
Advanced R / Bioconductor Programming

Marc Carlson, Valerie Obenchain, Hervé Pagès, Paul Shannon, Dan Tenenbaum, Martin
Morgan1

15-16 October 2012

1mtmorgan@fhcrc.org

mailto:mtmorgan@fhcrc.org

Contents

1 Introduction 4

2 Packages 5
2.1 Anatomy of a package . 5

2.1.1 Essentials: a minimal package . 5
2.1.2 A More Complete Package . 9

2.2 Version Control - Introduction . 10
2.3 Making the package more useful . 11
2.4 Creating good packages and why it matters . 11

2.4.1 Unit tests . 11
2.4.2 Interoperability . 12
2.4.3 From package to Bioconductor package . 13

2.5 An Extended Example: MotifDb . 13
2.5.1 Introduction . 13
2.5.2 Highlights . 14
2.5.3 Package structure . 14
2.5.4 Class Design . 15
2.5.5 Classes and methods . 17
2.5.6 The query method . 17
2.5.7 zzz.R . 18
2.5.8 Unit Tests . 18

3 S4 classes and methods 20
3.1 Introduction . 20

3.1.1 A different OO paradigm . 20
3.1.2 S4 in Bioconductor . 21
3.1.3 From an end-user point of view . 21
3.1.4 Chapter overview . 23

3.2 Implementing the SNPLocations class . 24
3.2.1 Choosing a good design . 24
3.2.2 Class definition . 25
3.2.3 Constructor . 26
3.2.4 Implementing length() and other accessors . 27
3.2.5 The show method . 28

1

http://bioconductor.org/packages/release/bioc/html/MotifDb.html

3.2.6 The validity method . 29
3.2.7 Coercion methods . 30

3.3 Integrating the SNPLocations class to our package . 32
3.3.1 Add the SNPLocations-class.R file to the package 32
3.3.2 Import the required packages and modify the NAMESPACE file 32
3.3.3 Add a man page for the SNPLocations class . 33
3.3.4 Check the package . 36

3.4 Extending an existing class . 36
3.4.1 Constructor . 37
3.4.2 length(), accessors, and show method . 38
3.4.3 The validity method . 38
3.4.4 Coercion methods . 39

3.5 Other important S4 features . 40
3.6 Resources . 40

4 Reference classes 41
4.1 Introduction . 41
4.2 Implementing reference classes . 44

4.2.1 Fields . 44
4.2.2 Inheritance . 44
4.2.3 Best practices? . 45
4.2.4 Cautions? . 46

4.3 Exercises . 47

5 Accessing Data: Data Base and Web Resources 48
5.1 Introduction . 48
5.2 Creating other kinds of Annotation packages . 50
5.3 Retrieving data from a web resource . 51

5.3.1 Parsing XML . 52
5.4 Setting up a package to expose a web service . 55
5.5 Creating package accessors for a web service . 56

5.5.1 Example: creating keytypes and cols methods . 56
5.5.2 Example 2: creating a select method . 57

5.6 Retrieving data from a database resource . 57
5.6.1 Getting a connection . 58
5.6.2 Getting data out . 58
5.6.3 Some basic SQL . 59
5.6.4 Exploring the SQLite database from R . 60

5.7 Setting up a package to expose a SQLite database object . 61
5.8 Creating package accessors for databases . 62

5.8.1 Examples: creating a cols and keytypes method . 63
5.8.2 Example: creating a keys method . 64

5.9 Creating a database resource from available data . 65
5.9.1 Making a new connection . 65
5.9.2 Importing data . 65
5.9.3 Attaching other database resources . 66

2

6 Performance: time and space 69
6.1 Measuring performance . 69
6.2 Debugging . 71

6.2.1 R Warnings and Errors . 71
6.3 Writing efficient scripts . 72

6.3.1 Easy solutions . 72
6.3.2 Moderate solutions . 73

7 Using C Code 75
7.1 Calling C from R . 75

7.1.1 Example and R Implementation . 75
7.1.2 The ‘.C’ Interface . 77
7.1.3 The ‘.Call’ Interface . 79
7.1.4 Rcpp and inline . 82

7.2 Using C code in Packages . 84
7.3 Debugging . 85
7.4 Embedding R . 85

7.4.1 Setup . 85
7.4.2 Code . 85
7.4.3 Compile and Run . 86
7.4.4 Some Detail . 87

7.5 Resources . 88

8 Parallel Evaluation 89
8.1 R parallelism . 90
8.2 Clusters and clouds . 92
8.3 C parallelism . 95

9 An Extended Example 96
9.1 Package tour . 96

9.1.1 Bioconductor packages . 96
9.1.2 Common work flows . 96

9.2 Highlights . 96
9.2.1 Package structure . 96
9.2.2 Classes and methods . 97
9.2.3 Data resources . 98
9.2.4 C code . 98
9.2.5 . 98

References 99

3

Chapter 1

Introduction

The Advanced R / Bioconductor Programming workshop provides experienced R and Bioconductor users
and package developers with an opportunity to develop advanced skills for creating performant, re-usable
software. This course is relevant to R software development in general, but includes insights particularly
relevant to development of bioinformatics. The material is structured around R packages and their im-
plementation, including programming best practices, formal classes and methods, accessing data resources,
strategies for measuring performance and managing large data, interfacing C code, and parallel evaluation.
The course concludes with an extended tour of key Bioconductor packages for representation and manipula-
tion of genomic data. Participants engage in lectures and hands-on exercises. Participants require a laptop
with internet access and a current browser.

