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Outline 

• Overview of the Aroma Framework. 

• aroma.seq: proof-of-concept DNAseq analysis. 

• My tips and tricks for large data analysis. 

This is a 25-minute presentation, where the first two parts take 20 minutes and 
the last part 5 minutes. 



The Aroma Framework 



• Unlimited data sizes, e.g. 10,000 Affymetrix microarrays. 

• Persistent memory, results live beyond R’s quit(). 

• Fault tolerant, e.g. recovery even from power failures. 

• Portable / shareable, i.e. same script works everywhere. 

• Cross platform, e.g. Unix, OS X, Windows. 

• Leverages CRAN and Bioconductor packages. 

• Reproducible research. 

• Extendable, i.e. add your own methods. 

• aroma-project.org 

 

Some numbers: 

Since 2006. ~500 installs last month. ~800 on mailing list.  

100+ citations.  100,000+ lines (excl. comments) 

 

The Aroma Framework 
- Worry-free large-scale analysis in R 

http://aroma-project.org/
http://aroma-project.org/
http://aroma-project.org/


setA/ 

  fileA,20100112.csv 

  fileB,other,tags.tsv 

  fileC,inverted.csv 

  fileD,3cols.csv 

 

> library(R.filesets) 

> df <- GenericDataFile(“setA/fileA,20100112.csv”) 

> df 

GenericDataFile: 

Name: fileA 

Tags: 20100112 

Full name: fileA,20100112 

Pathname: setA/fileA,20100112.csv 

File size: 2.88 MB (2,949,102 bytes) 

RAM: 0.00 MB 

> getChecksum(df) 

[1] "fcb889d29d51c600409d242e03d7d779“ 

 

R.filesets is the core and knows about files 

> df <- TabularTextFile(“setA/fileA,20100112.csv”) 

> df 

TabularTextFile: 

Name: fileA 

Tags: 20100112 

Full name: fileA,20100112 

Pathname: setA/fileA,20100112.csv 

File size: 2.88 MB (2,949,102 bytes) 

RAM: 0.00 MB 

Number of data rows: 17987 

Columns [4]: 'x', 'y', 'fac', 'char' 

Number of text lines: 18004 

> readDataFrame(df, rows=c(5,4,1), 

                                 colClasses=c("(x|y)"="integer")) 

     x  y 

5 10 5 

4 12 4 

1 19 1 



> ds <- GenericDataFileSet$byPath(“setA/”) 

> ds 

GenericDataFileSet: 

Name: setA 

Number of files: 4 

Names: fileA, fileB, fileC, fileD [4] 

Path (to the first file): setA/ 

Total file size: 10.00 MB 

RAM: 0.01MB 

 

> lapply(ds, FUN=getChecksum) 

$`fileA,20100112` 

[1] "fcb889d29d51c600409d242e03d7d779" 

$`fileB,other,tags` 

[1] "e0e0d2750626df38cedab8796cfa6459“ 

… 

R.filesets makes it easy to handle  
large sets of files of any size and any type 

> ds <- TabularTextFileSet$byPath(“setA/”) 

> ds 

TabularTextFileSet: 

Name: setA 

Number of files: 4 

Names: fileA, fileB, fileC, fileD [4] 

Path (to the first file): setA/ 

Total file size: 10.00 MB 

RAM: 0.01MB 

 

> readDataFrame(ds, rows=c(1,5),  

                colClasses=c("(x|y)"="integer")) 

        x  y 

1.1 19 1 

1.5 10 5 

2.1 15 4 

2.5 32 9 

… 



Standardized and strict file structure: 

annotationData/chipTypes/HG-U133_Plus_2/HG-U133_Plus_2.CDF 
rawData/GSE13159/HG-U133_Plus_2/*.CEL (2096 files) 

 

> library(aroma.affymetrix) 

> dsR <- AffymetrixCelSet$byName(“GSE13159”,  chipType=“HG-U133_Plus_2”) 

> dsR 

 
AffymetrixCelSet: 

Name: GSE13159 

Path: rawData/GSE13159/HG-U133_Plus_2 

Chip type: HG-U133_Plus_2 

Number of arrays: 2096 

Names: GSM329407, GSM329408, GSM329409, ..., GSM331732 [2096] 

Total file size: 27.09 GB 

RAM: 2.19MB 

 

aroma.affymetrix:  
Analyzing small and large Affymetrix data sets 



> dsR <- AffymetrixCelSet$byName(“GSE13159”, chipType=“HG-U133_Plus_2”) 
> ces <- doRMA(dsR) 
> eset <- extractExpressionSet(ces) 
> eset 
 

ExpressionSet (storageMode: lockedEnvironment) 
assayData: 54675 features, 2096 samples 
  element names: exprs 
protocolData: none 
phenoData: none 
featureData: none 
experimentData: use 'experimentData(object)‘ 
Annotation: hgu133plus2 

