
Implementing S4 objects in your package:

Exercises

Hervé Pagès∗

17-18 February, 2011

Contents

1 Introduction 1

2 Part I: Implementing the GWASdata class 3
2.1 Class definition . 3
2.2 Constructor . 4
2.3 Accessors . 5
2.4 The show method . 7
2.5 The validity method . 7
2.6 Coercion methods . 8

3 Part II: Integrating the GWASdata class to the package 9
3.1 Step 1: Add the GWASdata-class.R file to the package 10
3.2 Step 2: Import the methods package and modify the NAMESPACE

file . 10
3.3 Step 3: Add a man page for the GWASdata class 11
3.4 Step 4: Check the package . 14

1 Introduction

Throughout this lab you will implement a class, named GWASdata, which pur-
pose is to bind together the experimental data and metadata from a genome-
wide association study. We will assume that the GWAS experimental data is
a matrix (with 1 row per subject and 1 col per SNP) stored in a NetCDF file
and that the metadata associated with the subjects and SNPs are stored in an
SQLite db file.

Implementing an S4 class typically consists in the following steps:

∗Fred Hutchinson Cancer Research Center, Seattle, WA 98008

1

1. A class definition where the name and type of each slot is specified. Unlike
with other OO programming languages, the methods that will operate on
this class are not part of the class definition.

2. A constructor so we can create GWASdata instances. A common practise
is to define an ordinary function named like the class itself for this. Note
that this is not enforced by by the S4 class system, just a consensual
practise among the Bioconductor core developpers. This GWASdata function
will take care of doing some basic argument checking and to populate the
slots of the instance to be returned.

3. Some accessor methods to get values from (or set values to) the slots of a
GWASdata object. Note that direct slot manipulation by the end user via
the @ operator is generally not recommended. Providing our own set of
accessors will hopefully discourage the user of our objects from doing this.
It’s also a way for us to formally specify which slots are ok to be accessed
and how they should be accessed (read-only slot or read-write slot).

4. Other accessor-like methods that are not slot accessors (i.e. they are not
getting or setting the content of a slot, strictly speaking) but are returning
some combination of slot values (e.g. dim) or some data that is retrieved
from disk (e.g. getCols).

5. A show method, so our objects display nicely with some useful information.

6. A validity method that will take care of checking that our GWASdata
objects are valid i.e. that their slots contain values that make sense indi-
vidually and as a whole. Note that this certainly requires some extra effort
whose benefits maybe aren’t immediatly obvious, but it is considered good
practise since it makes your class implementation more robust and it pays
off in the long term maintenance of your package. In this lab, because of
time constraints, we will implement an incomplete validity method for our
GWASdata objects.

7. Some coercion methods to turn our GWASdata objects into other types of
objects, with or without loss of information. In this lab, we will implement
a coercion method for turning a GWASdata object into a raw matrix.

8. Other high-level methods that don’t fall into any of the previous categories
(i.e. not accessor, show, validity or coercion methods). Depending on
the kind of object that is being implemented, those can be methods for
subsetting, plotting, normalizing, generating an HTML report, etc...

This is really what we mean when we say implementing S4 objects.
The lab is divided in 2 parts:

• Part I: Implement the GWASdata class in a standalone file.

2

• Part II: Integrate this work to the StudentGWAS package. This means:
add the file with the code produced in Part I to the package, modify the
Collate field, import the methods package (if not already done), modify
the NAMESPACE file, and add a man page documenting the class. Once
everything is in place, we will be able to build and check our package with
R CMD build and R CMD check.

2 Part I: Implementing the GWASdata class

The process of designing and implementing a new class requires that the devel-
opper spends some time thinking about:

• what s/he wants to achieve exactly with the class,

• how is the class going to be used, by who, for doing what,

• what are the typical use cases,

• what is the typical size of the data that will be manipulated, small (< 1
Mb), big (> 100 Mb), very big (> 10 Gb),

• how the class will interact with other packages and classes in CRAN/Bioconductor,

• how the facilities provided by the class will fit within the tools and file
formats commonly used inside or outside Bioconductor,

• etc...

It’s generally considered good design to avoid storing redundant information
(although some exceptions can be made for performance considerations) and to
keep things as simple as possible.