Dalgaard [4] provides an introduction to statistical analysis with R. Kabaloff [6] provides a broad survey
of R. Matloff [7] introduces R programming concepts. Chambers [3] provides more advanced insights into
R. Gentleman [5] emphasizes use of R for bioinformatic programming tasks. The R web site enumerates
additional publications from the user community. The RStudio environment provides a nice, cross-platform
environment for working in R.

Table 1.1: Tentative schedule.

Day 1
Morning Orientation; R and Bioconductor Packages (package structure, name spaces,

unit tests, documentation, version control).
Afternoon Formal Classes and Methods (S4 and reference classes).

Accessing Data Base (sqlite) and Web Resources.

Day 2
Morning Assessing Performance and Data Size.

Calling C Code (.C and .Call interfaces).

Afternoon Parallel Evaluation.
Extended Example: IRanges, GenomicRanges, Biostrings and friends.

4

http://r-project.org
http://rstudio.org
http://bioconductor.org/packages/release/bioc/html/IRanges.html
http://bioconductor.org/packages/release/bioc/html/GenomicRanges.html
http://bioconductor.org/packages/release/bioc/html/Biostrings.html

Chapter 2

Packages

2.1 Anatomy of a package

2.1.1 Essentials: a minimal package

We start with a short ad hoc R function, one which proved useful in exploratory data analysis. If properly
generalized, it may useful to others, so we decide to make it into a package.

The script loads a compendium of yeast expression data, and identifies which of 500 genes had highly
correlated expression over 200 experimental conditions:

> correlationFinder <- function()

+ {

+ dataFile <- "sub_combined_complete_dataset_526G_198E.txt"

+ cor.threshold <- 0.85

+

+ tbl <- read.table(dataFile, sep='\t', header=TRUE, quote='',

+ comment.char='', fill=TRUE, stringsAsFactors=FALSE)

+ rownames(tbl) <- tbl$X

+ exclude.these.columns <- !sapply(tbl, is, 'numeric')

+ if (any(exclude.these.columns))

+ tbl <- tbl[, !exclude.these.columns]

+ mtx.cor <- cor(t(as.matrix(tbl)), use='pairwise.complete.obs')

+ mtx.cor <- upper.tri(mtx.cor) * mtx.cor

+ max <- nrow(mtx.cor)

+

+ ret <- list()

+ for (r in seq_len(max)) {

+ zz <- mtx.cor [r,] > cor.threshold

+ if (any(zz)) {

+ ret[[rownames(mtx.cor)[r]]] <- rownames(mtx.cor)[zz]

+ } # if any

+ } # for r

5

+ ret

+ }

You may wish to get a copy of this function into RStudio. If so, follow these steps:

� From the Project menu, choose “New Project”

� If prompted, you may save (or not) your current workspace

� Click “Version Control”

� Click “Git”

� In the “Repository URL” box, paste https://github.com/dtenenba/AdvancedR_stage1

� Press the Tab key. The “Project Directory Name” box is automatically filled in.

� Click “Create Project”

R provides a function which helps us to create a fully-documented and easily shared package of code and
data. It creates a directory structure, and populates it with an almost-working set of files. We will examine
this directory structure, look at and make small modifications to these automatically generated files, build
the package, and then R CMD check on it – a vital step when creating a package for distribution.

> package.skeleton('YeastmRNACor', code_files='yeastCorrelatedExpression.R')

These files and directories are created:

YeastmRNACor/Read-and-delete-me

YeastmRNACor/DESCRIPTION

YeastmRNACor/NAMESPACE

YeastmRNACor/man/correlationFinder.Rd

YeastmRNACor/man/YeastmRNACor-package.Rd

YeastmRNACor/R/yeastCorrelatedExpression.R

We will look at each of these, and addition files in Figure 2.1 in turn.

YeastmRNACor/Read-and-delete-me

1. Edit the help file skeletons in man, possibly combining help files for multiple functions.

2. Edit the exports in NAMESPACE, and add necessary imports.

3. Put any C/C++/Fortran code in src.

4. If you have compiled code, add a useDynLib() directive to NAMESPACE.

5. Run R CMD build to build the package tarball.

6. Run R CMD check to check the package tarball.

YeastmRNACor/DESCRIPTION
Package: YeastmRNACor
Type: Package
Title: Yeast Correlation Finder
Version: 0.99.0
Date: 2012-10-12
Author: Paul Shannon
Maintainer: Paul Shannon <pshannon@fhcrc.org>
Description: Find S.cerevisiae genes with correlated expression
License: Artistic-2.0

6

Figure 2.1: Package directory structure

7

YeastmRNACor/NAMESPACE

exportPattern("^[[:alpha:]]+")

YeastmRNACor/man/YeastmRNACor-package.Rd

\name{YeastmRNACor-package}

\alias{YeastmRNACor-package}

\alias{YeastmRNACor}

\docType{package}

\title{

Yeast Correlation Finder

}

\description{

Find S.cerevisiae genes with correlated expression

}

\details{

\tabular{ll}{

Package: \tab YeastmRNACor\cr

Type: \tab Package\cr

Version: \tab 0.99.0\cr

Date: \tab 2012-10-12\cr

License: \tab Artistic-2.0\cr

}

}

\author{

Paul Shannon

Maintainer: Paul Shannon <pshannon@fhcrc.org>

}

\references{

Allocco et al, 2004, "Quantifying the relationship between

co-expression, co-regulation and gene function":

}

\keyword{manip}

R documentation1 provides a full list of the official keywords.