Example: RMA on 2,096 arrays 



> dsR <- AffymetrixCelSet$byName(“GSE8605”, chipType=“Mapping10K_Xba142”) 

> ex <- ArrayExplorer(dsR) 
> process(ex) 

 

 

Example: Spatial visualization of arrays 

http://www.aroma-project.org/data/reports/GSE8605/raw/ArrayExplorer.html


> dsR <- AffymetrixCelSet$byName(“GSE8605”, chipType=“Mapping10K_Xba142”) 

> dsN <- doCRMAv2(dsR) 

> seg <- CbsModel(dsN) 

> ex <- ChromosomeExplorer(seg) 
> process(ex) 

 

 

Example: DNA copy number segmentation 

http://www.aroma-project.org/data/reports/GSE8605/ACC,-XY,BPN,-XY,AVG,FLN,-XY,paired/ChromosomeExplorer.html


Software Design: 

• All in R (“R is the glue”). 

• Cross platform, e.g. Unix, OS X, Windows. 

• Leverages CRAN and Bioconductor packages. 

• Standardization, e.g. file & directory structure. 

• “Functional in the small, OO in the large”  [Luke Hoban (F#) via John D. Cook (The Endeavour blog)] 

 

Software Quality:  [code base is 100,000+ lines (excl. comments)] 

• Rich set of system, redundancy and reproducibility tests (> 24 CPU hours). 

• All releases are validated so they don’t break any downstream packages. 

• Embrace bug/error reports. 

• Software robustness, e.g. asserting arguments and results. 

Software Engineering 
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aroma.seq 



Currently (before bringing it into BioC): 

• Sequence analysis is done with a variety of software via the command line. 

• Error prone, e.g. manual file handling and lots of tedious parameter specifications. 

• Highly specific to a given computer environment/setup. 

• Complicated to share script. 

 

 

Objectives aroma.seq: 

• Everything available at the R prompt. 

• Utilize Bioconductor tools and external tools such as Bowtie, BWA, TopHat and Cufflink. 

• Reproducible research, e.g. easy to share scripts. 

• Automate tedious  tasks, e.g. sorting and indexing of BAM files, handling SAM Read Groups. 

• Provide standardized pipelines,  e.g. DNAseq copy number analysis with strong quality control. 

• Transparent utilizing of compute clusters. 
  => Same script for single-thread as compute cluster processing. 

• Availability:  Early 2013 by request.   Mid/late 2013 publicly. 

 

aroma.seq: Start-to-end NGS analysis in R 



Classical total copy-number analysis 
with low-coverage DNAseq 

Data 
• DNASeq: Illumina 

• Multiplex: 20 samples per lane 

• Low depth: 0.2x coverage per sample 

 

Acknowledgements and original method approach 
• Ilari Scheinin, Daoud Sie, Bauke Ylstra (VUMC, Amsterdam) 

 



Classical total copy-number analysis 
with low-coverage DNAseq (in 7 steps) 

2. Setup DNAseq data 
 

# Setup FASTQ files 

dsR <- FastqDataSet$byName("SCC", “Solexa") 

 

Unlimited number of samples can be loaded 

even on small computers, e.g. 1 or 10,000. 

1. Load R package 
 

library(aroma.seq) 

capabilitiesOf(aroma.seq) 
 
=> bowtie2, bwa, gatk, picard, samtools … 

 



Classical total copy-number analysis 
with low-coverage DNAseq (in 7 steps) 

3. Align reads to genome 
 

# Setup (FASTA) genome reference 
fa <- FastaReferenceFile$byName("human_g1k_v37”) 

 
# Burrows-Wheeler Alignment (FASTQ -> BAM) 

alg <- BwaAlignment(dsR, ref=fa, n=2, q=40) 

bs <- process(alg) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Internal validation detects common user mistakes  

and data errors so they are not propagated in the  

analysis.  User do not have to deal with tedious 

details (e.g. SAM header groups). 

 

 



Classical total copy-number analysis 
with low-coverage DNAseq (in 7 steps) 

4. Bin and count reads 
 

# (BAM -> Aroma count files) 

ugp <- getAromaUgpFile(fa, “50kb") 

bc <- TotalCnBinnedCounting(bs, targetUgp=ugp) 

dsB <- process(bc) 

 

5. Normalize for GC content 
 

bgn <- BinnedGcNormalization(dsB) 

dsG <- process(bgn) 

 

 

 

 

 

 

 

 

Removing GC content effects makes it possible 

to estimate copy numbers without a reference. 

 

Image courtesy: Chiang et al. (2009) 



Classical total copy-number analysis 
with low-coverage DNAseq (in 7 steps) 

6. Segmenting total CNs 
 

seg <- CbsModel(dsG) 

fit(seg) 

 

The aroma.seq package leverages highly 

specialized sequencing and statistical tools. 
 
