
High-level S4 containers for HTS data

Hervé Pagès

Fred Hutchinson Cancer Research Center

24-25 July 2012



Introduction

Most frequently seen low-level containers
Rle objects
IRanges objects
DataFrame objects
Other frequently seen low-level containers

GRanges objects
GRanges constructor and accessors
Vector operations on GRanges objects
Ranges operations on GRanges objects
Splitting a GRanges object
Exercise 1

GRangesList objects
GRangesList constructor and accessors
Vector operations on GRangesList objects
List operations on GRangesList objects
Ranges operations on GRangesList objects

GappedAlignments and GappedAlignmentPairs objects
GappedAlignments

GappedAlignments constructor and accessors
Exercise 2
From GappedAlignments to GRanges or GRangesList

GappedAlignmentPairs

Advanced operations
Coverage and slicing
Finding/counting overlaps
Exercise 3

Final notes



Introduction

Most frequently seen low-level containers
Rle objects
IRanges objects
DataFrame objects
Other frequently seen low-level containers

GRanges objects
GRanges constructor and accessors
Vector operations on GRanges objects
Ranges operations on GRanges objects
Splitting a GRanges object
Exercise 1

GRangesList objects
GRangesList constructor and accessors
Vector operations on GRangesList objects
List operations on GRangesList objects
Ranges operations on GRangesList objects

GappedAlignments and GappedAlignmentPairs objects
GappedAlignments

GappedAlignments constructor and accessors
Exercise 2
From GappedAlignments to GRanges or GRangesList

GappedAlignmentPairs

Advanced operations
Coverage and slicing
Finding/counting overlaps
Exercise 3

Final notes



High-level vs low-level
Small nb of high-level containers for HTS data (< 10).
Built on top of 100+ low-level containers!

High-level containers for HTS data

Covered in this presentation:

I GRanges

I GRangesList

I GappedAlignments

I GappedAlignmentPairs

Defined in the GenomicRanges package.

Not covered in this presentation:

I Defined in the GenomicRanges
package: SummarizedExperiment

I Defined in the ShortRead package:
ShortRead, AlignedRead

Low-level containers (most frequently seen, only)

Covered in this presentation:

I Rle

I IRanges

I DataFrame

I CharacterList, IntegerList

I RleList, RleViews,
RleViewsList

Defined in the IRanges package.

Not covered in this presentation:

I In the IRanges package:
IRangesList, SplitDataFrameList,
RangedData, and many, many more...

I In the Biostrings package: DNAString,
DNAStringSet



About the implementation

S4 classes (aka formal classes) –> relies heavily on the methods package.

Current implementation tries to provide an API that is as consistent as possible. In
particular:

I The end-user should never need to use new(): a constructor, named as the
container, is provided for each container. E.g. GRanges().

I The end-user should never need to use @ (aka direct slot access): slot accessors
(getters and setters) are provided for each container. Not all getters have a
corresponding setter!

I Standard functions/operators like length(), names(), [, c(), [[, $, etc... work
almost everywhere and behave “as expected”.

I Additional functions that work almost everywhere: elementMetadata(),
elementLengths(), seqinfo(), etc...

I Consistent display (show methods).



Basic operations

Vector operations:

I Single-bracket subsetting: [

I Combining: c()

I Comparing: ==, !=, duplicated(), unique()

I Ordering: <=, >=, <, >, order(), sort(), rank()

List operations:

I Double-bracket subsetting: [[

I elementLengths(), unlist(), relist()

I lapply(), sapply(), endoapply()

I mendoapply() (not covered in this presentation)



Basic operations (continued)

Ranges operations:

I shift(), narrow(), resize(), flank()

I disjoin()

I range(), reduce(), gaps()

I union(), intersect(), setdiff()

I punion(), pintersect(), psetdiff(), pgap()

Coercion methods: as() and all the S3 forms (as.vector(), as.character(),
as.factor(), etc...)

Splitting: split()



Advanced operations

Coverage and slicing:

I coverage()

I slice()

Finding/counting overlaps:

I findOverlaps()

I countOverlaps()

and more...



Introduction

Most frequently seen low-level containers
Rle objects
IRanges objects
DataFrame objects
Other frequently seen low-level containers

GRanges objects
GRanges constructor and accessors
Vector operations on GRanges objects
Ranges operations on GRanges objects
Splitting a GRanges object
Exercise 1

GRangesList objects
GRangesList constructor and accessors
Vector operations on GRangesList objects
List operations on GRangesList objects
Ranges operations on GRangesList objects

GappedAlignments and GappedAlignmentPairs objects
GappedAlignments

GappedAlignments constructor and accessors
Exercise 2
From GappedAlignments to GRanges or GRangesList

GappedAlignmentPairs

Advanced operations
Coverage and slicing
Finding/counting overlaps
Exercise 3

Final notes



Introduction

Most frequently seen low-level containers
Rle objects
IRanges objects
DataFrame objects
Other frequently seen low-level containers

GRanges objects
GRanges constructor and accessors
Vector operations on GRanges objects
Ranges operations on GRanges objects
Splitting a GRanges object
Exercise 1

GRangesList objects
GRangesList constructor and accessors
Vector operations on GRangesList objects
List operations on GRangesList objects
Ranges operations on GRangesList objects

GappedAlignments and GappedAlignmentPairs objects
GappedAlignments

GappedAlignments constructor and accessors
Exercise 2
From GappedAlignments to GRanges or GRangesList

GappedAlignmentPairs

Advanced operations
Coverage and slicing
Finding/counting overlaps
Exercise 3

Final notes



Rle objects

Rle: Run Length Encoding

Supported basic operations

I Vector operations: YES

I List operations: NO

I Ranges operations: NO

I Coercion methods: YES (to atomic vector, factor, or IRanges)

I Splitting: YES (produces an RleList object)



Rle objects (continued)

> library(IRanges)
> set.seed(2012)
> rle1 <- Rle(sample(c(-0.9, 0), 20, replace=TRUE))
> rle1

numeric-Rle of length 20 with 12 runs
Lengths: 1 1 1 7 1 1 1 2 1 1 2 1
Values : -0.9 0 -0.9 0 -0.9 0 -0.9 0 -0.9 0 -0.9 0

> runLength(rle1)

[1] 1 1 1 7 1 1 1 2 1 1 2 1

> runValue(rle1)

[1] -0.9 0.0 -0.9 0.0 -0.9 0.0 -0.9 0.0 -0.9 0.0 -0.9 0.0

> as.vector(rle1)

[1] -0.9 0.0 -0.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -0.9 0.0 -0.9 0.0 0.0 -0.9
[17] 0.0 -0.9 -0.9 0.0

> rle1[c(TRUE, FALSE)]

numeric-Rle of length 10 with 5 runs
Lengths: 2 3 2 2 1
Values : -0.9 0 -0.9 0 -0.9



Rle objects (continued)

> sort(rle1)

numeric-Rle of length 20 with 2 runs

Lengths: 7 13

Values : -0.9 0

> rle1 * 50.1

numeric-Rle of length 20 with 12 runs

Lengths: 1 1 1 7 1 ... 1 1 2 1

Values : -45.09 0 -45.09 0 -45.09 ... -45.09 0 -45.09 0

> sum(rle1)

[1] -6.3

> cumsum(rle1)

numeric-Rle of length 20 with 7 runs

Lengths: 2 8 2 3 2 1 2

Values : -0.9 -1.8 -2.7 -3.6 -4.5 -5.4 -6.3

> cumsum(rle1) <= -4.2

logical-Rle of length 20 with 2 runs

Lengths: 15 5

Values : FALSE TRUE

> rle1[cumsum(rle1) <= -4.2]

numeric-Rle of length 5 with 4 runs

Lengths: 1 1 2 1

Values : -0.9 0 -0.9 0



Rle objects (continued)

> rle2 <- Rle(c("ch1", "chMT", "ch1", "ch2", "chMT"), c(4, 2, 1, 5, 1))
> rle2

character-Rle of length 13 with 5 runs
Lengths: 4 2 1 5 1
Values : "ch1" "chMT" "ch1" "ch2" "chMT"

> as.vector(rle2)

[1] "ch1" "ch1" "ch1" "ch1" "chMT" "chMT" "ch1" "ch2" "ch2" "ch2" "ch2"
[12] "ch2" "chMT"

> c(rle2, c("chMT", "chX"))

character-Rle of length 15 with 6 runs
Lengths: 4 2 1 5 2 1
Values : "ch1" "chMT" "ch1" "ch2" "chMT" "chX"



Rle objects (continued)

> runValue(rle2) <- factor(runValue(rle2))
> rle2

factor-Rle of length 13 with 5 runs
Lengths: 4 2 1 5 1
Values : ch1 chMT ch1 ch2 chMT

Levels(3): ch1 ch2 chMT

> runValue(rle2)

[1] ch1 chMT ch1 ch2 chMT
Levels: ch1 ch2 chMT

> as.vector(rle2)

[1] "ch1" "ch1" "ch1" "ch1" "chMT" "chMT" "ch1" "ch2" "ch2" "ch2" "ch2"
[12] "ch2" "chMT"

> as.factor(rle2)

[1] ch1 ch1 ch1 ch1 chMT chMT ch1 ch2 ch2 ch2 ch2 ch2 chMT
Levels: ch1 ch2 chMT



Rle objects (continued)

> rle1 == 0

logical-Rle of length 20 with 12 runs
Lengths: 1 1 1 7 1 1 1 2 1 1 2 1
Values : FALSE TRUE FALSE TRUE FALSE TRUE FALSE TRUE FALSE TRUE FALSE TRUE

> as(rle1 == 0, "IRanges")

IRanges of length 6
start end width

[1] 2 2 1
[2] 4 10 7
[3] 12 12 1
[4] 14 15 2
[5] 17 17 1
[6] 20 20 1



Introduction

Most frequently seen low-level containers
Rle objects
IRanges objects
DataFrame objects
Other frequently seen low-level containers

GRanges objects
GRanges constructor and accessors
Vector operations on GRanges objects
Ranges operations on GRanges objects
Splitting a GRanges object
Exercise 1

GRangesList objects
GRangesList constructor and accessors
Vector operations on GRangesList objects
List operations on GRangesList objects
Ranges operations on GRangesList objects

GappedAlignments and GappedAlignmentPairs objects
GappedAlignments

GappedAlignments constructor and accessors
Exercise 2
From GappedAlignments to GRanges or GRangesList

GappedAlignmentPairs

Advanced operations
Coverage and slicing
Finding/counting overlaps
Exercise 3

Final notes



The purpose of the IRanges container is...

... to store a set of integer ranges (aka integer intervals).

I Each range can be defined by a start and an end value: both are included in the
interval (except when the range is empty).

I The width of the range is the number of integer values in it: width = end - start
+ 1.

I end is always >= start, except for empty ranges where end = start - 1.