YeastmRNACor/man/correlationFinder.Rd

\name{correlationFinder}

\alias{correlationFinder}

\title{

correlationFinder

}

\description{

1http://svn.r-project.org/R/trunk/doc/KEYWORDS

8

http://svn.r-project.org/R/trunk/doc/KEYWORDS

Finds yeast genes with correlated expression.

}

\usage{

correlationFinder()

}

\details{

Calculates the upper triangular correlation matrix from mRNA expression

data; identifies genes whose expression is highly correlated.

}

\value{

A named list, in which the names are genes, and the values are the

genes highly correlated to each of them.

}

\author{

Paul Shannon

}

\examples{

\dontrun{

correlated.list <- correlationFinder()

}

}

\keyword{ array }

\keyword{ manip }

\keyword{ math }

YeastmRNACor/R/yeastCorrelatedExpression.R This file contains the original source code for our
function.

2.1.2 A More Complete Package

package.skeleton created only two sub-directories, and just five files (see image above). A few more directories
and files are needed to create a fully-compliant Bioconductor package, and a few more beyond that are
sometimes needed as well. We will list and explain all of them here. The MotifDb package, to be examined
later, will illustrate most of them.

data If your package provides data which the user will load and use directly, then the standard approach
is to place a serialized (xxx.Rdata) file in the data directory. This file must then be documented as
well, with a similarly named (xxx.Rd) man file. In other packages, data is provided only for package
testing purposes, or the data is available to the user only through an interface, and in these cases the
data files reside in inst/extdata, as we will discuss.

src If you have compiled code – typically C, C++, or Fortran – then the source files are placed here.

vignettes Vignettes are an essential tool, very helpful for introducing your package to users, and required
by Bioconductor. They have an .Rnw suffix, and consist of commentary intermixed with executable
code.

9

http://bioconductor.org/packages/release/bioc/html/MotifDb.html

tests This is the traditional directory in which to place test code for your package. R CMD check automati-
cally looks here. With the advent and popularity of the unitTest protocol, this directory contains just
one file containing one line, which provides a hook to run the unitTests, described below.

inst By convention, the R package installer will place the contents of the inst/ directory at the top level
of the installed package.

inst/extdata As mentioned above, this directory contains data files which are used for unitTests and
examples, or provided to the user after some processing. Files may be in a variety of formats, include
text tab-delimited or yaml files, or serialized into Rdata. Data provided directly to the user of the
package goes in the data directory.

inst/unitTests One or more unitTest files (discussed more fully below) can be placed here.

inst/doc Historically, vignettes files were place here. The vignettes directory is now preferred, but this
directory is still supported.

inst/scripts Typically contains scripts used to create the package, for example, for parsing and transforming
data which then ends up in the data directory, or in inst/extdata.

2.2 Version Control - Introduction

Version control is essential for:

� Saving your work

� Tracking the changes of a project

� Reverting to older versions

� Collaborating with others

Bioconductor uses Subversion, and Bioconductor package developers should learn the rudiments of that sys-
tem. We are also intrigued by GitHub which provides an interesting model of distributed code development.
Github is built on the Git version control system.

Bioconductor uses Subversion, and Bioconductor package developers should learn the rudiments of that
system. We are also intrigued by GitHub which provides an interesting model of distributed code devlopment.
Github is built on the Git version control system.

We’ll introduce Github in the context of the package we’ve just started working on. Our original script is
in this repository: https://github.com/dtenenba/AdvancedR_stage1. For now, just visit that URL with
a web browser and look around. Notice that our original script is there, along with a data file.

The minimal package is in a different repository, https://github.com/dtenenba/AdvancedR_stage2.
We can clone, or check out, check this repository, from within RStudio Server:

� From the Project menu, choose “New Project”

� If prompted, you may save (or not) your current workspace

� Click “Version Control”

� Click “Git”

� In the “Repository URL” box, paste https://github.com/dtenenba/AdvancedR_stage2

� Press the Tab key. The “Project Directory Name” box is automatically filled in.

� Click “Create Project”

The Github project is “cloned” into a directory called AdvancedR_stage2. Your current working directory
is changed to this directory, both in the R console and in the File pane in the lower-right hand corner. Note

10

http://subversion.tigris.org/
http://bioconductor.org/developers/source-control/
http://github.com
http://git-scm.com/
http://subversion.tigris.org/
http://bioconductor.org/developers/source-control/
http://github.com
http://git-scm.com/
https://github.com/dtenenba/AdvancedR_stage1
https://github.com/dtenenba/AdvancedR_stage2

that a Git pane appears in the pane at upper right. Those without RStudio can check out the repository at
a command shell:

git clone https://github.com/dtenenba/AdvancedR_stage2

Note: Our use of version control in this course is a bit odd; We have several different repositories representing
a package at different stages of its evolution. In real life, there would probably just be a single repository
(though individual developers could create their own forks of it), and one could check out earlier iterations
of the package.