 

 

7. Chromosome Explorer 
 
ce <- ChromosomeExplorer(seg) 

process(ce)  

 

 

 

 

 

 

 

 

 

 

A Chromosome Explorer report can be viewed 
in any modern web browser (offline and online). 
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Constant Memory Utilization 

 
 

“Even if it works for you today, assume that 
tomorrow there will be no machine in Universe 

that can fit all of your data into RAM.” 



• Already from day #1, design your method (statistical model and/or 
algorithm) such that only a fixed-size subset of the data needs to be in 
memory at any time. 
 

• Load data into memory only when needed and discard as soon as 
possible. 
 

• This will also make it much easier to parallelize your methods later. 
 

 
Classical example: Rank-based Quantile Normalization 
• The naive approach requires all samples to be loaded into memory from 

start, but… 
• …with a two-pass read of the data, only two samples need to be kept in 

memory at any time. 
 

 
 

Also as a non-programming statistician 
you can help out a lot 



Memoization 
 
 

“Memorize the results of repetitive 
computationally expensive tasks” 

 
 



Question: What is 7 times 8? 
1. Multiply(7, 8) = 8 + 8 + 8 + 8 + 8 + 8 + 8 = … = 56 
2. Memorize (multiplication table): 
 
 
 
 
 
 
3. Multiply(7, 8) = { “look up memoized result” } = 56 

Each kid learn memoization in school 



getbdry <- function(nperm, beta, aux=NA) { 

  # 1. Already calculated? 
  key <- list("getbdry", nperm=nperm, beta=beta)  <= FULL CONTROL 
  if (!is.null(res <- loadCache(key))) return(res) 
 

  # 2. Calculate (takes a long time) 
  res <- DNAcopy::getbdry(nperm=nperm, beta=beta) 
 
  # 3. Store result (across R sessions) 
  saveCache(res, key=key) 
 

  res 

} 

 

getbdry(1000, 0.5)  # <= Slow! 

getbdry(1000, 0.5)  # <= Instant from cache. 

R.cache memoizes to file 

Related packages: 
• digest 
• Biobase::cache() 
• memoise 
• cacher 
• filehash 
• … 
 



Software Robustness 

 

“Errors WILL occur one way or the other! 
–  

write your code so  
the impact of errors is minimal and  

make sure they don’t pass undetected” 



Typical errors: 

• Software bugs. 

• User passes non-expected argument values. 

• Corrupt data files. 

• Session interrupts, e.g. sysadm reboot a computer. 

• Hardware failures, e.g. power outage and network 
failures. 

 

Long-running analyzes needs fault tolerant 
software 



Pre- and post-condition contracts; each function asserts that: 
 
- the arguments received, and 
- the returned values 
 
are of proper types and have proper values, otherwise an 
exception is thrown.  For instance, if a function returns a p-value, 
assert that it is indeed in [0,1] before returning. 
 
Example: 
stopifnot(length(p) == 1 && 0 <= p && p <= 1) 
 
library(R.utils) 
p <- Arguments$getNumeric(p, range=c(0,1)) 

Don’t let errors propagate 
- catch them ASAP 



png("myPlot.png", width=640, height=480) 
curve(dnorm, from=-3, to=+3) 
abline(v=log("1")) 
dev.off() 

 

Atomicity 
- Don’t generate incomplete results 



myPlot <- function() { 
  png("myPlot.png", width=640, height=480) 
  on.exit(dev.off()) 
  curve(dnorm, from=-3, to=+3) 
  abline(v=log("1")) 
} 

myPlot() 

Use on.exit() whenever possible 



library("R.devices") 
 
toPNG("myPlot", aspectRatio=3/4, { 
  curve(dnorm, from=-3, to=+3) 
  abline(v=log("1")) 
}) 
 
The default behavior of toPNG() is to generate either complete image files 
or none (atomic).  This is achieved by: 
 
1. Write to a temporary file 
2. Rename file only iff code complete successfully 
 
This strategy also works with more serious software interrupts (e.g. power 
failures) and not only for image files. 
 

R.devices generates image files atomically 



Distributed processing 
 
 
 

“…is awesome, R helps you a lot, 
but it’s not business as usual.” 

 



• Time outs and errors WILL occur and compute nodes will go down, leaving 
unfinished/corrupt results. In other words, write fault-tolerant code. 
 

• Do NOT assume that file updates are instantaneous, e.g. it can take up to 30 
seconds for one machine to see a file modification of another machine. 

 
• SQLite does NOT guarantee atomic updates across machines - you will 

eventually corrupt your database if you assume that. 
(It’s only a valid assumption on a single machines with properly setup) 

 
• Do NOT assume your processes are automagically synchronized - when scaling 

up such mistakes will come back and bite you (…and hopefully you notice). 
 

• Above errors are hard to troubleshoot, because they only occur once in a while. 

Also advanced developers run into unexpected 
problems with parallelized computing 



Thank you! 