Supported basic operations

I Vector operations: YES

I List operations: YES (not covered in this presentation)

I Ranges operations: YES

I Coercion methods: YES (from logical or integer vector to IRanges)

I Splitting: YES (produces an IRangesList object)



IRanges objects (continued)

> ir1 <- IRanges(start=c(12, -9, NA, 12),
+ end=c(NA, 0, 15, NA),
+ width=c(4, NA, 4, 3))
> ir1 # "show" method not yet consistent with the other "show" methods (TODO)

IRanges of length 4
start end width

[1] 12 15 4
[2] -9 0 10
[3] 12 15 4
[4] 12 14 3

> start(ir1)

[1] 12 -9 12 12

> end(ir1)

[1] 15 0 15 14

> width(ir1)

[1] 4 10 4 3

> successiveIRanges(c(10, 5, 38), from=101)

IRanges of length 3
start end width

[1] 101 110 10
[2] 111 115 5
[3] 116 153 38



IRanges objects (continued)

> ir1[-2]

IRanges of length 3

start end width

[1] 12 15 4

[2] 12 15 4

[3] 12 14 3

> ir2 <- c(ir1, IRanges(-10, 0))

> ir2

IRanges of length 5

start end width

[1] 12 15 4

[2] -9 0 10

[3] 12 15 4

[4] 12 14 3

[5] -10 0 11

> duplicated(ir2)

[1] FALSE FALSE TRUE FALSE FALSE

> unique(ir2)

IRanges of length 4

start end width

[1] 12 15 4

[2] -9 0 10

[3] 12 14 3

[4] -10 0 11

> sort(ir2)

IRanges of length 5

start end width

[1] -10 0 11

[2] -9 0 10

[3] 12 14 3

[4] 12 15 4

[5] 12 15 4



Ranges operations



IRanges objects (continued)

> ir1

IRanges of length 4

start end width

[1] 12 15 4

[2] -9 0 10

[3] 12 15 4

[4] 12 14 3

> shift(ir1, -start(ir1))

IRanges of length 4

start end width

[1] 0 3 4

[2] 0 9 10

[3] 0 3 4

[4] 0 2 3

> flank(ir1, 10, start=FALSE)

IRanges of length 4

start end width

[1] 16 25 10

[2] 1 10 10

[3] 16 25 10

[4] 15 24 10



IRanges objects (continued)

> ir1

IRanges of length 4

start end width

[1] 12 15 4

[2] -9 0 10

[3] 12 15 4

[4] 12 14 3

> range(ir1)

IRanges of length 1

start end width

[1] -9 15 25

> reduce(ir1)

IRanges of length 2

start end width

[1] -9 0 10

[2] 12 15 4

> union(ir1, IRanges(-2, 6))

IRanges of length 2

start end width

[1] -9 6 16

[2] 12 15 4

> intersect(ir1, IRanges(-2, 13))

IRanges of length 2

start end width

[1] -2 0 3

[2] 12 13 2

> setdiff(ir1, IRanges(-2, 13))

IRanges of length 2

start end width

[1] -9 -3 7

[2] 14 15 2



IRanges objects (continued)

> ir3 <- IRanges(5:1, width=12)

> ir3

IRanges of length 5

start end width

[1] 5 16 12

[2] 4 15 12

[3] 3 14 12

[4] 2 13 12

[5] 1 12 12

> ir2

IRanges of length 5

start end width

[1] 12 15 4

[2] -9 0 10

[3] 12 15 4

[4] 12 14 3

[5] -10 0 11

> pintersect(ir3, ir2, resolve.empty="max.start")

IRanges of length 5

start end width

[1] 12 15 4

[2] 4 3 0

[3] 12 14 3

[4] 12 13 2

[5] 1 0 0



IRanges objects (continued)

> ok <- c(FALSE, FALSE, TRUE, TRUE, TRUE, FALSE, FALSE, TRUE)
> ir4 <- as(ok, "IRanges") # from logical vector to IRanges
> ir4

IRanges of length 2
start end width

[1] 3 5 3
[2] 8 8 1

> as(which(ok), "IRanges") # from integer vector to IRanges

IRanges of length 2
start end width

[1] 3 5 3
[2] 8 8 1

> rle2[ir4] # IRanges subscript

factor-Rle of length 4 with 3 runs
Lengths: 2 1 1
Values : ch1 chMT ch2

Levels(3): ch1 ch2 chMT



Introduction

Most frequently seen low-level containers
Rle objects
IRanges objects
DataFrame objects
Other frequently seen low-level containers

GRanges objects
GRanges constructor and accessors
Vector operations on GRanges objects
Ranges operations on GRanges objects
Splitting a GRanges object
Exercise 1

GRangesList objects
GRangesList constructor and accessors
Vector operations on GRangesList objects
List operations on GRangesList objects
Ranges operations on GRangesList objects

GappedAlignments and GappedAlignmentPairs objects
GappedAlignments

GappedAlignments constructor and accessors
Exercise 2
From GappedAlignments to GRanges or GRangesList

GappedAlignmentPairs

Advanced operations
Coverage and slicing
Finding/counting overlaps
Exercise 3

Final notes



DataFrame objects
DataFrame: An S4 version of data.frame that can hold almost anything it its columns.

Supported basic operations

I All the data.frame operations. Just manipulate a DataFrame as a data.frame!

I Coercion methods: from almost anything to DataFrame, and from DataFrame to
data.frame.

I Splitting: YES (produces a SplitDataFrameList object)

> library(Biostrings)
> dna <- DNAStringSet(c("AAA", "TGGATT", "CATTNGAGC", "TAATAG"))
> af <- alphabetFrequency(dna, baseOnly=TRUE)
> df <- DataFrame(dna, af)
> df

DataFrame with 4 rows and 6 columns
dna A C G T other

<DNAStringSet> <integer> <integer> <integer> <integer> <integer>
1 AAA 3 0 0 0 0
2 TGGATT 1 0 2 3 0
3 CATTNGAGC 2 2 2 2 1
4 TAATAG 3 0 1 2 0

> df$G

[1] 0 2 2 1



DataFrame objects (continued)

> df$cds_id <- paste("CDS", 1:4, sep="")
> df$cds_range <- successiveIRanges(width(dna), from=51)
> df

DataFrame with 4 rows and 8 columns
dna A C G T other cds_id

<DNAStringSet> <integer> <integer> <integer> <integer> <integer> <character>
1 AAA 3 0 0 0 0 CDS1
2 TGGATT 1 0 2 3 0 CDS2
3 CATTNGAGC 2 2 2 2 1 CDS3
4 TAATAG 3 0 1 2 0 CDS4
cds_range
<IRanges>

1 [51, 53]
2 [54, 59]
3 [60, 68]
4 [69, 74]

> as.data.frame(df)

dna A C G T other cds_id cds_range.start cds_range.end cds_range.width
1 AAA 3 0 0 0 0 CDS1 51 53 3
2 TGGATT 1 0 2 3 0 CDS2 54 59 6
3 CATTNGAGC 2 2 2 2 1 CDS3 60 68 9
4 TAATAG 3 0 1 2 0 CDS4 69 74 6



Introduction

Most frequently seen low-level containers
Rle objects
IRanges objects
DataFrame objects
Other frequently seen low-level containers

GRanges objects
GRanges constructor and accessors
Vector operations on GRanges objects
Ranges operations on GRanges objects
Splitting a GRanges object
Exercise 1

GRangesList objects
GRangesList constructor and accessors
Vector operations on GRangesList objects
List operations on GRangesList objects
Ranges operations on GRangesList objects

GappedAlignments and GappedAlignmentPairs objects
GappedAlignments

GappedAlignments constructor and accessors
Exercise 2
From GappedAlignments to GRanges or GRangesList

GappedAlignmentPairs

Advanced operations
Coverage and slicing
Finding/counting overlaps
Exercise 3

Final notes



CharacterList objects

An S4 virtual class for representing a list of character vectors.

Exists in 2 flavors (i.e. 2 different internal representations):

I CompressedCharacterList

I SimpleCharacterList

> ccl <- CharacterList(one=c("aaa", "bb", "c"), two=c("dd", "e", "fff", "gggg"))

> ccl

CompressedCharacterList of length 2
[["one"]] aaa bb c
[["two"]] dd e fff gggg

> length(ccl)

[1] 2

> names(ccl)

[1] "one" "two"

> as.list(ccl)

$one
[1] "aaa" "bb" "c"

$two
[1] "dd" "e" "fff" "gggg"

> ccl[[2]]

[1] "dd" "e" "fff" "gggg"



CharacterList objects (continued)

> toupper(ccl)

CompressedCharacterList of length 2
[["one"]] AAA BB C
[["two"]] DD E FFF GGGG

> elementLengths(ccl) # fast version of sapply(ccl, length)

one two
3 4

> unlist(ccl) # insane! will be changed soon...

one one one two two two two
"aaa" "bb" "c" "dd" "e" "fff" "gggg"

> unlist(ccl, use.names=FALSE)

[1] "aaa" "bb" "c" "dd" "e" "fff" "gggg"



IntegerList objects

An S4 virtual class for representing a list of integer vectors.

Exists in 2 flavors (i.e. 2 different internal representations):

I CompressedIntegerList

I SimpleIntegerList

> cil <- IntegerList(6:-2, 5, integer(0), 14:21)
> cil

CompressedIntegerList of length 4
[[1]] 6 5 4 3 2 1 0 -1 -2
[[2]] 5
[[3]] integer(0)
[[4]] 14 15 16 17 18 19 20 21

> cil * cil

CompressedIntegerList of length 4
[[1]] 36 25 16 9 4 1 0 1 4
[[2]] 25
[[3]] integer(0)
[[4]] 196 225 256 289 324 361 400 441



IntegerList objects (continued)

2 different ways to obtain the same result:

> cil * 100L - 2L

CompressedIntegerList of length 4
[[1]] 598 498 398 298 198 98 -2 -102 -202
[[2]] 498
[[3]] integer(0)
[[4]] 1398 1498 1598 1698 1798 1898 1998 2098

> relist(unlist(cil) * 100L - 2L, cil)

CompressedIntegerList of length 4
[[1]] 598 498 398 298 198 98 -2 -102 -202
[[2]] 498
[[3]] integer(0)
[[4]] 1398 1498 1598 1698 1798 1898 1998 2098

But the above trick would not work here:

> cumsum(cil)

CompressedNumericList of length 4
[[1]] 6 11 15 18 20 21 21 20 18
[[2]] 5
[[3]] numeric(0)
[[4]] 14 29 45 62 80 99 119 140



RleList, RleViews and RleViewsList objects

Typically seen when doing Coverage and slicing.

RleList: An S4 virtual class for representing a list of Rle objects. Exists in 2 flavors
(i.e. 2 different internal representations):

I CompressedRleList

I SimpleRleList

RleViews: An S4 class for representing a set of views (i.e. ranges) defined on an Rle

subject.

RleViewsList: An S4 virtual class for representing a list of RleViews objects. Exists
only in 1 flavor: SimpleRleViewsList.



Introduction

Most frequently seen low-level containers
Rle objects
IRanges objects
DataFrame objects
Other frequently seen low-level containers

GRanges objects
GRanges constructor and accessors
Vector operations on GRanges objects
Ranges operations on GRanges objects
Splitting a GRanges object
Exercise 1

GRangesList objects
GRangesList constructor and accessors
Vector operations on GRangesList objects
List operations on GRangesList objects
Ranges operations on GRangesList objects

GappedAlignments and GappedAlignmentPairs objects
GappedAlignments

GappedAlignments constructor and accessors
Exercise 2
From GappedAlignments to GRanges or GRangesList

GappedAlignmentPairs

Advanced operations
Coverage and slicing
Finding/counting overlaps
Exercise 3

Final notes



The purpose of the GRanges container is...

... to store a set of genomic ranges (aka genomic regions or genomic intervals).

I Like for IRanges objects, each range can be defined by a start and an end value.

I start and end are both 1-based positions relative to the 5’ end of the plus strand
of the chromosome (aka reference sequence), even when the range is on the
minus strand.

I The start is the leftmost position and the end is the rightmost, even when the
range is on the minus strand.

I Each range is assigned a chromosome name and a strand.