2.1 Class definition

For our GWASdata class, we want the following slots:

• datapath: the path to a NetCDF file containing the GWAS experimental
data (a matrix). This will be of type character .

• dataconn: the connection to the NetCDF file pointed by datapath. A
connection to a NetCDF file is an object of class ncdf . Note that there is
a complication here due to the fact that the ncdf class is defined in the
ncdf package and that this package has no NAMESPACE. This makes
it impossible to import the ncdf package in our StudentGWAS package,
and, in particular, we can’t use "ncdf" to specify the type of our slot. So
we will use the type "list" for this slot. This works because ncdf is an
S3 class (aka old style class) and in the S3 class system, every object is a
list with a class attribute attached to it.

3

• metadatapath: the path to an SQLite db file containing the GWAS meta-
data. This will be of type character .

• metadataconn: the connection to the SQLite db pointed by metadatap-

ath. This will be of type SQLiteConnection.

• nrow: the nb of rows in the GWAS matrix (this is also the nb or rows
in the subjects table contained in the SQLite db). This will be of type
integer .

• ncol: the nb of cols in the GWAS matrix (this is also the nb or rows in
the snps table contained in the SQLite db). Also of class integer .

Exercise 1
Start a new file (let’s name it GWASdata-class.R) and write the setClass state-
ment for the GWASdata class.

setClass("GWASdata",

representation(

datapath="character",

...

...

)

)

2.2 Constructor

For the GWASdata constructor, we are going to write a function that takes 2
arguments: datapath and metadatapath. Those 2 arguments will contain the
user-supplied paths to the NetCDF file and SQLite db file, respectively. The
constructor must perform the following tasks:

1. Open the NetCDF and SQLite connections.

2. Drop the class attribute of the NetCDF connection (with class(dataconn)

<- NULL), otherwise it won’t be possible to assign it to the dataconn slot.

3. Obtain the values to assign to the nrow and ncol slots by counting the nb
of rows in the subjects and snps SQL tables, respectively.

4. Finally call new("GWASdata", ...) with named arguments. The names
of the arguments must correspond to slots in the class definition. Their
values must correspond to the values to assign to the slots.

Exercise 2
a. Add the GWASdata constructor to the GWASdata-class.R file.

4

b. Start R, manually load the RSQLite and ncdf packages, source the GWASdata-
class.R file (or copy/paste its content into your session), do showClass("GWASdata"),
and finally, try to use the GWASdata constructor on the small_snpData.nc
and small_metadata.sqlite files that are included in the StudentGWAS
package. Note: if the StudentGWAS package is installed, the paths to
those files can be obtained with:

datapath <- system.file("extdata", "small_snpData.nc",

package="StudentGWAS")

metadatapath <- system.file("extdata", "small_metadata.sqlite",

package="StudentGWAS")

Now we are able to create GWASdata objects! Keep your R session live for
further testing on the GWASdata object you just created (let’s call this object
gwas).

It’s pretty clear that we will need to implement a show method. However
it’s better to start by implementing a few accessor methods so we can use them
later in the show method and in our code in general.

2.3 Accessors

In the next exercise we will implement the following accessors:

• the dataconn, nrow and ncol slot accessors;

• the dim accessor (which is not a slot accessor, strictly speaking).

Because of time constraints, we won’t implement the full set of slot acces-
sors (for completeness, the datapath, metadatapath and metadataconn slot
accessors should also be provided).

We want to implement those accessors as methods for GWASdata objects,
not as ordinary functions. This is the recommended way to implement accessors.

Let’s distinguish between 2 situations:

• For accessors with a name that doesn’t correspond to any existing function
(e.g. dataconn), we need to define a generic function before we can write
a method for it. This is done with a setGeneric statement. The simplest
form of the setGeneric statement is the following (for a generic function
foo with a single argument):

setGeneric("foo", function(x) standardGeneric("foo"))

• For accessors with a name that corresponds to an existing function (e.g.
nrow, ncol and dim), we generally don’t need a setGeneric statement.
(If the existing function is not already a generic function, then it will
be automatically turned into an implicit generic function.) In that case
the programmer must check the signature of the existing function and
make sure that s/he uses exactly the same signature in his/her method
definition.