2.3 Making the package more useful

Our package is great but it’s of limited usefulness so far. It tries to open a file we may not have, and won’t
run on any other file we may have. And we can’t change the correlation threshold. Let’s fix that.

We’ll make several changes:

� Put the data file in inst/extdata.

� Add a dataFile parameter to correlationFinder() with no default.

� Add a cor.threshold parameter to correlationFinder() with a default of 0.85.

� Update the man page to reflect these changes. Change the example so it works with the data file that’s
part of the package, (hint: ?system.file) and remove the dontrun tag so that the example is actually
run.

� Extra credit: Write a rudimentary vignette.

� Make sure the package passes R CMD check without warnings or errors. (Hint: use Tools/Shell to open
a rudimentary command shell in RStudio Server).

� Install the package and view the man pages and vignette. Use example() to run the example in the
man page.

Resources for this exercise:

� The Writing R Extensions Manual

� Source of Bioconductor Packages (log in with username and password ’readonly’).

The package, with these changes incorporated, can be found at https://github.com/dtenenba/AdvancedR_
stage3. Notice that it has a vignette. If a package has more than a couple of functions, a vignette is a must
(and in fact is a requirement for Bioconductor packages). A package that does not have a vignette will have
an automatically-generated reference manual, which is a compendium of all the man pages in the package,
but that doesn’t tell you which function to run first, or how to use the package for a given work flow. That’s
why vignettes are so critical, because as the name implies, they provide a narrative telling you how to use
the package. The vignette in this package isn’t very comprehensive, but it hints at some future directions in
which the package could be taken.

2.4 Creating good packages and why it matters

2.4.1 Unit tests

We will follow the Bioconductor Unit Testing Guidelines page: http://www.bioconductor.org/developers/
unitTesting-guidelines

11

http://cran.r-project.org/doc/manuals/R-exts.html
https://hedgehog.fhcrc.org/bioconductor/trunk/madman/Rpacks/
https://github.com/dtenenba/AdvancedR_stage3
https://github.com/dtenenba/AdvancedR_stage3
http://www.bioconductor.org/developers/unitTesting-guidelines
http://www.bioconductor.org/developers/unitTesting-guidelines

2.4.2 Interoperability

When creating a new package it is useful to familiarize yourself with pre-existing classes and methods.
Reusing the current infrastructure allows a new package to integrate smoothly with existing work flows.
Additionally, the methods that have been written for these classes (i.e., subsetting, length, show, validity)
are yours for free when you reuse or inherit from an existing class.

DESCRIPTION file Most fields in the DESCRIPTION file are self-explanatory. Here we touch on a few
of the most important.

Description Posted on the package landing page. Often the first description of the package a user will see.

Depends Package is attached to search path but the namespace is not loaded.

Imports Package namespace is imported but the package is not attached to the search path.

Suggests Packages used in examples, tests or vignettes but not needed for current package functions.

biocViews These terms aid users in finding your package. For a list of terms see the Bioconductor web
site2.

NAMESPACE file The NAMESPACE file allows the user to control the package imports and exports.
Importing allows the current package to make use of functions defined in other packages. Exporting enables
the package author to expose their own functions as publicly available to other developers or kept private
for internal use.

Through these directives the NAMESPACE file controls the search path where R looks for variables.
First R looks inside the package namespace, then the imports, then the base namespace and then the normal
search path.

Advantages of having a package namespace:

1. Your package will not be broken by functions defined by users in the global environment.

2. Your package will not be bothered by functions in other packages with the same name.

3. A namespace gives you the ability to clearly specify which functions are part of the public interface and
which are private. R CMD check will not prompt you for documentation on non-exported functions,
although it is often still useful to give them some documentation.

There are some disadvantages:

1. You have to maintain the NAMESPACE file

2. It is less convenient to debug/develop packages with a NAMESPACE because R CMD INSTALL must be
run to be sure everything gets updated in the namespace properly. Although less convenient, you will
be more certain that the behavior is really in your package and not a result of things hiding in your
global environment.

Next we explore the YeastmRNACor package namespace. We start by demonstrating how easily we can
break a package if imports are not properly defined in the NAMESPACE file. Load the YeastmRNACor package
and then try redefining the cor function like this:

2http://www.bioconductor.org/packages/release/BiocViews.html#___Software

12

http://www.bioconductor.org/packages/release/BiocViews.html#___Software

> cor <- function(...) cat("This is my version of cor\n")

Does the correlationFinder function still work?
The cor function is defined the stats package. This package is included with base R and is loaded when

an R session is started. Start a fresh R session and type sessionInfo() to see what packages are loaded.

> sessionInfo()

Though the package is loaded, the namespace of stats has not been attached to our package namespace. The
stats package is located after the .GlobalEnv on the search path. (.GlobalEnv is where we defined our new
cor function.)