Supported basic operations

I Vector operations: YES

I List operations: NO

I Ranges operations: YES

I Coercion methods: to RangedData or IRangesList (both not covered in this
presentation)

I Splitting: YES (produces a GRangesList object)



Introduction

Most frequently seen low-level containers
Rle objects
IRanges objects
DataFrame objects
Other frequently seen low-level containers

GRanges objects
GRanges constructor and accessors
Vector operations on GRanges objects
Ranges operations on GRanges objects
Splitting a GRanges object
Exercise 1

GRangesList objects
GRangesList constructor and accessors
Vector operations on GRangesList objects
List operations on GRangesList objects
Ranges operations on GRangesList objects

GappedAlignments and GappedAlignmentPairs objects
GappedAlignments

GappedAlignments constructor and accessors
Exercise 2
From GappedAlignments to GRanges or GRangesList

GappedAlignmentPairs

Advanced operations
Coverage and slicing
Finding/counting overlaps
Exercise 3

Final notes



GRanges constructor

> library(GenomicRanges)
> gr1 <- GRanges(seqnames=rep(c("ch1", "chMT"), c(2, 4)),
+ ranges=IRanges(start=16:21, end=20),
+ strand=rep(c("+", "-", "*"), 2))
> gr1

GRanges with 6 ranges and 0 elementMetadata cols:
seqnames ranges strand

<Rle> <IRanges> <Rle>
[1] ch1 [16, 20] +
[2] ch1 [17, 20] -
[3] chMT [18, 20] *
[4] chMT [19, 20] +
[5] chMT [20, 20] -
[6] chMT [21, 20] *
---
seqlengths:
ch1 chMT
NA NA



GRanges accessors

> length(gr1)

[1] 6

> seqnames(gr1)

factor-Rle of length 6 with 2 runs
Lengths: 2 4
Values : ch1 chMT

Levels(2): ch1 chMT

> ranges(gr1)

IRanges of length 6
start end width

[1] 16 20 5
[2] 17 20 4
[3] 18 20 3
[4] 19 20 2
[5] 20 20 1
[6] 21 20 0



GRanges accessors (continued)

> start(gr1)

[1] 16 17 18 19 20 21

> end(gr1)

[1] 20 20 20 20 20 20

> width(gr1)

[1] 5 4 3 2 1 0

> strand(gr1)

factor-Rle of length 6 with 6 runs
Lengths: 1 1 1 1 1 1
Values : + - * + - *

Levels(3): + - *

> strand(gr1) <- c("-", "-", "+")
> strand(gr1)

factor-Rle of length 6 with 4 runs
Lengths: 2 1 2 1
Values : - + - +

Levels(3): + - *



GRanges accessors (continued)

> names(gr1) <- LETTERS[1:6]

> names(gr1)

[1] "A" "B" "C" "D" "E" "F"

> elementMetadata(gr1) <- DataFrame(score=11:16, GC=seq(1, 0, length=6))

> elementMetadata(gr1)

DataFrame with 6 rows and 2 columns

score GC

<integer> <numeric>

1 11 1.0

2 12 0.8

3 13 0.6

4 14 0.4

5 15 0.2

6 16 0.0

> gr1

GRanges with 6 ranges and 2 elementMetadata cols:

seqnames ranges strand | score GC

<Rle> <IRanges> <Rle> | <integer> <numeric>

A ch1 [16, 20] - | 11 1

B ch1 [17, 20] - | 12 0.8

C chMT [18, 20] + | 13 0.6

D chMT [19, 20] - | 14 0.4

E chMT [20, 20] - | 15 0.2

F chMT [21, 20] + | 16 0

---

seqlengths:

ch1 chMT

NA NA



GRanges accessors (continued)

> seqinfo(gr1)

Seqinfo of length 2

seqnames seqlengths isCircular genome

ch1 NA NA <NA>

chMT NA NA <NA>

> seqlevels(gr1)

[1] "ch1" "chMT"

> seqlengths(gr1)

ch1 chMT

NA NA

> seqlengths(gr1) <- c(50000, 800)

> seqlengths(gr1)

ch1 chMT

50000 800



Introduction

Most frequently seen low-level containers
Rle objects
IRanges objects
DataFrame objects
Other frequently seen low-level containers

GRanges objects
GRanges constructor and accessors
Vector operations on GRanges objects
Ranges operations on GRanges objects
Splitting a GRanges object
Exercise 1

GRangesList objects
GRangesList constructor and accessors
Vector operations on GRangesList objects
List operations on GRangesList objects
Ranges operations on GRangesList objects

GappedAlignments and GappedAlignmentPairs objects
GappedAlignments

GappedAlignments constructor and accessors
Exercise 2
From GappedAlignments to GRanges or GRangesList

GappedAlignmentPairs

Advanced operations
Coverage and slicing
Finding/counting overlaps
Exercise 3

Final notes



Vector operations on GRanges objects

> gr1[c("F", "A")]

GRanges with 2 ranges and 2 elementMetadata cols:
seqnames ranges strand | score GC

<Rle> <IRanges> <Rle> | <integer> <numeric>
F chMT [21, 20] + | 16 0
A ch1 [16, 20] - | 11 1
---
seqlengths:

ch1 chMT
50000 800

> gr1[strand(gr1) == "+"]

GRanges with 2 ranges and 2 elementMetadata cols:
seqnames ranges strand | score GC

<Rle> <IRanges> <Rle> | <integer> <numeric>
C chMT [18, 20] + | 13 0.6
F chMT [21, 20] + | 16 0
---
seqlengths:

ch1 chMT
50000 800



Vector operations on GRanges objects (continued)

> gr1 <- gr1[-5]
> gr1

GRanges with 5 ranges and 2 elementMetadata cols:
seqnames ranges strand | score GC

<Rle> <IRanges> <Rle> | <integer> <numeric>
A ch1 [16, 20] - | 11 1
B ch1 [17, 20] - | 12 0.8
C chMT [18, 20] + | 13 0.6
D chMT [19, 20] - | 14 0.4
F chMT [21, 20] + | 16 0
---
seqlengths:

ch1 chMT
50000 800



Vector operations on GRanges objects (continued)

> gr2 <- GRanges(seqnames="ch2",
+ ranges=IRanges(start=c(2:1,2), width=6),
+ score=15:13,
+ GC=seq(0, 0.4, length=3))
> gr12 <- c(gr1, gr2)
> gr12

GRanges with 8 ranges and 2 elementMetadata cols:
seqnames ranges strand | score GC

<Rle> <IRanges> <Rle> | <integer> <numeric>
A ch1 [16, 20] - | 11 1
B ch1 [17, 20] - | 12 0.8
C chMT [18, 20] + | 13 0.6
D chMT [19, 20] - | 14 0.4
F chMT [21, 20] + | 16 0

ch2 [ 2, 7] * | 15 0
ch2 [ 1, 6] * | 14 0.2
ch2 [ 2, 7] * | 13 0.4

---
seqlengths:

ch1 chMT ch2
50000 800 NA



Vector operations on GRanges objects (continued)

> gr12[length(gr12)] == gr12

[1] FALSE FALSE FALSE FALSE FALSE TRUE FALSE TRUE

> duplicated(gr12)

[1] FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE

> unique(gr12)

GRanges with 7 ranges and 2 elementMetadata cols:
seqnames ranges strand | score GC

<Rle> <IRanges> <Rle> | <integer> <numeric>
A ch1 [16, 20] - | 11 1
B ch1 [17, 20] - | 12 0.8
C chMT [18, 20] + | 13 0.6
D chMT [19, 20] - | 14 0.4
F chMT [21, 20] + | 16 0
6 ch2 [ 2, 7] * | 15 0
7 ch2 [ 1, 6] * | 14 0.2
---
seqlengths:

ch1 chMT ch2
50000 800 NA



Vector operations on GRanges objects (continued)

> sort(gr12)

GRanges with 8 ranges and 2 elementMetadata cols:
seqnames ranges strand | score GC

<Rle> <IRanges> <Rle> | <integer> <numeric>
A ch1 [16, 20] - | 11 1
B ch1 [17, 20] - | 12 0.8
C chMT [18, 20] + | 13 0.6
F chMT [21, 20] + | 16 0
D chMT [19, 20] - | 14 0.4
6 ch2 [ 1, 6] * | 14 0.2
7 ch2 [ 2, 7] * | 15 0
8 ch2 [ 2, 7] * | 13 0.4
---
seqlengths:

ch1 chMT ch2
50000 800 NA



Introduction

Most frequently seen low-level containers
Rle objects
IRanges objects
DataFrame objects
Other frequently seen low-level containers

GRanges objects
GRanges constructor and accessors
Vector operations on GRanges objects
Ranges operations on GRanges objects
Splitting a GRanges object
Exercise 1

GRangesList objects
GRangesList constructor and accessors
Vector operations on GRangesList objects
List operations on GRangesList objects
Ranges operations on GRangesList objects

GappedAlignments and GappedAlignmentPairs objects
GappedAlignments

GappedAlignments constructor and accessors
Exercise 2
From GappedAlignments to GRanges or GRangesList

GappedAlignmentPairs

Advanced operations
Coverage and slicing
Finding/counting overlaps
Exercise 3

Final notes



Ranges operations on GRanges objects

> gr2

GRanges with 3 ranges and 2 elementMetadata cols:

seqnames ranges strand | score GC

<Rle> <IRanges> <Rle> | <integer> <numeric>

[1] ch2 [2, 7] * | 15 0

[2] ch2 [1, 6] * | 14 0.2

[3] ch2 [2, 7] * | 13 0.4

---

seqlengths:

ch2

NA

> shift(gr2, 50)

GRanges with 3 ranges and 2 elementMetadata cols:

seqnames ranges strand | score GC

<Rle> <IRanges> <Rle> | <integer> <numeric>

[1] ch2 [52, 57] * | 15 0

[2] ch2 [51, 56] * | 14 0.2

[3] ch2 [52, 57] * | 13 0.4

---

seqlengths:

ch2

NA

> narrow(gr2, start=2, end=-2)

GRanges with 3 ranges and 2 elementMetadata cols:

seqnames ranges strand | score GC

<Rle> <IRanges> <Rle> | <integer> <numeric>

[1] ch2 [3, 6] * | 15 0

[2] ch2 [2, 5] * | 14 0.2

[3] ch2 [3, 6] * | 13 0.4

---

seqlengths:

ch2

NA



Ranges operations on GRanges objects (continued)

> gr1

GRanges with 5 ranges and 2 elementMetadata cols:
seqnames ranges strand | score GC

<Rle> <IRanges> <Rle> | <integer> <numeric>
A ch1 [16, 20] - | 11 1
B ch1 [17, 20] - | 12 0.8
C chMT [18, 20] + | 13 0.6
D chMT [19, 20] - | 14 0.4
F chMT [21, 20] + | 16 0
---
seqlengths:

ch1 chMT
50000 800

> resize(gr1, 12)

GRanges with 5 ranges and 2 elementMetadata cols:
seqnames ranges strand | score GC

<Rle> <IRanges> <Rle> | <integer> <numeric>
A ch1 [ 9, 20] - | 11 1
B ch1 [ 9, 20] - | 12 0.8
C chMT [18, 29] + | 13 0.6
D chMT [ 9, 20] - | 14 0.4
F chMT [21, 32] + | 16 0
---
seqlengths:

ch1 chMT
50000 800



Ranges operations on GRanges objects (continued)

> gr1

GRanges with 5 ranges and 2 elementMetadata cols:
seqnames ranges strand | score GC

<Rle> <IRanges> <Rle> | <integer> <numeric>
A ch1 [16, 20] - | 11 1
B ch1 [17, 20] - | 12 0.8
C chMT [18, 20] + | 13 0.6
D chMT [19, 20] - | 14 0.4
F chMT [21, 20] + | 16 0
---
seqlengths:

ch1 chMT
50000 800

> flank(gr1, 3)

GRanges with 5 ranges and 2 elementMetadata cols:
seqnames ranges strand | score GC