5

The definition of the method itself is done with a setMethod statement. For
example, in the case of a generic function dispatching on 1 argument only (the
most common situation), the setMethod statement looks like:

setMethod("foo", "GWASdata",

function(x)

{

...

}

)

Exercise 3
a. Implement the dataconn accessor. Note that, for this accessor, we need

to make the following small modification to the value of the dataconn slot
(x@dataconn) before we return it:

dataconn <- x@dataconn

class(dataconn) <- "ncdf"

This is in order to restore the class attribute that was dropped by the
constructor. Copy/paste the new code into your current R session and
test the dataconn accessor on your GWASdata object.

b. Implement the nrow, ncol and dim accessors. Test them.

In the next exercise we implement the getCols method for extracting a set
of adjacent columns (specified by the user) from the matrix of data stored in
the NetCDF file. Of course we want to re-use the getGWAScols utility function
implemented in a previous lab.

Exercise 4
a. Define the getCols generic with the following arguments: (x, first, last

= first). Note that we want to dispatch on the first argument only so we
need to specify this with

setGeneric("getCols", signature = "x",)

otherwise the generic function will dispatch on all its arguments (multiple
dispatch).

b. Implement the getCols method. Note that when writing code in a stan-
dalone file like GWASdata-class.R, your code doesn’t have access to the
getGWAScols function that is defined in the StudentGWAS package and not
exported. However, you can still put a call to getGWAScols in your code,
and your code will work just fine later when we integrate it to the Stu-
dentGWAS package (because then it will have access to everything that
is defined in the package).

6

c. Copy/paste the new code into your current R session and test the getCols
accessor on your GWASdata object. Tip: for this to work, you will first
need to load the StudentGWAS package and do:

getGWAScols <- StudentGWAS:::getGWAScols

Note that it would be a bad idea to put a call like StudentGWAS:::getGWAScols()

inside the getCols method.

2.4 The show method

show is a generic function defined in the methods package (which is also the
home of the setClass, setGeneric and setMethod functions and the S4 class
system in general). Do ?show in your R session. The important bit here is that
the name of the argument is object so that’s what you need to use in your
method definition.

Exercise 5
a. Write a show method that displays something like:

GWASdata instance with 50 subjects and 25 SNPs

Internally, use the cat function to print the information, and use the nrow

and ncol accessors (instead of doing direct slot access with object@nrow

and object@ncol). Also, even if you think you know the class of the object
being displayed, it’s better to use class(object) than to hardcode "GWAS-

data". You never know, maybe one day someone decides to extend your
GWASdata class. When this happens, your show method will work out-
of-the-box on instances of the derived class (thanks to inheritance), and,
because you used class(object), it will correctly display their class.

b. Copy/paste the definition of the show method into your current R session
and try to display your GWASdata object again (by just typing the name
of the object followed by <Enter>).

2.5 The validity method

One limitation of the setClass statement is that the representation component
only allows us to specify the types of the slots, but not their lengths or any
other restriction that we’d want to impose.

For example, the setClass statement for our GWASdata class just requires
the datapath slot to be a character vector, without imposing any restriction on
its length or content. But what we really want is a single string i.e. a character
vector of length 1 that is not an NA. A GWASdata object with a character vector
of length 0 or an NA in its datapath slot could fairly be considered broken. Of
course, we could put some sanity checkings in the GWASdata constructor in

7

order to avoid this, but, a better approach is to define a validity method that
will be in charge of those checkings.

Any S4 object can be validated at any time with a call to validObject.
By default (i.e. if no validity method is defined), the validation only consists
in checking that the types of the slot values are compatible with the expected
types i.e. with the types that are specified in the class definition (compatible here
means that the slot value belongs to the specified class or to one of its subclasses).
This validation is automatically performed by the low-level constructor new (and
this is why trying to create an object with an incompatible slot value generates
an error).

By defining a validity method for his/her objects, the developper can be
much more specific about what values can go into each slot. Furthermore, it
allows him/her to validate an object as a whole by checking that the values in
the different slots are compatible with each other.

Defining a validity method is done with a setValidity statement:

setValidity("GWASdata",

function(object)

{

...

...

}

)

The method should return TRUE if the object is valid, and one or more de-
scriptive strings if any problems are found. It should never generate an error.

In the next exercise, we implement a simple (incomplete) validity method for
GWASdata objects.