> search()

Add stats to the Imports field in the DESCRIPTION file and add the following line to the NAMESPACE.

import(stats)

Again try defining your own version of cor and verify that these changes protect against the redefinition of
cor.

Importing and Exporting in the NAMESPACE import will import all functions from an existing
package. Use importMethodsFrom and importClassesFrom if only a few functions or classes are needed.

Export generics and functions with export. Methods can be exported with exportMethods and classes
with exportClasses.

Each exported function should have a man page with running examples.
The package, incorporating changes in this section, can be found at
https://github.com/dtenenba/AdvancedR_stage5.

2.4.3 From package to Bioconductor package

Bioconductor contributors should refer to the guidelines for submitted package, and the package submission
page.

2.5 An Extended Example: MotifDb

2.5.1 Introduction

The MotifDb packages provides a collection of experimentally obtained protein-DNA binding sequence pat-
terns accompanied by metadata. The show(MotifDb) method provides a summary:

> show(MotifDb) # or simply: MotifDb

| Created from downloaded public sources: 2012-Jul6

| 2086 position frequency matrices from 5 sources:

| FlyFactorSurvey: 614

| hPDI: 437

| JASPAR_CORE: 459

| ScerTF: 196

13

https://github.com/dtenenba/AdvancedR_stage5
http://bioconductor.org/developers/package-guidelines/
http://bioconductor.org/developers/package-submission/
http://bioconductor.org/developers/package-submission/
http://bioconductor.org/packages/release/bioc/html/MotifDb.html

| UniPROBE: 380

| 22 organism/s

| Dmelanogaster: 739

| Hsapiens: 505

| Scerevisiae: 464

| Mmusculus: 329

| Rnorvegicus: 8

| Celegans: 7

| other: 34

Dmelanogaster-FlyFactorSurvey-ab_SANGER_10_FBgn0259750

Dmelanogaster-FlyFactorSurvey-ab_SOLEXA_5_FBgn0259750

Dmelanogaster-FlyFactorSurvey-Abd.A_FlyReg_FBgn0000014

Dmelanogaster-FlyFactorSurvey-Abd.B_FlyReg_FBgn0000015

Dmelanogaster-FlyFactorSurvey-AbdA_Cell_FBgn0000014

...

Mmusculus-UniPROBE-Zfp740.UP00022

Mmusculus-UniPROBE-Zic1.UP00102

Mmusculus-UniPROBE-Zic2.UP00057

Mmusculus-UniPROBE-Zic3.UP00006

Mmusculus-UniPROBE-Zscan4.UP00026

2.5.2 Highlights

The basic operations of MotifDb can be demonstrated with a few R commands, which provide us with the
context for exploring the package structure and class design.

library(MotifDb)

library(seqLogo)

query(MotifDb, 'e2f3')

t(as.matrix (mcols (query(MotifDb, 'e2f3'))))

pfm <- query(MotifDb, 'e2f3')[[1]]

seqLogo(pfm)

2.5.3 Package structure

MotifDb directory structure is significantly richer than the first one we examimed (Section 2.1.1), but even
so, some directories (src for compiled code, and data, for data directly provided to the user) are empty:

14

2.5.4 Class Design

MotifDb is the name of the package; MotifList is the name of the class around which it is a built. When
you load the class with library(MotifDb) an instance of MotifList is created, and populated with 2000+
matrices we have collected, along with their metadata.

However, the MotifList class is very simple. It contains only a few methods. Most of the capabilities it
offers is accomplished with data structures and methods inherited from other Bioconductor infrastructure
classes.

15

16

2.5.5 Classes and methods

2.5.6 The query method

Of the four methods MotifDb exports, we will look at one: query. It expects a queryString, and a MotifDb.
It returns all of the elements in the MotifList in which any of its metadata values match the queryString.

setMethod ('query', 'MotifList',

function (object, queryString, ignore.case=TRUE) {

indices = unique (as.integer (unlist (sapply (colnames (values (object)),

function (colname)

grep (queryString, values

17

(object)[, colname],

ignore.case=ignore.case)))))

object [indices]

}) })

2.5.7 zzz.R

One of the idioms of R programming – the zzz.R file – takes advantage of the alphabetical order in which
R loads and executes files. We put any code we wish to evaluate last in this file. In MotifDb, the final step
of the load process initiated by library(MotifDb) is to load matrices and metadata from the inst/extdata

directory, populating the SimpleList and DataFrame which lie at the heart of the MotifList. Here is the code:

.MotifDb = function(loadAllSources=TRUE, quiet=TRUE) {

mdb = MotifList()

if(loadAllSources) {

data.path = system.file('extdata', package='MotifDb')

data.files = dir(data.path, full.names=TRUE)

if(length(data.files) > 0)

for(data.file in data.files) {

tbl.md = NA; matrices = NA;

variables = load(data.file)

mdb = append(mdb, MotifList(matrices, tbl.md))

if(!quiet)

message(noquote(sprintf('added %s(%d) matrices, length now: %d',

basename(data.file), length(matrices), length(mdb))))

} # for data.file

if(!quiet) {

print(table(values(mdb)$dataSource))

}

} # if loadAllSources

return(mdb)

}

.onLoad <- function(libname, pkgname) {

MotifDb <<- .MotifDb(loadAllSources=TRUE, quiet=TRUE)