<Rle> <IRanges> <Rle> | <integer> <numeric>
A ch1 [21, 23] - | 11 1
B ch1 [21, 23] - | 12 0.8
C chMT [15, 17] + | 13 0.6
D chMT [21, 23] - | 14 0.4
F chMT [18, 20] + | 16 0
---
seqlengths:

ch1 chMT
50000 800



Ranges operations on GRanges objects (continued)

> gr3 <- shift(gr1, c(35000, rep(0, 3), 100))
> width(gr3)[c(3,5)] <- 117
> gr3

GRanges with 5 ranges and 2 elementMetadata cols:
seqnames ranges strand | score GC

<Rle> <IRanges> <Rle> | <integer> <numeric>
A ch1 [35016, 35020] - | 11 1
B ch1 [ 17, 20] - | 12 0.8
C chMT [ 18, 134] + | 13 0.6
D chMT [ 19, 20] - | 14 0.4
F chMT [ 120, 236] + | 16 0
---
seqlengths:

ch1 chMT
50000 800

> range(gr3)

GRanges with 3 ranges and 0 elementMetadata cols:
seqnames ranges strand

<Rle> <IRanges> <Rle>
[1] ch1 [17, 35020] -
[2] chMT [18, 236] +
[3] chMT [19, 20] -
---
seqlengths:

ch1 chMT
50000 800



Ranges operations on GRanges objects (continued)

> gr3

GRanges with 5 ranges and 2 elementMetadata cols:

seqnames ranges strand | score GC

<Rle> <IRanges> <Rle> | <integer> <numeric>

A ch1 [35016, 35020] - | 11 1

B ch1 [ 17, 20] - | 12 0.8

C chMT [ 18, 134] + | 13 0.6

D chMT [ 19, 20] - | 14 0.4

F chMT [ 120, 236] + | 16 0

---

seqlengths:

ch1 chMT

50000 800

> disjoin(gr3)

GRanges with 6 ranges and 0 elementMetadata cols:

seqnames ranges strand

<Rle> <IRanges> <Rle>

[1] ch1 [ 17, 20] -

[2] ch1 [35016, 35020] -

[3] chMT [ 18, 119] +

[4] chMT [ 120, 134] +

[5] chMT [ 135, 236] +

[6] chMT [ 19, 20] -

---

seqlengths:

ch1 chMT

50000 800



Ranges operations on GRanges objects (continued)

> gr3

GRanges with 5 ranges and 2 elementMetadata cols:
seqnames ranges strand | score GC

<Rle> <IRanges> <Rle> | <integer> <numeric>
A ch1 [35016, 35020] - | 11 1
B ch1 [ 17, 20] - | 12 0.8
C chMT [ 18, 134] + | 13 0.6
D chMT [ 19, 20] - | 14 0.4
F chMT [ 120, 236] + | 16 0
---
seqlengths:

ch1 chMT
50000 800

> reduce(gr3)

GRanges with 4 ranges and 0 elementMetadata cols:
seqnames ranges strand

<Rle> <IRanges> <Rle>
[1] ch1 [ 17, 20] -
[2] ch1 [35016, 35020] -
[3] chMT [ 18, 236] +
[4] chMT [ 19, 20] -
---
seqlengths:

ch1 chMT
50000 800



Ranges operations on GRanges objects (continued)

> gr3

GRanges with 5 ranges and 2 elementMetadata cols:

seqnames ranges strand | score GC

<Rle> <IRanges> <Rle> | <integer> <numeric>

A ch1 [35016, 35020] - | 11 1

B ch1 [ 17, 20] - | 12 0.8

C chMT [ 18, 134] + | 13 0.6

D chMT [ 19, 20] - | 14 0.4

F chMT [ 120, 236] + | 16 0

---

seqlengths:

ch1 chMT

50000 800

> gaps(gr3)

GRanges with 10 ranges and 0 elementMetadata cols:

seqnames ranges strand

<Rle> <IRanges> <Rle>

[1] ch1 [ 1, 50000] +

[2] ch1 [ 1, 16] -

[3] ch1 [ 21, 35015] -

[4] ch1 [35021, 50000] -

[5] ch1 [ 1, 50000] *

[6] chMT [ 1, 17] +

[7] chMT [ 237, 800] +

[8] chMT [ 1, 18] -

[9] chMT [ 21, 800] -

[10] chMT [ 1, 800] *

---

seqlengths:

ch1 chMT

50000 800



Introduction

Most frequently seen low-level containers
Rle objects
IRanges objects
DataFrame objects
Other frequently seen low-level containers

GRanges objects
GRanges constructor and accessors
Vector operations on GRanges objects
Ranges operations on GRanges objects
Splitting a GRanges object
Exercise 1

GRangesList objects
GRangesList constructor and accessors
Vector operations on GRangesList objects
List operations on GRangesList objects
Ranges operations on GRangesList objects

GappedAlignments and GappedAlignmentPairs objects
GappedAlignments

GappedAlignments constructor and accessors
Exercise 2
From GappedAlignments to GRanges or GRangesList

GappedAlignmentPairs

Advanced operations
Coverage and slicing
Finding/counting overlaps
Exercise 3

Final notes



Splitting a GRanges object

> split(gr3, seqnames(gr3))

GRangesList of length 2:
$ch1
GRanges with 2 ranges and 2 elementMetadata cols:

seqnames ranges strand | score GC
<Rle> <IRanges> <Rle> | <integer> <numeric>

A ch1 [35016, 35020] - | 11 1
B ch1 [ 17, 20] - | 12 0.8

$chMT
GRanges with 3 ranges and 2 elementMetadata cols:

seqnames ranges strand | score GC
C chMT [ 18, 134] + | 13 0.6
D chMT [ 19, 20] - | 14 0.4
F chMT [120, 236] + | 16 0

---
seqlengths:

ch1 chMT
50000 800



Introduction

Most frequently seen low-level containers
Rle objects
IRanges objects
DataFrame objects
Other frequently seen low-level containers

GRanges objects
GRanges constructor and accessors
Vector operations on GRanges objects
Ranges operations on GRanges objects
Splitting a GRanges object
Exercise 1

GRangesList objects
GRangesList constructor and accessors
Vector operations on GRangesList objects
List operations on GRangesList objects
Ranges operations on GRangesList objects

GappedAlignments and GappedAlignmentPairs objects
GappedAlignments

GappedAlignments constructor and accessors
Exercise 2
From GappedAlignments to GRanges or GRangesList

GappedAlignmentPairs

Advanced operations
Coverage and slicing
Finding/counting overlaps
Exercise 3

Final notes



Exercise 1

a. Load the GenomicRanges package.

b. Open the man page for the GRanges class and run the examples in it.

c. Shift the ranges in gr by 1000 positions to the right.

d. What method is called when doing shift() on a GRanges object? Find the man
page for this method.



Introduction

Most frequently seen low-level containers
Rle objects
IRanges objects
DataFrame objects
Other frequently seen low-level containers

GRanges objects
GRanges constructor and accessors
Vector operations on GRanges objects
Ranges operations on GRanges objects
Splitting a GRanges object
Exercise 1

GRangesList objects
GRangesList constructor and accessors
Vector operations on GRangesList objects
List operations on GRangesList objects
Ranges operations on GRangesList objects

GappedAlignments and GappedAlignmentPairs objects
GappedAlignments

GappedAlignments constructor and accessors
Exercise 2
From GappedAlignments to GRanges or GRangesList

GappedAlignmentPairs

Advanced operations
Coverage and slicing
Finding/counting overlaps
Exercise 3

Final notes



The purpose of the GRangesList container is...

... to store a list of compatible GRanges objects.

compatible means:

I they are relative to the same genome,

I AND they have the same columns in their elementMetadata slot.

Supported basic operations

I Vector operations: partially supported (no comparing or ordering)

I List operations: YES

I Ranges operations: partially supported (some operations like disjoin() or gaps()

are missing but they could/will be added)

I Coercion methods: to IRangesList (not covered in this presentation)

I Splitting: NO



Introduction

Most frequently seen low-level containers
Rle objects
IRanges objects
DataFrame objects
Other frequently seen low-level containers

GRanges objects
GRanges constructor and accessors
Vector operations on GRanges objects
Ranges operations on GRanges objects
Splitting a GRanges object
Exercise 1

GRangesList objects
GRangesList constructor and accessors
Vector operations on GRangesList objects
List operations on GRangesList objects
Ranges operations on GRangesList objects

GappedAlignments and GappedAlignmentPairs objects
GappedAlignments

GappedAlignments constructor and accessors
Exercise 2
From GappedAlignments to GRanges or GRangesList

GappedAlignmentPairs

Advanced operations
Coverage and slicing
Finding/counting overlaps
Exercise 3

Final notes



GRangesList constructor

> grl <- GRangesList(gr3, gr2)
> grl

GRangesList of length 2:
[[1]]
GRanges with 5 ranges and 2 elementMetadata cols:

seqnames ranges strand | score GC
<Rle> <IRanges> <Rle> | <integer> <numeric>

A ch1 [35016, 35020] - | 11 1
B ch1 [ 17, 20] - | 12 0.8
C chMT [ 18, 134] + | 13 0.6
D chMT [ 19, 20] - | 14 0.4
F chMT [ 120, 236] + | 16 0

[[2]]
GRanges with 3 ranges and 2 elementMetadata cols:

seqnames ranges strand | score GC
1 ch2 [2, 7] * | 15 0
2 ch2 [1, 6] * | 14 0.2
3 ch2 [2, 7] * | 13 0.4

---
seqlengths:

ch1 chMT ch2
50000 800 NA



GRangesList accessors

> length(grl)

[1] 2

> seqnames(grl)

CompressedRleList of length 2
[[1]]
factor-Rle of length 5 with 2 runs

Lengths: 2 3
Values : ch1 chMT

Levels(3): ch1 chMT ch2

[[2]]
factor-Rle of length 3 with 1 run
Lengths: 3
Values : ch2

Levels(3): ch1 chMT ch2

> strand(grl)

CompressedRleList of length 2
[[1]]
factor-Rle of length 5 with 4 runs

Lengths: 2 1 1 1
Values : - + - +

Levels(3): + - *

[[2]]
factor-Rle of length 3 with 1 run

Lengths: 3
Values : *

Levels(3): + - *



GRangesList accessors (continued)

> ranges(grl)

CompressedIRangesList of length 2
[[1]]
IRanges of length 5

start end width names
[1] 35016 35020 5 A
[2] 17 20 4 B
[3] 18 134 117 C
[4] 19 20 2 D
[5] 120 236 117 F

[[2]]
IRanges of length 3

start end width names
[1] 2 7 6
[2] 1 6 6
[3] 2 7 6

> start(grl)

CompressedIntegerList of length 2
[[1]] 35016 17 18 19 120
[[2]] 2 1 2

> end(grl)

CompressedIntegerList of length 2
[[1]] 35020 20 134 20 236
[[2]] 7 6 7

> width(grl)

CompressedIntegerList of length 2
[[1]] 5 4 117 2 117
[[2]] 6 6 6



GRangesList accessors (continued)

> names(grl) <- c("TX1", "TX2")
> grl

GRangesList of length 2:
$TX1
GRanges with 5 ranges and 2 elementMetadata cols:

seqnames ranges strand | score GC
<Rle> <IRanges> <Rle> | <integer> <numeric>

A ch1 [35016, 35020] - | 11 1
B ch1 [ 17, 20] - | 12 0.8
C chMT [ 18, 134] + | 13 0.6
D chMT [ 19, 20] - | 14 0.4
F chMT [ 120, 236] + | 16 0

$TX2
GRanges with 3 ranges and 2 elementMetadata cols:

seqnames ranges strand | score GC
1 ch2 [2, 7] * | 15 0
2 ch2 [1, 6] * | 14 0.2
3 ch2 [2, 7] * | 13 0.4

