files (such as certain rows in the
file having different number of fields) when using the read.table function.

Exercise 1
• Use the system.file to locate the path to the files exprsMat.csv and
pData.csv

• Make use of the count.fields function on the pData.csv file to ensure
that the file has the same number of fields in each line of the file.

• Use the read.table function to read in the experimental meta data into
an R variable pdOrig.

• Observe the effect, the check.names argument of read.table set to FALSE
has on reading in the column names of the variable pdOrig. The function
colnames can be used to extract the column names of the pdOrig. Hint:
Observe the column name pmol biol.

• Use the read.table function to read in the expression matrix into a vari-
able expOrig with the argument check.names=FALSE.

> library(SeattleIntro2010)

> phenoPath <- system.file( "extdata", "pData.csv", package="SeattleIntro2010")

> pdOrig <- read.table(phenoPath, check.names = FALSE)

> colnames(pdOrig)

[1] "cod" "diagnosis" "sex"

[4] "age" "BT" "remission"

[7] "CR" "date.cr" "t(4;11)"

[10] "t(9;22)" "cyto.normal" "citog"

[13] "mol biol" "fusion protein" "mdr"

[16] "kinet" "ccr" "relapse"

[19] "transplant" "f.u" "date last seen"

> expPath <- system.file("extdata", "exprsMat.csv", package="SeattleIntro2010")

> expOrig <- read.table(expPath, check.names = FALSE)

2



3 Subset data

The expOrig variable is a data.frame that contains the expression intensities
for the experiment. The column names of the data.frame represent the sample
Id’s and the row names represent the genes that are being studied. A convenient
function to look at just the first couple of entries in large data.frame is to use
the head function.

The pdOrig variable is a data.frame with columns representing the various
covariates that describe the experiment (age, sex, etc.). The row names corre-
spond to the sample Id’s. The column BT is a factor indicating the tumour cell
type (B1, B2, T1 ,T2 etc. with B indicating B-cell type and T indicating T-cell
type). Similarly the column mol biol is a factor indicating the molecular biol-
ogy of the cancer. (BCR/ABL, NEG, E2A/PBX1 etc.) The mol biol column
can be accessed using pdOrig[["mol biol"]].

In this section, we shall try to make use of some of concepts of indexing,
subsetting, factors etc. that we discussed earlier to split our expOrig and pdOrig

variables to narrow down to the samples that we are interested in. We are
specifically interested in B-cell tumours with molecular biology type ”NEG” or
”BCR/ABL”. We proceed to subset our expOrig and pdOrig variables to narrow
down to our samples of interest.

Exercise 2
• Use the grep function on the BT column in the pdOrig data.frame to

identify the B cell tumours.

• Identify the samples that are ”NEG” or ”BCR/ABL” molecular biology
type using the column mol biol, the %in% function and the which func-
tions in R.

• Identify samples that are both B cell tumours and are ”BCR/ABL” or
”NEG” using the intersect function on the indices that we have previ-
ously computed.

• Subset the meta data variable pdOrig to create a new variable psubData.
Note:The rows of the data.frame represent samples.(Subset along rows)

• Subset the expression matrix expOrig to create a new data.frame exprs-

Mat with only the samples with the cell and the tumour types we interested
in. Note:The columns of the expression matrix represents samples.(Subset
along columns)

> bcell <- grep("^B", as.character(pdOrig$BT))

> types <- c("NEG", "BCR/ABL")

> moltyp <- which(as.character(pdOrig[["mol biol"]]) %in% types)

> indx <- intersect(bcell, moltyp)

> psubData <- pdOrig[indx,]

> exprsMat <- expOrig[, indx]
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4 Recode the factor levels

The covariate data for some variables, for example BT is represented using a
variable of type factor with distinct levels. These variables can only take a
distinct number of categorical values. The levels can be obtained by using the
levels function on the factor variable. Operations such as subsetting on a factor
variable subsets the factor but leaves the levels of the variable unchanged. In
this exercise, we shall take a look at the levels of the factor variables that we
have just subsetted and attempt to correct this problem.

Exercise 3
• Observe the levels for the mol biol and moltyp variables Do you notice

any problem ?.

• Recode the factor levels for the mol biol and moltyp variables using the
factor function.

> psubData$BT <- factor(psubData$BT)

> levels(psubData$BT)

[1] "B" "B1" "B2" "B3" "B4"

> psubData[["mol biol"]] <- factor(psubData[["mol biol"]])

> levels(psubData[["mol biol"]])

[1] "BCR/ABL" "NEG"

5 Compute summary statistics

R includes several functions that allows you to do a lot while writing only few
lines of code. A good example is the aggregate function that splits the data
into subsets, computes summary statistics for each section and returns the re-
sult in a convenient form. For more details regarding this function, please type
in help("aggregate") into an R session. We will be making use of the for-

mula and the data.frame methods for the aggregate function in this example.
Another useful function for creating contingency tables that we will be using is
the xtabs function.

We proceed to create some summary statistics on the meta data variable
psubData using the aggregate and xtabs functions.