}

2.5.8 Unit Tests

All columns of a normalized position frequency matrix should sum to 1.0. Each column represents one
position in the target DNA to which the protein binds, with a row for each of the four possible bases: A, C,
G and T. However, the column sums are not always perfect, due to experimental error, or some mistake in
curation. Approximately half of the matrices obtained from UniPROBE, which are offered as pre-calculated
position frequency matrices, depart slightly from perfect normalization. The test accomodates this.

test.allMatricesAreNormalized = function () {

18

matrices = MotifDb@listData

checkTrue (all (sapply (matrices, function (mtx) checkEqualsNumeric (mean (colSums (mtx)), 1.0, tolerance = 0.01))))

}

19

Chapter 3

S4 classes and methods

3.1 Introduction

The S4 class system is a set of facilities provided in R for Object Oriented (OO) programming. S4 is
implemented in the methods package. On a fresh R session:

> sessionInfo()

...

attached base packages:

[1] stats graphics grDevices utils datasets

[6] methods base

R also supports an older class system, the S3 class system, that is much simpler and completely integrated
in the language itself. S4 is much more powerful than S3, but also much more complex.

3.1.1 A different OO paradigm

The OO paradigm in S4 is different from the OO paradigm found in most other programming languages.
One of the most visible differences is the syntax used to call a method on an object x. The R way (S4 and
S3) is to do:

> foo(x, ...)

whereas most other programming langauges would have a syntax like x.foo(...). The central concepts in
R’s S4 system are:

Core components: classes1, generic functions, and methods.

Glue: method dispatch (supports simple and multiple dispatch)

Those concepts are materialized in the methods package:

> ls('package:methods')

1also called formal classes, to distinguish them from the S3 classes or old-style classes

20

[1] "@<-" "addNextMethod"

[3] "allGenerics" "allNames"

[5] "Arith" "as"

[7] "as<-" "asMethodDefinition"

...

[211] "testVirtual" "traceOff"

[213] "traceOn" "tryNew"

[215] "trySilent" "unRematchDefinition"

[217] "validObject" "validSlotNames"

This is a rich, complex, somewhat intimidating package. The classes and methods we implement in our
packages can be hard to document, especially when the class hierarchy is complicated and multiple dispatch
is used.

3.1.2 S4 in Bioconductor

S4 is heavily used in Bioconductor. For example BioC 2.7 contained 1383 classes and 8397 methods defined
in 200 packages (out of 419), and those numbers are growing at each new release! For the end-user: it’s
mostly transparent. But when something goes wrong, error messages issued by the S4 class system can be
hard to understand. Also it can be hard to find the documentation for a specific method. Most Bioconductor
packages use only a small subset of the S4 capabilities (which covers 99.99% of our needs).

3.1.3 From an end-user point of view

S4 objects can come from:

� A data set:

> library(graph)

> data(apopGraph)

> apopGraph

A graphNEL graph with directed edges

Number of Nodes = 50

Number of Edges = 59

� A constructor :

> library(IRanges)

> IRanges(start=c(101, 25), end=c(110, 80))

IRanges of length 2

start end width

[1] 101 110 10

[2] 25 80 56

� A coercion:

> library(Matrix)

> m <- matrix(3:-4, nrow=2)

> as(m, "Matrix")

21

2 x 4 Matrix of class "dgeMatrix"

[,1] [,2] [,3] [,4]

[1,] 3 1 -1 -3

[2,] 2 0 -2 -4

� A specialized high-level constructor:

> library(GenomicFeatures)

> makeTranscriptDbFromUCSC("sacCer2", tablename="ensGene")

TranscriptDb object:

| Db type: TranscriptDb

| Data source: UCSC

| Genome: sacCer2

| UCSC Table: ensGene

...

� A high-level I/O function:

> library(ShortRead)

> lane1 <- readFastq("path/to/my/data/", pattern="s_1_sequence.txt")

> lane1

class: ShortReadQ

length: 256 reads; width: 36 cycles

� Extracting part of a bigger object (typically with a getter):

> sread(lane1)

A DNAStringSet instance of length 256

width seq

[1] 36 GGACTTTGTAGGATACCCTCGCTTTCCTTCTCCTGT

[2] 36 GATTTCTTACCTATTAGTGGTTGAACAGCATCGGAC

[3] 36 GCGGTGGTCTATAGTGTTATTAATATCAATTTGGGT

[4] 36 GTTACCATGATGTTATTTCTTCATTTGGAGGTAAAA

...

[253] 36 GTTTTACAGACACCTAAAGCTACATCGTCAACGTTA

[254] 36 GATGAACTAAGTCAACCTCAGCACTAACCTTGCGAG

[255] 36 GTTTGGTTCGCTTTGAGTCTTCTTCGGTTCCGACTA

[256] 36 GCAATCTGCCGACCACTCGCGATTCAATCATGACTT

How to find the right man page?

� class?graphNEL or equivalently ?`graphNEL-class` for accessing the man page of a class

� ?qa for accessing the man page of a generic function

� The man page for a generic might also document some or all of the methods for this generic. The See
Also: section might give a clue. Also using showMethods() can be useful:

> showMethods("qa")

22

Function: qa (package ShortRead)

dirPath="character"

dirPath="list"

dirPath="ShortReadQ"

dirPath="SolexaPath"

� ?`qa,ShortReadQ-method` to access the man page for a particular method (might be the same man page
as for the generic)

� In doubt: ??qa will search the man pages of all the installed packages and return the list of man pages
that contain the string qa

How to inspect objects and discover methods?