---
seqlengths:

ch1 chMT ch2
50000 800 NA



GRangesList accessors (continued)

> elementMetadata(grl)$geneid <- c("GENE1", "GENE2")

> elementMetadata(grl)

DataFrame with 2 rows and 1 column

geneid

<character>

1 GENE1

2 GENE2

> grl

GRangesList of length 2:

$TX1

GRanges with 5 ranges and 2 elementMetadata cols:

seqnames ranges strand | score GC

<Rle> <IRanges> <Rle> | <integer> <numeric>

A ch1 [35016, 35020] - | 11 1

B ch1 [ 17, 20] - | 12 0.8

C chMT [ 18, 134] + | 13 0.6

D chMT [ 19, 20] - | 14 0.4

F chMT [ 120, 236] + | 16 0

$TX2

GRanges with 3 ranges and 2 elementMetadata cols:

seqnames ranges strand | score GC

1 ch2 [2, 7] * | 15 0

2 ch2 [1, 6] * | 14 0.2

3 ch2 [2, 7] * | 13 0.4

---

seqlengths:

ch1 chMT ch2

50000 800 NA



GRangesList accessors (continued)

> seqinfo(grl)

Seqinfo of length 3

seqnames seqlengths isCircular genome

ch1 50000 NA <NA>

chMT 800 NA <NA>

ch2 NA NA <NA>



Introduction

Most frequently seen low-level containers
Rle objects
IRanges objects
DataFrame objects
Other frequently seen low-level containers

GRanges objects
GRanges constructor and accessors
Vector operations on GRanges objects
Ranges operations on GRanges objects
Splitting a GRanges object
Exercise 1

GRangesList objects
GRangesList constructor and accessors
Vector operations on GRangesList objects
List operations on GRangesList objects
Ranges operations on GRangesList objects

GappedAlignments and GappedAlignmentPairs objects
GappedAlignments

GappedAlignments constructor and accessors
Exercise 2
From GappedAlignments to GRanges or GRangesList

GappedAlignmentPairs

Advanced operations
Coverage and slicing
Finding/counting overlaps
Exercise 3

Final notes



Vector operations on GRangesList objects

> grl[c("TX2", "TX1")]

GRangesList of length 2:
$TX2
GRanges with 3 ranges and 2 elementMetadata cols:

seqnames ranges strand | score GC
<Rle> <IRanges> <Rle> | <integer> <numeric>

1 ch2 [2, 7] * | 15 0
2 ch2 [1, 6] * | 14 0.2
3 ch2 [2, 7] * | 13 0.4

$TX1
GRanges with 5 ranges and 2 elementMetadata cols:

seqnames ranges strand | score GC
A ch1 [35016, 35020] - | 11 1
B ch1 [ 17, 20] - | 12 0.8
C chMT [ 18, 134] + | 13 0.6
D chMT [ 19, 20] - | 14 0.4
F chMT [ 120, 236] + | 16 0

---
seqlengths:

ch1 chMT ch2
50000 800 NA



Vector operations on GRangesList objects (continued)

> c(grl, GRangesList(gr3))

GRangesList of length 3:

$TX1

GRanges with 5 ranges and 2 elementMetadata cols:

seqnames ranges strand | score GC

<Rle> <IRanges> <Rle> | <integer> <numeric>

A ch1 [35016, 35020] - | 11 1

B ch1 [ 17, 20] - | 12 0.8

C chMT [ 18, 134] + | 13 0.6

D chMT [ 19, 20] - | 14 0.4

F chMT [ 120, 236] + | 16 0

$TX2

GRanges with 3 ranges and 2 elementMetadata cols:

seqnames ranges strand | score GC

1 ch2 [2, 7] * | 15 0

2 ch2 [1, 6] * | 14 0.2

3 ch2 [2, 7] * | 13 0.4

[[3]]

GRanges with 5 ranges and 2 elementMetadata cols:

seqnames ranges strand | score GC

A ch1 [35016, 35020] - | 11 1

B ch1 [ 17, 20] - | 12 0.8

C chMT [ 18, 134] + | 13 0.6

D chMT [ 19, 20] - | 14 0.4

F chMT [ 120, 236] + | 16 0

---

seqlengths:

ch1 chMT ch2

50000 800 NA



Introduction

Most frequently seen low-level containers
Rle objects
IRanges objects
DataFrame objects
Other frequently seen low-level containers

GRanges objects
GRanges constructor and accessors
Vector operations on GRanges objects
Ranges operations on GRanges objects
Splitting a GRanges object
Exercise 1

GRangesList objects
GRangesList constructor and accessors
Vector operations on GRangesList objects
List operations on GRangesList objects
Ranges operations on GRangesList objects

GappedAlignments and GappedAlignmentPairs objects
GappedAlignments

GappedAlignments constructor and accessors
Exercise 2
From GappedAlignments to GRanges or GRangesList

GappedAlignmentPairs

Advanced operations
Coverage and slicing
Finding/counting overlaps
Exercise 3

Final notes



List operations on GRangesList objects

> grl[[2]]

GRanges with 3 ranges and 2 elementMetadata cols:

seqnames ranges strand | score GC

<Rle> <IRanges> <Rle> | <integer> <numeric>

1 ch2 [2, 7] * | 15 0

2 ch2 [1, 6] * | 14 0.2

3 ch2 [2, 7] * | 13 0.4

---

seqlengths:

ch1 chMT ch2

50000 800 NA

> elementLengths(grl)

TX1 TX2

5 3

> unlisted <- unlist(grl, use.names=FALSE) # same as c(grl[[1]], grl[[2]])

> unlisted

GRanges with 8 ranges and 2 elementMetadata cols:

seqnames ranges strand | score GC

<Rle> <IRanges> <Rle> | <integer> <numeric>

A ch1 [35016, 35020] - | 11 1

B ch1 [ 17, 20] - | 12 0.8

C chMT [ 18, 134] + | 13 0.6

D chMT [ 19, 20] - | 14 0.4

F chMT [ 120, 236] + | 16 0

ch2 [ 2, 7] * | 15 0

ch2 [ 1, 6] * | 14 0.2

ch2 [ 2, 7] * | 13 0.4

---

seqlengths:

ch1 chMT ch2

50000 800 NA



List operations on GRangesList objects (continued)

> grl100 <- relist(shift(unlisted, 100), grl)
> grl100

GRangesList of length 2:
$TX1
GRanges with 5 ranges and 2 elementMetadata cols:

seqnames ranges strand | score GC
<Rle> <IRanges> <Rle> | <integer> <numeric>

A ch1 [35116, 35120] - | 11 1
B ch1 [ 117, 120] - | 12 0.8
C chMT [ 118, 234] + | 13 0.6
D chMT [ 119, 120] - | 14 0.4
F chMT [ 220, 336] + | 16 0

$TX2
GRanges with 3 ranges and 2 elementMetadata cols:

seqnames ranges strand | score GC
1 ch2 [102, 107] * | 15 0
2 ch2 [101, 106] * | 14 0.2
3 ch2 [102, 107] * | 13 0.4

---
seqlengths:

ch1 chMT ch2
50000 800 NA



List operations on GRangesList objects (continued)

> grl100b <- endoapply(grl, shift, 100)

> grl100b

GRangesList of length 2:

$TX1

GRanges with 5 ranges and 2 elementMetadata cols:

seqnames ranges strand | score GC

<Rle> <IRanges> <Rle> | <integer> <numeric>

A ch1 [35116, 35120] - | 11 1

B ch1 [ 117, 120] - | 12 0.8

C chMT [ 118, 234] + | 13 0.6

D chMT [ 119, 120] - | 14 0.4

F chMT [ 220, 336] + | 16 0

$TX2

GRanges with 3 ranges and 2 elementMetadata cols:

seqnames ranges strand | score GC

1 ch2 [102, 107] * | 15 0

2 ch2 [101, 106] * | 14 0.2

3 ch2 [102, 107] * | 13 0.4

---

seqlengths:

ch1 chMT ch2

50000 800 NA

> elementMetadata(grl100)

DataFrame with 2 rows and 0 columns

> elementMetadata(grl100b)

DataFrame with 2 rows and 1 column

geneid

<character>

1 GENE1

2 GENE2



Introduction

Most frequently seen low-level containers
Rle objects
IRanges objects
DataFrame objects
Other frequently seen low-level containers

GRanges objects
GRanges constructor and accessors
Vector operations on GRanges objects
Ranges operations on GRanges objects
Splitting a GRanges object
Exercise 1

GRangesList objects
GRangesList constructor and accessors
Vector operations on GRangesList objects
List operations on GRangesList objects
Ranges operations on GRangesList objects

GappedAlignments and GappedAlignmentPairs objects
GappedAlignments

GappedAlignments constructor and accessors
Exercise 2
From GappedAlignments to GRanges or GRangesList

GappedAlignmentPairs

Advanced operations
Coverage and slicing
Finding/counting overlaps
Exercise 3

Final notes



Ranges operations on GRangesList objects

> grl

GRangesList of length 2:

$TX1

GRanges with 5 ranges and 2 elementMetadata cols:

seqnames ranges strand | score GC

<Rle> <IRanges> <Rle> | <integer> <numeric>

A ch1 [35016, 35020] - | 11 1

B ch1 [ 17, 20] - | 12 0.8

C chMT [ 18, 134] + | 13 0.6

D chMT [ 19, 20] - | 14 0.4

F chMT [ 120, 236] + | 16 0

$TX2

GRanges with 3 ranges and 2 elementMetadata cols:

seqnames ranges strand | score GC

1 ch2 [2, 7] * | 15 0

2 ch2 [1, 6] * | 14 0.2

3 ch2 [2, 7] * | 13 0.4

---

seqlengths:

ch1 chMT ch2

50000 800 NA

> shift(grl, 100)

GRangesList of length 2:

$TX1

GRanges with 5 ranges and 2 elementMetadata cols:

seqnames ranges strand | score GC

<Rle> <IRanges> <Rle> | <integer> <numeric>

A ch1 [35116, 35120] - | 11 1

B ch1 [ 117, 120] - | 12 0.8

C chMT [ 118, 234] + | 13 0.6

D chMT [ 119, 120] - | 14 0.4

F chMT [ 220, 336] + | 16 0

$TX2

GRanges with 3 ranges and 2 elementMetadata cols:

seqnames ranges strand | score GC

1 ch2 [102, 107] * | 15 0

2 ch2 [101, 106] * | 14 0.2

3 ch2 [102, 107] * | 13 0.4

---

seqlengths:

ch1 chMT ch2

50000 800 NA

shift(grl, 100) is equivalent to endoapply(grl, shift, 100)



Ranges operations on GRangesList objects (continued)

> grl

GRangesList of length 2:

$TX1

GRanges with 5 ranges and 2 elementMetadata cols:

seqnames ranges strand | score GC

<Rle> <IRanges> <Rle> | <integer> <numeric>

A ch1 [35016, 35020] - | 11 1

B ch1 [ 17, 20] - | 12 0.8

C chMT [ 18, 134] + | 13 0.6

D chMT [ 19, 20] - | 14 0.4

F chMT [ 120, 236] + | 16 0

$TX2

GRanges with 3 ranges and 2 elementMetadata cols:

seqnames ranges strand | score GC

1 ch2 [2, 7] * | 15 0

2 ch2 [1, 6] * | 14 0.2

3 ch2 [2, 7] * | 13 0.4

---

seqlengths:

ch1 chMT ch2

50000 800 NA

> flank(grl, 10)

GRangesList of length 2:

$TX1

GRanges with 5 ranges and 2 elementMetadata cols:

seqnames ranges strand | score GC

<Rle> <IRanges> <Rle> | <integer> <numeric>

A ch1 [35021, 35030] - | 11 1

B ch1 [ 21, 30] - | 12 0.8

C chMT [ 8, 17] + | 13 0.6

D chMT [ 21, 30] - | 14 0.4

F chMT [ 110, 119] + | 16 0

$TX2

GRanges with 3 ranges and 2 elementMetadata cols:

seqnames ranges strand | score GC

1 ch2 [-8, 1] * | 15 0

2 ch2 [-9, 0] * | 14 0.2

3 ch2 [-8, 1] * | 13 0.4

---

seqlengths:

ch1 chMT ch2

50000 800 NA

flank(grl, 10) is equivalent to endoapply(grl, flank, 10)



Ranges operations on GRangesList objects (continued)

> grl

GRangesList of length 2:

$TX1

GRanges with 5 ranges and 2 elementMetadata cols:

seqnames ranges strand | score GC

<Rle> <IRanges> <Rle> | <integer> <numeric>

A ch1 [35016, 35020] - | 11 1

B ch1 [ 17, 20] - | 12 0.8

C chMT [ 18, 134] + | 13 0.6

D chMT [ 19, 20] - | 14 0.4

F chMT [ 120, 236] + | 16 0

$TX2

GRanges with 3 ranges and 2 elementMetadata cols:

seqnames ranges strand | score GC

1 ch2 [2, 7] * | 15 0

2 ch2 [1, 6] * | 14 0.2

3 ch2 [2, 7] * | 13 0.4

---

seqlengths:

ch1 chMT ch2

50000 800 NA

> range(grl)

GRangesList of length 2:

$TX1

GRanges with 3 ranges and 0 elementMetadata cols:

seqnames ranges strand

<Rle> <IRanges> <Rle>

[1] ch1 [17, 35020] -

[2] chMT [18, 236] +

[3] chMT [19, 20] -

$TX2

GRanges with 1 range and 0 elementMetadata cols:

seqnames ranges strand

[1] ch2 [1, 7] *

---

seqlengths:

ch1 chMT ch2

50000 800 NA

range(grl) is equivalent to endoapply(grl, range)



Ranges operations on GRangesList objects (continued)

> grl

GRangesList of length 2:

$TX1

GRanges with 5 ranges and 2 elementMetadata cols:

seqnames ranges strand | score GC

<Rle> <IRanges> <Rle> | <integer> <numeric>

A ch1 [35016, 35020] - | 11 1

B ch1 [ 17, 20] - | 12 0.8

C chMT [ 18, 134] + | 13 0.6

D chMT [ 19, 20] - | 14 0.4

F chMT [ 120, 236] + | 16 0

$TX2

GRanges with 3 ranges and 2 elementMetadata cols:

seqnames ranges strand | score GC

1 ch2 [2, 7] * | 15 0

2 ch2 [1, 6] * | 14 0.2

3 ch2 [2, 7] * | 13 0.4

---

seqlengths:

ch1 chMT ch2

50000 800 NA

> reduce(grl)

GRangesList of length 2:

$TX1

GRanges with 4 ranges and 0 elementMetadata cols:

seqnames ranges strand

<Rle> <IRanges> <Rle>

[1] ch1 [ 17, 20] -

[2] ch1 [35016, 35020] -

[3] chMT [ 18, 236] +

[4] chMT [ 19, 20] -

$TX2

GRanges with 1 range and 0 elementMetadata cols:

seqnames ranges strand

[1] ch2 [1, 7] *

---

seqlengths:

ch1 chMT ch2

50000 800 NA

reduce(grl) is equivalent to endoapply(grl, reduce)



Ranges operations on GRangesList objects (continued)

> grl2

GRangesList of length 2:

$TX1

GRanges with 1 range and 2 elementMetadata cols:

seqnames ranges strand | score GC

<Rle> <IRanges> <Rle> | <integer> <numeric>

C chMT [18, 134] + | 13 0.6

$TX2

GRanges with 1 range and 2 elementMetadata cols:

seqnames ranges strand | score GC

1 ch2 [2, 7] * | 15 0

---

seqlengths:

ch1 chMT ch2

50000 800 NA

> grl3

GRangesList of length 2:

[[1]]

GRanges with 1 range and 2 elementMetadata cols:

seqnames ranges strand | score GC

<Rle> <IRanges> <Rle> | <integer> <numeric>

1 chMT [22, 130] + | 13 0.6

[[2]]

GRanges with 1 range and 2 elementMetadata cols:

seqnames ranges strand | score GC

1 ch2 [2, 7] * | 15 0

---

seqlengths:

ch1 chMT ch2

50000 800 NA

> psetdiff(grl2, grl3)

GRangesList of length 2:

$TX1

GRanges with 2 ranges and 0 elementMetadata cols:

seqnames ranges strand

<Rle> <IRanges> <Rle>

[1] chMT [ 18, 21] +

[2] chMT [131, 134] +

$TX2

GRanges with 0 ranges and 0 elementMetadata cols:

seqnames ranges strand

---

seqlengths:

ch1 chMT ch2

50000 800 NA

psetdiff(grl2, grl) is equivalent to mendoapply(setdiff, grl2, grl)



Introduction

Most frequently seen low-level containers
Rle objects
IRanges objects
DataFrame objects
Other frequently seen low-level containers

GRanges objects
GRanges constructor and accessors
Vector operations on GRanges objects
Ranges operations on GRanges objects
Splitting a GRanges object
Exercise 1

GRangesList objects
GRangesList constructor and accessors
Vector operations on GRangesList objects
List operations on GRangesList objects
Ranges operations on GRangesList objects

GappedAlignments and GappedAlignmentPairs objects
GappedAlignments

GappedAlignments constructor and accessors
Exercise 2
From GappedAlignments to GRanges or GRangesList

GappedAlignmentPairs

Advanced operations
Coverage and slicing
Finding/counting overlaps
Exercise 3

Final notes



Introduction

Most frequently seen low-level containers
Rle objects
IRanges objects
DataFrame objects
Other frequently seen low-level containers

GRanges objects
GRanges constructor and accessors
Vector operations on GRanges objects
Ranges operations on GRanges objects
Splitting a GRanges object
Exercise 1

GRangesList objects
GRangesList constructor and accessors
Vector operations on GRangesList objects
List operations on GRangesList objects
Ranges operations on GRangesList objects

GappedAlignments and GappedAlignmentPairs objects
GappedAlignments

GappedAlignments constructor and accessors
Exercise 2
From GappedAlignments to GRanges or GRangesList

GappedAlignmentPairs

Advanced operations
Coverage and slicing
Finding/counting overlaps
Exercise 3

Final notes



The purpose of the GappedAlignments container is...
... to store a set of genomic alignments (aligned reads, typically).

The alignments can be loaded from a BAM file with readGappedAlignments(). By
default, only the following information is loaded for each alignment:

I RNAME field: name of the reference sequence to which the query is aligned.

I strand bit (from FLAG field): strand in the reference sequence to which the query
is aligned.

I CIGAR field: a string in the ”Extended CIGAR format” describing the ”gemoetry”
of the alignment (i.e. locations of insertions, deletions and gaps). See the SAM
Spec for the details.

I POS field: 1-based position of the leftmost mapped base.

In particular, the query sequences (SEQ) and qualities (QUAL) are not loaded by
default.

Supported basic operations

I Vector operations: partially supported (no comparing or ordering)

I List operations: NO

I Ranges operations: only narrow() and qnarrow() (GappedAlignments specific) are
supported

I Coercion methods: to GRanges or GRangesList

I Splitting: NO



Introduction

Most frequently seen low-level containers
Rle objects
IRanges objects
DataFrame objects
Other frequently seen low-level containers

GRanges objects
GRanges constructor and accessors
Vector operations on GRanges objects
Ranges operations on GRanges objects
Splitting a GRanges object
Exercise 1

GRangesList objects
GRangesList constructor and accessors
Vector operations on GRangesList objects
List operations on GRangesList objects
Ranges operations on GRangesList objects

GappedAlignments and GappedAlignmentPairs objects
GappedAlignments

GappedAlignments constructor and accessors
Exercise 2
From GappedAlignments to GRanges or GRangesList

GappedAlignmentPairs

Advanced operations
Coverage and slicing
Finding/counting overlaps
Exercise 3

Final notes



GappedAlignments constructor

Typically not used directly!

> gal0 <- GappedAlignments(seqnames=Rle(c("ch1", "ch2"), c(3, 1)),
+ pos=1L + 10L*0:3,
+ cigar=c("36M", "20M3D16M", "20M703N16M", "14M2I20M"),
+ strand=strand(c("+", "-", "-", "+")))
> gal0

GappedAlignments with 4 alignments and 0 elementMetadata cols:
seqnames strand cigar qwidth start end width ngap

<Rle> <Rle> <character> <integer> <integer> <integer> <integer> <integer>
[1] ch1 + 36M 36 1 36 36 0
[2] ch1 - 20M3D16M 36 11 49 39 0
[3] ch1 - 20M703N16M 36 21 759 739 1
[4] ch2 + 14M2I20M 36 31 64 34 0
---
seqlengths:
ch1 ch2
NA NA

An N in the cigar indicates a gap (!= deletion).



readGappedAlignments()

> library(pasillaBamSubset)
> U1gal <- readGappedAlignments(untreated1_chr4())
> length(U1gal)

[1] 204355

> head(U1gal)

GappedAlignments with 6 alignments and 0 elementMetadata cols:
seqnames strand cigar qwidth start end width ngap

<Rle> <Rle> <character> <integer> <integer> <integer> <integer> <integer>
[1] chr4 - 75M 75 892 966 75 0
[2] chr4 - 75M 75 919 993 75 0
[3] chr4 + 75M 75 924 998 75 0
[4] chr4 + 75M 75 936 1010 75 0
[5] chr4 + 75M 75 949 1023 75 0
[6] chr4 - 75M 75 967 1041 75 0
---
seqlengths:

chr2L chr2R chr3L chr3R chr4 chrM chrX chrYHet
23011544 21146708 24543557 27905053 1351857 19517 22422827 347038



GappedAlignments accessors

> seqnames(U1gal)

factor-Rle of length 204355 with 1 run

Lengths: 204355

Values : chr4

Levels(8): chr2L chr2R chr3L chr3R chr4 chrM chrX chrYHet

> table(as.factor(seqnames(U1gal)))

chr2L chr2R chr3L chr3R chr4 chrM chrX chrYHet

0 0 0 0 204355 0 0 0

> strand(U1gal)

factor-Rle of length 204355 with 53763 runs

Lengths: 2 3 3 1 2 2 4 1 4 2 2 1 ... 13 1 13 1 17 1 20 3 3 40 2

Values : - + - + - + - + - + - + ... - + - + - + - + - + -

Levels(3): + - *

> table(as.factor(strand(U1gal)))

+ - *

102101 102254 0

> head(cigar(U1gal))

[1] "75M" "75M" "75M" "75M" "75M" "75M"

> head(qwidth(U1gal))

[1] 75 75 75 75 75 75

> table(qwidth(U1gal))

75

204355



GappedAlignments accessors (continued)

> head(start(U1gal))

[1] 892 919 924 936 949 967

> head(end(U1gal))

[1] 966 993 998 1010 1023 1041

> head(width(U1gal))

[1] 75 75 75 75 75 75

> head(ngap(U1gal))

[1] 0 0 0 0 0 0

> table(ngap(U1gal))

0 1 2
184039 20169 147

> elementMetadata(U1gal)

DataFrame with 204355 rows and 0 columns

> seqinfo(U1gal)

Seqinfo of length 8
seqnames seqlengths isCircular genome
chr2L 23011544 NA <NA>
chr2R 21146708 NA <NA>
chr3L 24543557 NA <NA>
chr3R 27905053 NA <NA>
chr4 1351857 NA <NA>
chrM 19517 NA <NA>
chrX 22422827 NA <NA>
chrYHet 347038 NA <NA>