Exercise 4
• Find the average age of male and females in our subsetted metadata vari-

able psubData for the NEG and BCR/ABL groups using the data.frame

interface for the aggregate function. The table generated by using the
aggregate should look similar to the one found below. Hint: Try passing
na.rm = TRUE to the aggregate function
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sex molBiol age
1 F BCR/ABL 39.94
2 M BCR/ABL 40.50
3 F NEG 29.75
4 M NEG 24.86

• Recalculate the average age of male and females in our subsetted metadata
variable psubData for the NEG and BCR/ABL groups, this time using the
formula interface for the aggregate function. Make sure that the results
are identical to the one from the previous step.

• The column relapse in psubData is a logical vector indicating whether
the patient had a relapse or not. Create a contingency table of the number
of subjects that have had a relapse for the samples included in psubData

using the xtabs function and the covariates relapse, mol biol and sex.
The table generated by using the xtabs function should look similar to
the one found below.

BCR/ABL NEG
F 7.00 3.00
M 9.00 18.00

> aggregate( psubData[, "age", drop = FALSE], by= list("sex"= psubData$sex,

+ "molBiol"= psubData[["mol biol"]]), FUN = mean,

+ na.rm = TRUE )

sex molBiol age

1 F BCR/ABL 39.93750

2 M BCR/ABL 40.50000

3 F NEG 29.75000

4 M NEG 24.85714

> aggregate(age ~ sex + `mol biol`, data = psubData, FUN = mean)

sex mol biol age

1 F BCR/ABL 39.93750

2 M BCR/ABL 40.50000

3 F NEG 29.75000

4 M NEG 24.85714

> xtabs( relapse ~ sex + `mol biol`, data = psubData)

mol biol

sex BCR/ABL NEG
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F 7 3

M 9 18

6 Data visualization

The lattice package implements the Trellis graphics system and provides high-
level functions for visualization of multivariate data. A typical call to the lattice
function xyplot is shown below.

> xyplot(y ~ x | c, data, groups = g)

The arguments to a lattice function can be summarized in terms of

1. lattice function: A lattice plotting function such as xyplot, dotplot etc.

2. formula: The first argument to a lattice method is a formula. The formula
for our example is y ~ x | c. If the lattice method takes only a single
vector as input, the formula can be expressed as ~ x | c.

• primary variables: Variables y (Y axis of the plot) and x (X axis of
the plot) that defines the lattice display separated by the ~ character.

• conditioning variable: Variable c in the example separated from the
primary variables by the character |. The conditioning variable di-
vides the plot into separate panels.

3. grouping variable: The variable g in the example. The grouping variable
segregates data into subgroups within each panel.

4. data: A data.frame with column names corresponding to the variables y,
x, c and g.

We proceed to create M-A plots for the first 20 samples in our subsetted
expression intensity data.frame exprsMat, using the formula provided below
and the xyplot function from the lattice package.

A = rowMeans(m) (1)

Mi = mi −A (2)

where

• m is the expression data.frame.

• i is from 1 to number of samples in the expression data.frame

• M is variable for the Y axis of the M-A plot

• Mi is the column for sample i
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• A is the variable for the X axis of the M-A plot

Exercise 5
• Create a new variable mat by subsetting the exprsMat variable to include

only the first 20 samples. Using the rowMeans function, create the variable
A

• Create a variable M using the equation provided above

• Create a data.frame df with variables M, A and the sample names in the
expression matrix. The column names of the data.frame should be ”M”,
”A” and ”Sample” respectively.

• Use the xyplot function from the lattice package to plot the variable M
on the Y axis and the variable A on the x axis. Make use of the Sample

variable as a conditioning variable to split the plot into sub plots one each
for each sample.

> library(lattice)

> mat <- exprsMat[,1:20]

> A <- rowMeans(log2(mat))

> M <- log2(unlist(mat)) - A

> Sample <- rep(colnames(mat), each=nrow(mat))

> df <- data.frame(M, A, Sample, row.names=NULL, check.names = FALSE)

> plt <- xyplot(M ~ A | Sample, df, panel=panel.smoothScatter)

>

7 Session information

• R version 2.12.1 beta (2010-12-07 r53813), i386-apple-darwin9.8.0

• Locale: C

• Base packages: base, datasets, grDevices, graphics, methods, stats, utils

• Other packages: ALL 1.4.7, AnnotationDbi 1.12.0, Biobase 2.10.0,
Biostrings 2.18.2, DBI 0.2-5, DESeq 1.2.1, GO.db 2.4.5,
GenomicFeatures 1.2.3, GenomicRanges 1.2.2, IRanges 1.8.6,
RCurl 1.4-3, RSQLite 0.9-4, Rsamtools 1.2.1, SeattleIntro2010 0.0.33,
ShortRead 1.8.2, akima 0.5-4, biomaRt 2.6.0, bitops 1.0-4.1,
genefilter 1.32.0, hgu95av2.db 2.4.5, lattice 0.19-13, locfit 1.5-6,
org.Hs.eg.db 2.4.6, org.Sc.sgd.db 2.4.6, rtracklayer 1.10.5

• Loaded via a namespace (and not attached): BSgenome 1.18.2,
KernSmooth 2.23-4, RColorBrewer 1.0-2, XML 3.2-0, annotate 1.28.0,
geneplotter 1.28.0, grid 2.12.1, hwriter 1.3, splines 2.12.1, survival 2.36-2,
tools 2.12.1, xtable 1.5-6
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Figure 1: M-A plot for 20 Samples produced using xyplot
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