� class() and showClass():

> class(lane1)

[1] "ShortReadQ"

attr(,"package")

[1] "ShortRead"

> showClass("ShortReadQ")

Class "ShortReadQ" [package "ShortRead"]

Slots:

Name: quality sread id

Class: QualityScore DNAStringSet BStringSet

Extends:

Class "ShortRead", directly

Class ".ShortReadBase", by class "ShortRead", distance 2

Known Subclasses: "AlignedRead"

� str() for compact display of the content of an object

� showMethods() to discover methods

� selectMethod() to see the code

3.1.4 Chapter overview

Throughout this chapter you will implement a toy class, named SNPLocations, which is a simple container
for storing SNPs in a naive and incomplete way.

Implementing an S4 class typically consists in the following steps:

1. A class definition where the name and type of each slot is specified. Unlike with other OO programming
languages, the methods that will operate on this class are not part of the class definition.

23

2. A constructor so we can create SNPLocations instances. A common practice is to define an ordinary
function named like the class itself for this. Note that this is not enforced by by the S4 class system,
just a shared practice among the Bioconductor core developers. This SNPLocations function will take
care of doing some basic argument checking and to populate the slots of the instance to be returned.

3. Some accessor methods to get values from (or set values to) the slots of a SNPLocations object.
Note that direct slot manipulation by the end user via the @ operator is generally not recommended.
Providing our own set of accessors will hopefully discourage the user of our objects from doing this.
It’s also a way for us to formally specify which slots are ok to be accessed and how they should be
accessed (read-only slot or read-write slot).

4. Other accessor-like methods that are not slot accessors (i.e. they are not getting or setting the content
of a slot, strictly speaking) but are getting or setting information in the object (from or into more than
1 slot), e.g. [or [<-.

5. A show method, so our objects display nicely/compactly some useful information.

6. A validity method that will take care of checking that our SNPLocations objects are valid i.e. that
their slots contain values that make sense individually and as a whole. Note that this certainly requires
some extra effort whose benefits maybe aren’t immediately obvious, but it is considered good practice
since it makes your class implementation more robust and it pays off in the long term maintenance of
your package. For this course, because of time constraints, we will implement an incomplete validity
method for our SNPLocations objects.

7. Some coercion methods to turn our SNPLocations objects into other types of objects, with or without
loss of information. For this course, we will implement a coercion method for turning a SNPLocations
object into a data frame.

8. Other high-level methods that don’t fall into any of the previous categories (i.e. not accessor, show,
validity or coercion methods). Depending on the kind of object that is being implemented, those can
be methods for subsetting, plotting, normalizing, generating an HTML report, etc...

This is really what we mean when we say implementing S4 objects.
An additional task is to integrate the class in our package, which is also an important aspect of imple-

menting an S4 object.

So the work we need to do can be divided in 2 parts:

� Part I: Implement the SNPLocations class in a standalone file.

� Part II: Integrate the class implemented in Part I into a package. This is not only adding the file made
in Part I to the package, it also requires modifying the Collate field, import the methods package
(if not already done), modify the NAMESPACE file, and add a man page documenting the class. Once
everything is in place, we should be able to build and check our package with R CMD build and R CMD

check.

3.2 Implementing the SNPLocations class

3.2.1 Choosing a good design

The process of designing and implementing a new class requires that the developer spends some time thinking
about:

24

� What s/he wants to achieve exactly with the class,

� How is the class going to be used, by who, for doing what,

� What are the typical use cases,

� What is the typical size of the data that will be manipulated, small (< 1 Mb), big (> 100 Mb), very
big (> 10 Gb),

� How the class will interact with other packages and classes in CRAN/Bioconductor,

� How the facilities provided by the class will fit within the tools and file formats commonly used inside
or outside Bioconductor,

� etc...

It’s generally considered good design to avoid storing redundant information (although some exceptions
can be made for performance considerations) and to keep things as simple as possible.

3.2.2 Class definition

For our SNPLocations class, we want the following slots:

� genome: a single string containing the name of a reference genome, e.g. "hg19" or "mm10". It’s
important to make sure that the locations of our SNPs correspond to locations on that genome.

� snpid: a character vector of length N (where N is the number of SNPs stored in our object) containing
1 snp id per SNP.

� chrom: a character vector of length N containing the name of the chromosome where each SNP is
located.

� pos: an integer vector of length N containing the position of each SNP. To keep things simple, we only
want to support single-base substitutions so we don’t need to store the start and the end of each SNP.
Note that the almost universally adopted coordinate system on a reference genome is to report 1-based
positions relative to the 5’ end of the plus strand of the chromosomes.

Exercise 1
Start a new file (let’s name it SNPLocations-class.R) and write the setClass statement for the SNPLoca-
tions class.

setClass("SNPLocations",

representation(

genome="character",

...

...