Exercise 6
a. Implement a validity method for GWASdata objects that will be in charge

of checking that:

• the datapath slot is a single string (i.e. a character vector of length
1 that is not an NA);

• the nrow slot is a single non-negative integer.

b. Copy/paste the definition of the validity method into your current R session
and call validObject on your GWASdata object. Break the object by
setting its nrow slot to -2 (note that doing gwas@nrow <- -2 won’t work
because -2 is not of type integer in R, but -2L is). Call validObject again
on the object.

2.6 Coercion methods

It’s often convenient for the user to be able to turn an object of a given class
(the original class) into an object of another class (the target class). This trans-
formation is called coercion in R jargon (explicit type-casting or type conversion

8

in other programming languages). Depending on the classes that are involved,
the coercion can be with or without loss of information.

When implementing an S4 class, it’s good to think about potentially useful
coercions that the user might need. In the case of our GWASdata class for
example, we’d like the user to be able to turn a GWASdata object into a raw
matrix.

R supports 2 syntaxes for performing a coercion: (1) the as.targetclass(x)
syntax, and (2) the as(x, "targetclass") syntax.

The former syntax only supports a limited set of target classes thru some pre-
defined generic functions such as as.logical, as.integer, as.double, as.numeric,
as.complex, as.character, as.raw, as.vector, as.list, as.factor, as.matrix,
as.array, as.data.frame, etc...

The latter syntax makes use of a single generic function, the as generic. This
is the preferred syntax when working with S4 objects: it offers greater flexibility
and better integration to the S4 class system itself.

So we want our user to be able to turn a GWASdata object x into a raw
matrix with as(x, "matrix"). For this to work, we need to implement a coercion
method. This is done with a setAs statement:

setAs("GWASdata", "matrix",

function(from)

{

...

...

}

)

The from argument contains the object to coerce. The method should return
the coerced object.

Exercise 7
a. Implement the coercion method from GWASdata to matrix. The method

must extract the entire matrix of data stored in the NetCDF file and
return it into a raw matrix.

b. Copy/paste the definition of this coercion method into your current R
session and test it by doing as(gwas, "matrix").

3 Part II: Integrating the GWASdata class to
the package

We will now integrate the code produced in Part I to the StudentGWAS package.
This is done in 4 steps.

9

3.1 Step 1: Add the GWASdata-class.R file to the package

Exercise 8
a. Put the GWASdata-class.R file under the R/ folder of your package. In

case you are using a revision control system like Subversion to develop
your code, don’t forget to add the file to the system with e.g. svn add.

b. Add the name of the new .R file to the Collate field of the DESCRIPTION

file. The new file should be listed after any other file that contains material
used in the new file. In the case of the StudentGWAS package, it should
go after the utils.R file which contains low-level stuff used in the new
file.

3.2 Step 2: Import the methods package and modify the
NAMESPACE file

Exercise 9
a. Make sure the methods package is in the Imports field of your package.

Add it if needed.

b. Then make the following modifications to the NAMESPACE file of your pack-
age:

• Make sure the file contains the following directive:

import(methods)

If not, add it before any other imports.

• Export the GWASdata class by adding the name of the class inside
the exportClasses directive. Syntax:

exportClasses(

Class1,

Class2,

...

...

)

• In the export directive: Add the functions (non-generic and generic)
defined in your package that you want to export. Note that what you
export will need to be documented in a man page. The stuff that is
not intended to be used directly by the user of your package should
not be exported (and not documented, of course, but that doesn’t
mean it doesn’t deserve some brief documentation in the form of a
short comment in your source code).

• In the exportMethods directive: Add the methods you want to ex-
port (usually all the methods defined in your package, except the
validity method). Note that the names you need to put in the di-
rective are those of the corresponding generics with no specification

10

of the classes for which the methods are defined. This means that
if you implemented more than one method for the generic foo, then
foo only needs to be listed once in the exportMethods directive:

exportMethods(

...

foo, # exports all the methods attached to this generic

...

)

Dont’t forget to export the coercion methods. This is done by adding
coerce to the exportMethods directive.

3.3 Step 3: Add a man page for the GWASdata class

Documenting the new class and its basic functionalities might not be the most
exciting part of the story but, unfortunately, it’s an indispensable one! To
help get us motivated, let’s remember that undocumented functionalities are
probably not going to be used, or, in the best case, they’ll make our most
adventurous users feel frustrated.