Loading additional information from the BAM file

> param <- ScanBamParam(what=c("flag", "mapq"), tag=c("NH", "NM"))
> U1gal <- readGappedAlignments(untreated1_chr4(),
+ use.names=TRUE, param=param)
> U1gal[1:5]

GappedAlignments with 5 alignments and 4 elementMetadata cols:
seqnames strand cigar qwidth start end

<Rle> <Rle> <character> <integer> <integer> <integer>
SRR031729.3941844 chr4 - 75M 75 892 966
SRR031728.3674563 chr4 - 75M 75 919 993
SRR031729.8532600 chr4 + 75M 75 924 998
SRR031729.2779333 chr4 + 75M 75 936 1010
SRR031728.2826481 chr4 + 75M 75 949 1023

width ngap | flag mapq NH NM
<integer> <integer> | <integer> <integer> <integer> <integer>

SRR031729.3941844 75 0 | 16 <NA> 1 1
SRR031728.3674563 75 0 | 16 <NA> 1 3
SRR031729.8532600 75 0 | 0 3 2 2
SRR031729.2779333 75 0 | 0 3 2 1
SRR031728.2826481 75 0 | 0 1 3 2
---
seqlengths:

chr2L chr2R chr3L chr3R chr4 chrM chrX chrYHet
23011544 21146708 24543557 27905053 1351857 19517 22422827 347038

> any(duplicated(names(U1gal)))

[1] TRUE



Introduction

Most frequently seen low-level containers
Rle objects
IRanges objects
DataFrame objects
Other frequently seen low-level containers

GRanges objects
GRanges constructor and accessors
Vector operations on GRanges objects
Ranges operations on GRanges objects
Splitting a GRanges object
Exercise 1

GRangesList objects
GRangesList constructor and accessors
Vector operations on GRangesList objects
List operations on GRangesList objects
Ranges operations on GRangesList objects

GappedAlignments and GappedAlignmentPairs objects
GappedAlignments

GappedAlignments constructor and accessors
Exercise 2
From GappedAlignments to GRanges or GRangesList

GappedAlignmentPairs

Advanced operations
Coverage and slicing
Finding/counting overlaps
Exercise 3

Final notes



Exercise 2

a. Find the SAM Spec online and investigate the meaning of predefined tags NH
and NM.

b. Load BAM file untreated1 chr4.bam into a GappedAlignments object and subset
this object to keep only the alignments satisfying the 2 following conditions:

I The alignment corresponds to a query with a unique alignment (aka unique match or
unique hit).

I The alignment is a perfect match (i.e. no insertion, no deletion, no mismatch).

c. Do those alignments have gaps?



Introduction

Most frequently seen low-level containers
Rle objects
IRanges objects
DataFrame objects
Other frequently seen low-level containers

GRanges objects
GRanges constructor and accessors
Vector operations on GRanges objects
Ranges operations on GRanges objects
Splitting a GRanges object
Exercise 1

GRangesList objects
GRangesList constructor and accessors
Vector operations on GRangesList objects
List operations on GRangesList objects
Ranges operations on GRangesList objects

GappedAlignments and GappedAlignmentPairs objects
GappedAlignments

GappedAlignments constructor and accessors
Exercise 2
From GappedAlignments to GRanges or GRangesList

GappedAlignmentPairs

Advanced operations
Coverage and slicing
Finding/counting overlaps
Exercise 3

Final notes



From GappedAlignments to GRanges

GAPS ARE IGNORED! That is, each alignment is converted into a single genomic
range defined by the start and end of the alignment.

> as(U1gal, "GRanges")

GRanges with 204355 ranges and 0 elementMetadata cols:

seqnames ranges strand

<Rle> <IRanges> <Rle>

SRR031729.3941844 chr4 [ 892, 966] -

SRR031728.3674563 chr4 [ 919, 993] -

SRR031729.8532600 chr4 [ 924, 998] +

SRR031729.2779333 chr4 [ 936, 1010] +

SRR031728.2826481 chr4 [ 949, 1023] +

SRR031728.2919098 chr4 [ 967, 1041] -

SRR031729.2873401 chr4 [1035, 1109] -

SRR031728.343975 chr4 [1236, 1310] -

SRR031729.2496773 chr4 [1252, 1326] +

... ... ... ...

SRR031729.12776621 chr4 [1348265, 1348339] +

SRR031728.1130675 chr4 [1348268, 1348342] +

SRR031728.1263853 chr4 [1348268, 1348342] +

SRR031728.1270714 chr4 [1348268, 1348342] +

SRR031728.1789947 chr4 [1348268, 1348342] +

SRR031728.4528492 chr4 [1348268, 1348342] +

SRR031729.5150849 chr4 [1348268, 1348342] +

SRR031729.9070096 chr4 [1348449, 1348523] -

SRR031729.9070096 chr4 [1350124, 1350198] -

---

seqlengths:

chr2L chr2R chr3L chr3R chr4 chrM chrX chrYHet

23011544 21146708 24543557 27905053 1351857 19517 22422827 347038



From GappedAlignments to GRangesList
GAPS ARE NOT IGNORED! That is, each alignment is converted into one or more
genomic ranges (one more range than the number of gaps in the alignment).

> U1grl <- as(U1gal, "GRangesList")
> U1grl

GRangesList of length 204355:
$SRR031729.3941844
GRanges with 1 range and 0 elementMetadata cols:

seqnames ranges strand
<Rle> <IRanges> <Rle>

[1] chr4 [892, 966] -

$SRR031728.3674563
GRanges with 1 range and 0 elementMetadata cols:

seqnames ranges strand
[1] chr4 [919, 993] -

$SRR031729.8532600
GRanges with 1 range and 0 elementMetadata cols:

seqnames ranges strand
[1] chr4 [924, 998] +

...
<204352 more elements>
---
seqlengths:

chr2L chr2R chr3L chr3R chr4 chrM chrX chrYHet
23011544 21146708 24543557 27905053 1351857 19517 22422827 347038



From GappedAlignments to GRangesList (continued)

One more range than the number of gaps in the alignment:

> all(elementLengths(U1grl) == ngap(U1gal) + 1)

[1] TRUE



Introduction

Most frequently seen low-level containers
Rle objects
IRanges objects
DataFrame objects
Other frequently seen low-level containers

GRanges objects
GRanges constructor and accessors
Vector operations on GRanges objects
Ranges operations on GRanges objects
Splitting a GRanges object
Exercise 1

GRangesList objects
GRangesList constructor and accessors
Vector operations on GRangesList objects
List operations on GRangesList objects
Ranges operations on GRangesList objects

GappedAlignments and GappedAlignmentPairs objects
GappedAlignments

GappedAlignments constructor and accessors
Exercise 2
From GappedAlignments to GRanges or GRangesList

GappedAlignmentPairs

Advanced operations
Coverage and slicing
Finding/counting overlaps
Exercise 3

Final notes



The purpose of the GappedAlignmentPairs container is...

... to store a set of aligned paired-end reads.

I Implemented on top of the GappedAlignments class.

I The alignments can be loaded from a BAM file with readGappedAlignmentPairs().

I first(x), last(x): extract the first and last ends in 2 separate GappedAlignments

objects of the same length.

Supported basic operations

I Vector operations: partially supported (no comparing or ordering)

I List operations: YES

I Ranges operations: NO

I Coercion methods: to GRanges or GRangesList

I Splitting: NO



readGappedAlignmentPairs()

> library(pasillaBamSubset)
> U3galp <- readGappedAlignmentPairs(untreated3_chr4())
> length(U3galp)

[1] 75346

> head(U3galp)

GappedAlignmentPairs with 6 alignment pairs and 0 elementMetadata cols:
seqnames strand : ranges -- ranges

<Rle> <Rle> : <IRanges> -- <IRanges>
[1] chr4 + : [169, 205] -- [ 326, 362]
[2] chr4 + : [943, 979] -- [1086, 1122]
[3] chr4 + : [944, 980] -- [1119, 1155]
[4] chr4 + : [946, 982] -- [ 986, 1022]
[5] chr4 + : [966, 1002] -- [1108, 1144]
[6] chr4 + : [966, 1002] -- [1114, 1150]
---
seqlengths:

chr2L chr2R chr3L chr3R chr4 chrM chrX chrYHet
23011544 21146708 24543557 27905053 1351857 19517 22422827 347038



GappedAlignmentPairs accessors

> head(first(U3galp))

GappedAlignments with 6 alignments and 0 elementMetadata cols:

seqnames strand cigar qwidth start end width ngap

<Rle> <Rle> <character> <integer> <integer> <integer> <integer> <integer>

[1] chr4 + 37M 37 169 205 37 0

[2] chr4 + 37M 37 943 979 37 0

[3] chr4 + 37M 37 944 980 37 0

[4] chr4 + 37M 37 946 982 37 0

[5] chr4 + 37M 37 966 1002 37 0

[6] chr4 + 37M 37 966 1002 37 0

---

seqlengths:

chr2L chr2R chr3L chr3R chr4 chrM chrX chrYHet

23011544 21146708 24543557 27905053 1351857 19517 22422827 347038

> head(last(U3galp))

GappedAlignments with 6 alignments and 0 elementMetadata cols:

seqnames strand cigar qwidth start end width ngap

<Rle> <Rle> <character> <integer> <integer> <integer> <integer> <integer>

[1] chr4 - 37M 37 326 362 37 0

[2] chr4 - 37M 37 1086 1122 37 0

[3] chr4 - 37M 37 1119 1155 37 0

[4] chr4 - 37M 37 986 1022 37 0

[5] chr4 - 37M 37 1108 1144 37 0

[6] chr4 - 37M 37 1114 1150 37 0

---

seqlengths:

chr2L chr2R chr3L chr3R chr4 chrM chrX chrYHet

23011544 21146708 24543557 27905053 1351857 19517 22422827 347038

Currently, readGappedAlignmentPairs() drops pairs where the first and last ends have
incompatible sequence names and/or strands (a rare situation).



GappedAlignmentPairs accessors (continued)

> seqnames(U3galp)

factor-Rle of length 75346 with 1 run
Lengths: 75346
Values : chr4

Levels(8): chr2L chr2R chr3L chr3R chr4 chrM chrX chrYHet

> strand(U3galp)

factor-Rle of length 75346 with 18999 runs
Lengths: 6 6 3 1 6 1 1 2 2 1 1 3 ... 3 2 3 1 2 1 5 6 2 7 3
Values : + - + - + - + - + - + - ... + - + - + - + - + - +

Levels(3): + - *

> head(ngap(U3galp))

[1] 0 0 0 0 0 0

> table(ngap(U3galp))

0 1 2
72949 2291 106



From GappedAlignmentPairs to GRangesList

> U3grl <- as(U3galp, "GRangesList")
> U3grl

GRangesList of length 75346:
[[1]]
GRanges with 2 ranges and 0 elementMetadata cols:

seqnames ranges strand
<Rle> <IRanges> <Rle>

[1] chr4 [169, 205] +
[2] chr4 [326, 362] +

[[2]]
GRanges with 2 ranges and 0 elementMetadata cols:

seqnames ranges strand
[1] chr4 [ 943, 979] +
[2] chr4 [1086, 1122] +

[[3]]
GRanges with 2 ranges and 0 elementMetadata cols:

seqnames ranges strand
[1] chr4 [ 944, 980] +
[2] chr4 [1119, 1155] +

...
<75343 more elements>
---
seqlengths:

chr2L chr2R chr3L chr3R chr4 chrM chrX chrYHet
23011544 21146708 24543557 27905053 1351857 19517 22422827 347038



From GappedAlignmentPairs to GRangesList (continued)

> U3grl[ngap(U3galp) != 0]

GRangesList of length 2397:

[[1]]

GRanges with 3 ranges and 0 elementMetadata cols:

seqnames ranges strand

<Rle> <IRanges> <Rle>

[1] chr4 [74403, 74435] -

[2] chr4 [77050, 77053] -

[3] chr4 [13711, 13747] -

[[2]]

GRanges with 3 ranges and 0 elementMetadata cols:

seqnames ranges strand

[1] chr4 [56932, 56968] +

[2] chr4 [57072, 57083] +

[3] chr4 [57142, 57166] +

[[3]]

GRanges with 3 ranges and 0 elementMetadata cols:

seqnames ranges strand

[1] chr4 [56932, 56968] +

[2] chr4 [57065, 57083] +

[3] chr4 [57142, 57159] +

...