An easy approach would be to use promptClass("GWASdata") which automat-
ically generates a minimalist man page for our class. However, in our opinion,
this automatic man page does not provide useful information to the user. It’s
also a little bit misleading since it encourages the user to create objects with
direct calls to (new) (instead of using our higher-level constructor) and to ma-
nipulate slots directly (instead of using our accessors).

In our experience, using the following template for documenting our classes
leads to more valuable documentation than the promptClass solution:

\name{GWASdata-class}

\docType{class}

\alias{GWASdata-class}

\alias{GWASdata}

\alias{...}

\alias{...}

\alias{...}

\title{GWASdata objects}

\description{

~~ A concise (1-5 lines) description of what the class is. ~~

}

\section{Constructor}{

\describe{

\item{}{

11

\code{GWASdata(...)}:

~~ A description of the constructor and its arguments. ~~

}

}

}

\section{Accessors}{

In the code snippets below, \code{x} is a GWASdata object.

\describe{

\item{}{

\code{accessor1(x)}:

~~ A description of accessor 1. ~~

}

\item{}{

\code{accessor2(x)}:

~~ A description of accessor 2. ~~

}

... etc ...

}

}

\section{Coercion}{

In the code snippets below, \code{x} is a GWASdata object.

\describe{

\item{}{

\code{as(x, "class1")}:

~~ A description of what this coercion does. ~~

}

\item{}{

\code{as(x, "class2")}:

~~ A description of what this coercion does. ~~

}

... etc ...

}

}

\references{

~~ Put references to the literature/web site here. ~~

}

12

\author{Student Name}

\seealso{

~~ Put links of the form \code{\link{FUNCTIONNAME}} here ~~

~~ to link to other functions. ~~

~~ Put links of the form \code{\linkS4class{CLASSNAME}} here ~~

~~ to link to other classes. ~~

}

\examples{

~~ Put code here that illustrates at least the use of the ~~

~~ constructor, accessors and coercion methods (if any). ~~

}

\keyword{classes}

Exercise 10
Use the above template to produce the GWASdata-class.Rd file. This file needs
to be located under the man/ folder of your package. In case you are using a
revision control system, don’t forget to add the file to it. Note that:

• There must be an alias of the form

\alias{foo}

for each exported function (ordinary or generic). Also there must be an
alias for each exported method. The form of this alias depends on the
number of arguments involved in the dispatch. It’s

\alias{foo,Class1-method}

for dispatch on 1 argument (e.g. for the accessor methods), and

\alias{bar,Class1,Class2-method}

for dispatch on 2 arguments (e.g. for the coercion methods), and so on...

• There is no alias for the validity methods (they are not exported and they
don’t need to be documented). What needs to be documented with great
details however is what the arguments of our high-level constructor are
expected to be. In the case of paths to on-disk files like for our (GWAS-
data) constructor, it’s also a good idea to describe what the content of
those files is expected to be.

• There must be an alias for the show method just to avoid an R CMD check

warning (see below) even though it’s ok to not document the method.

13

• The examples section is probably the most important part of any man
page since most users tend to go directly there without taking the time to
read the whole story (either because they already know it or because they
are in a hurry).

3.4 Step 4: Check the package

Exercise 11
a. Run R CMD build on the package source tree. This produces a source

tarball. Then run R CMD check on this source tarball and pay attention
to any NOTE or WARNING that shows up. Fix them if necessary.

b. Install the source tarball by running R CMD INSTALL on it. Start a fresh
R session, load the package, and try to use the new code. In particular,
go to the new man page (?GWASdata) so you can see what it looks like from
an end-user point of view.

If you are using a revision control system and are satisfied with your work
so far, then it’s a good time to commit it.

14

	Introduction
	Part I: Implementing the GWASdata class
	Class definition
	Constructor
	Accessors
	The show method
	The validity method
	Coercion methods

	Part II: Integrating the GWASdata class to the package
	Step 1: Add the GWASdata-class.R file to the package
	Step 2: Import the methods package and modify the NAMESPACE file
	Step 3: Add a man page for the GWASdata class
	Step 4: Check the package