<2394 more elements>

---

seqlengths:

chr2L chr2R chr3L chr3R chr4 chrM chrX chrYHet

23011544 21146708 24543557 27905053 1351857 19517 22422827 347038



Introduction

Most frequently seen low-level containers
Rle objects
IRanges objects
DataFrame objects
Other frequently seen low-level containers

GRanges objects
GRanges constructor and accessors
Vector operations on GRanges objects
Ranges operations on GRanges objects
Splitting a GRanges object
Exercise 1

GRangesList objects
GRangesList constructor and accessors
Vector operations on GRangesList objects
List operations on GRangesList objects
Ranges operations on GRangesList objects

GappedAlignments and GappedAlignmentPairs objects
GappedAlignments

GappedAlignments constructor and accessors
Exercise 2
From GappedAlignments to GRanges or GRangesList

GappedAlignmentPairs

Advanced operations
Coverage and slicing
Finding/counting overlaps
Exercise 3

Final notes



Introduction

Most frequently seen low-level containers
Rle objects
IRanges objects
DataFrame objects
Other frequently seen low-level containers

GRanges objects
GRanges constructor and accessors
Vector operations on GRanges objects
Ranges operations on GRanges objects
Splitting a GRanges object
Exercise 1

GRangesList objects
GRangesList constructor and accessors
Vector operations on GRangesList objects
List operations on GRangesList objects
Ranges operations on GRangesList objects

GappedAlignments and GappedAlignmentPairs objects
GappedAlignments

GappedAlignments constructor and accessors
Exercise 2
From GappedAlignments to GRanges or GRangesList

GappedAlignmentPairs

Advanced operations
Coverage and slicing
Finding/counting overlaps
Exercise 3

Final notes



Coverage

> U1cvg <- coverage(U1grl)

>



Coverage (continued)

> mean(U1cvg)

chr2L chr2R chr3L chr3R chr4 chrM chrX chrYHet
0.00000 0.00000 0.00000 0.00000 11.33746 0.00000 0.00000 0.00000

> max(U1cvg)

chr2L chr2R chr3L chr3R chr4 chrM chrX chrYHet
0 0 0 0 5627 0 0 0



Slicing the coverage

> U1sl <- slice(U1cvg, lower=10)
> U1sl

SimpleRleViewsList of length 8
names(8): chr2L chr2R chr3L chr3R chr4 chrM chrX chrYHet

> elementLengths(U1sl)

chr2L chr2R chr3L chr3R chr4 chrM chrX chrYHet
0 0 0 0 1183 0 0 0

> head(U1sl$chr4)

Views on a 1351857-length Rle subject

views:
start end width

[1] 4936 5077 142 [11 12 12 13 13 14 16 16 17 18 18 18 18 19 19 19 19 19 ...]
[2] 5211 5245 35 [10 10 10 10 10 10 10 10 10 10 10 10 10 12 12 13 13 13 ...]
[3] 5334 5337 4 [10 10 10 10]
[4] 5736 5744 9 [10 10 10 10 10 10 10 10 10]
[5] 5752 5754 3 [10 10 10]
[6] 5756 5882 127 [10 11 11 11 11 11 11 11 11 11 11 11 11 11 11 12 12 13 ...]

> head(mean(U1sl$chr4))

[1] 23.88028 11.60000 10.00000 10.00000 10.00000 25.65354

> head(max(U1sl$chr4))

[1] 39 13 10 10 10 38



Introduction

Most frequently seen low-level containers
Rle objects
IRanges objects
DataFrame objects
Other frequently seen low-level containers

GRanges objects
GRanges constructor and accessors
Vector operations on GRanges objects
Ranges operations on GRanges objects
Splitting a GRanges object
Exercise 1

GRangesList objects
GRangesList constructor and accessors
Vector operations on GRangesList objects
List operations on GRangesList objects
Ranges operations on GRangesList objects

GappedAlignments and GappedAlignmentPairs objects
GappedAlignments

GappedAlignments constructor and accessors
Exercise 2
From GappedAlignments to GRanges or GRangesList

GappedAlignmentPairs

Advanced operations
Coverage and slicing
Finding/counting overlaps
Exercise 3

Final notes



Finding/counting overlaps

A typical use case: count the number of hits (aka overlaps) per transcript.

Typical input:

I A BAM file with the aligned reads (single- or paired-end).

I Transcript annotations for the same reference genome that was used to align the
reads.

Typical tools:

I readGappedAlignments() or readGappedAlignmentPairs() to load the reads in a
GappedAlignments or GappedAlignmentPairs object.

I A TranscriptDb object containing the transcript annotations.

I The exonsBy() extractor (defined in the GenomicFeatures package) to extract the
exons ranges grouped by transcript from the TranscriptDb object. The exons
ranges are returned in a GRangesList object with 1 top-level element per
transcript.

I The findOverlaps() and/or countOverlaps() functions.



Load the transcripts

> library(TxDb.Dmelanogaster.UCSC.dm3.ensGene)
> txdb <- TxDb.Dmelanogaster.UCSC.dm3.ensGene
> exbytx <- exonsBy(txdb, by="tx", use.names=TRUE)
> exbytx

GRangesList of length 23017:
$FBtr0089116
GRanges with 11 ranges and 3 elementMetadata cols:

seqnames ranges strand | exon_id exon_name exon_rank
<Rle> <IRanges> <Rle> | <integer> <character> <integer>

[1] chr4 [251356, 251521] + | 1 <NA> 1
[2] chr4 [252561, 252603] + | 2 <NA> 2
[3] chr4 [252905, 253474] + | 3 <NA> 3
[4] chr4 [254891, 254971] + | 4 <NA> 4
[5] chr4 [255490, 255570] + | 5 <NA> 5
[6] chr4 [257021, 257101] + | 6 <NA> 6
[7] chr4 [257895, 258185] + | 7 <NA> 7
[8] chr4 [260940, 261024] + | 8 <NA> 8
[9] chr4 [263892, 264211] + | 9 <NA> 9
[10] chr4 [264260, 264374] + | 10 <NA> 10
[11] chr4 [265806, 266500] + | 11 <NA> 11

...
<23016 more elements>
---
seqlengths:

chr2L chr2LHet chr2R chr2RHet ... chrXHet chrYHet chrM
23011544 368872 21146708 3288761 ... 204112 347038 19517



Single-end overlaps

> U1txhits <- countOverlaps(exbytx, U1grl)
> length(U1txhits)

[1] 23017

> head(U1txhits)

FBtr0089116 FBtr0300800 FBtr0300796 FBtr0300799 FBtr0300798 FBtr0300797
439 527 533 476 533 523

> sum(U1txhits) # total nb of hits

[1] 250802

> head(sort(U1txhits, decreasing=TRUE))

FBtr0089177 FBtr0089175 FBtr0089176 FBtr0112904 FBtr0289951 FBtr0089243
20380 20380 20380 6018 5982 5979

Rough counting!

I More than 1 alignment per read can be reported in the BAM file (sometimes the
same read hits the same transcript many times).

I A hit is counted even if it’s not compatible with the splicing of the transcript.



Paired-end overlaps

> U3txhits <- countOverlaps(exbytx, U3grl)
> length(U3txhits)

[1] 23017

> head(U3txhits)

FBtr0089116 FBtr0300800 FBtr0300796 FBtr0300799 FBtr0300798 FBtr0300797
194 195 197 192 197 197

> sum(U3txhits) # total nb of hits

[1] 95587

> head(sort(U3txhits, decreasing=TRUE))

FBtr0089175 FBtr0089176 FBtr0089177 FBtr0112904 FBtr0289951 FBtr0089243
6799 6799 6790 2617 2610 2609

Note that exons that fall within the inter-read gap are NOT considered to overlap.



Introduction

Most frequently seen low-level containers
Rle objects
IRanges objects
DataFrame objects
Other frequently seen low-level containers

GRanges objects
GRanges constructor and accessors
Vector operations on GRanges objects
Ranges operations on GRanges objects
Splitting a GRanges object
Exercise 1

GRangesList objects
GRangesList constructor and accessors
Vector operations on GRangesList objects
List operations on GRangesList objects
Ranges operations on GRangesList objects

GappedAlignments and GappedAlignmentPairs objects
GappedAlignments

GappedAlignments constructor and accessors
Exercise 2
From GappedAlignments to GRanges or GRangesList

GappedAlignmentPairs

Advanced operations
Coverage and slicing
Finding/counting overlaps
Exercise 3

Final notes



Exercise 3

Use the TxDb.Dmelanogaster.UCSC.dm3.ensGene package and the result of Exercise
2 to count the number of unique hits per transcript, that is, the number of hits from
reads with a unique alignment.



Introduction

Most frequently seen low-level containers
Rle objects
IRanges objects
DataFrame objects
Other frequently seen low-level containers

GRanges objects
GRanges constructor and accessors
Vector operations on GRanges objects
Ranges operations on GRanges objects
Splitting a GRanges object
Exercise 1

GRangesList objects
GRangesList constructor and accessors
Vector operations on GRangesList objects
List operations on GRangesList objects
Ranges operations on GRangesList objects

GappedAlignments and GappedAlignmentPairs objects
GappedAlignments

GappedAlignments constructor and accessors
Exercise 2
From GappedAlignments to GRanges or GRangesList

GappedAlignmentPairs

Advanced operations
Coverage and slicing
Finding/counting overlaps
Exercise 3

Final notes



Final notes

Further developments:

I Some optimization to the pairing algorithm used by readGappedAlignmentPairs().

I Convenience functions for extracting the inter-read gap and computing the
observed template length (aka TLEN in BAM/SAM jargon).

I Facilities for detecting/counting hits (from single- or paired-end reads) that are
compatible with the splicing of the transcript.

I On user request...

Resources:

I Vignettes in GenomicRanges (browseVignettes("GenomicRanges")).

I GRanges, GRangesList, GappedAlignments, and GappedAlignmentPairs man
pages in GenomicRanges.

I SAMtools website: http://samtools.sourceforge.net/

I Bioconductor mailing lists: http://bioconductor.org/help/mailing-list/

http://samtools.sourceforge.net/
http://bioconductor.org/help/mailing-list/

	Introduction
	Most frequently seen low-level containers
	Rle objects
	IRanges objects
	DataFrame objects
	Other frequently seen low-level containers

	GRanges objects
	GRanges constructor and accessors
	Vector operations on GRanges objects
	Ranges operations on GRanges objects
	Splitting a GRanges object
	Exercise 1

	GRangesList objects
	GRangesList constructor and accessors
	Vector operations on GRangesList objects
	List operations on GRangesList objects
	Ranges operations on GRangesList objects

	GappedAlignments and GappedAlignmentPairs objects
	GappedAlignments
	GappedAlignments constructor and accessors
	Exercise 2
	From GappedAlignments to GRanges or GRangesList
	GappedAlignmentPairs

	Advanced operations
	Coverage and slicing
	Finding/counting overlaps
	Exercise 3

	Final notes