)

)

Solution:

> setClass("SNPLocations",

+ representation(

+ genome="character", # a single string

+ snpid="character", # a character vector of length N

+ chrom="character", # a character vector of length N

25

+ pos="integer" # an integer vector of length N

+)

+)

3.2.3 Constructor

For the SNPLocations constructor, we are going to write a function that takes 4 arguments: genome, snpid,
chrom, and pos. Those 4 arguments will contain the user-supplied reference genome and locations of a
collection of N SNPs. Our constructor will be a simple wrapper to new("SNPLocations", ...). It won’t
perform any checks on the user-supplied arguments (the constructor is not the best place to perform those
checks, we’ll see later why).

Exercise 2
a. Add the SNPLocations constructor to the SNPLocations-class.R file. Note that new("SNPLocations",

...) must be called with named arguments. The names of the arguments must correspond to slots in
the class definition. Their values must correspond to the values to assign to the slots. See ?new for all
the details.

b. Start R, source the SNPLocations-class.R file (or copy/paste its content into your session), do show-

Class("SNPLocations"), and finally, try to use the SNPLocations constructor.

Solution:

> SNPLocations <- function(genome, snpid, chrom, pos)

+ {

+ new("SNPLocations", genome=genome, snpid=snpid, chrom=chrom, pos=pos)

+ }

Testing:

> mysnps <- SNPLocations("hg19",

+ c("rs0001", "rs0002"),

+ c("chr1", "chrX"),

+ c(224033L, 1266886L))

> mysnps

An object of class "SNPLocations"

Slot "genome":

[1] "hg19"

Slot "snpid":

[1] "rs0001" "rs0002"

Slot "chrom":

[1] "chr1" "chrX"

Slot "pos":

[1] 224033 1266886

26

Now we are able to create SNPLocations objects! Keep your R session live for further testing on the
SNPLocations object you just created (let’s call this object mysnps).

Before we implement a show method for our SNPLocations objects, it’s better to start by implementing
a length method and other accessor methods so we can use them later in the show method (and in our code
in general).

3.2.4 Implementing length() and other accessors

In the next exercise we will implement length(), genome(), snpid(), chrom() and pos() on our objects.
Note that for the slot getters, we use the same name as the corresponding slot, which is a natural thing to
do but is not enforced in anyway by S4.

We want to implement those accessors as methods for SNPLocations objects, not as ordinary functions.
This is the recommended way to implement accessors. Let’s distinguish between 2 situations:

� For accessors with a name that doesn’t correspond to any existing function (e.g. snpid), we need to
define a generic function before we can write a method for it. This is done with a setGeneric statement.
The simplest form of the setGeneric statement is the following (for a generic function foo with a single
argument):

setGeneric("foo", function(x) standardGeneric("foo"))

� For accessors with a name that corresponds to an existing function (e.g. length and genome, defined
in base and GenomicRanges, respectively), we don’t need a setGeneric statement. (If the existing
function is not already a generic function, which can be checked with isGeneric(), then it will be
automatically turned into an implicit generic function.) In that case the programmer must check the
signature of the existing function and make sure that s/he uses exactly the same signature in his/her
method definition.

The definition of the method itself is done with a setMethod statement. For example, in the case of
a generic function dispatching on 1 argument only (the most common situation), the setMethod statement
looks like:

setMethod("foo", "SNPLocations",

function(x)

{

...

}

)

Exercise 3
a. Implement the length method for SNPLocations objects.

b. Load the GenomicRanges package (in order to get the genome() generic), and implement the genome,
snpid, chrom, and pos accessors for SNPLocations objects.

c. Copy/paste the new code into your current R session and test the new methods on the mysnps objects.

Solution:

> setMethod("length", "SNPLocations", function(x) length(x@snpid))

> ## The genome() generic is defined in the GenomicRanges package.

27

> setMethod("genome", "SNPLocations", function(x) x@genome)

> ## snpid().

> setGeneric("snpid", function(x) standardGeneric("snpid"))

> setMethod("snpid", "SNPLocations", function(x) x@snpid)

> ## chrom().

> setGeneric("chrom", function(x) standardGeneric("chrom"))

> setMethod("chrom", "SNPLocations", function(x) x@chrom)

> ## pos().

> setGeneric("pos", function(x) standardGeneric("pos"))

> setMethod("pos", "SNPLocations", function(x) x@pos)

Testing:

> length(mysnps)

[1] 2

> genome(mysnps)

[1] "hg19"

> snpid(mysnps)

[1] "rs0001" "rs0002"

> chrom(mysnps)

[1] "chr1" "chrX"

> pos(mysnps)

[1] 224033 1266886

3.2.5 The show method

show is a generic function defined in the methods package (which is also the home of the setClass, setGeneric
and setMethod functions and the S4 class system in general). Do ?show in your R session. The important bit
here is that the name of the argument is object so that’s what you need to use in your method definition.

Exercise 4
a. Write a show method that displays something like:

SNPLocations instance with 25 SNPs on genome mm9

Internally, use the cat function to print the information, and use length to extract the number of
SNPs. Also, even if you think you know the class of the object being displayed, it’s better to use
class(object) than to hardcode "SNPLocations". You never know, maybe one day someone decides to
extend your SNPLocations class. When this happens, your show method will work out-of-the-box on
instances of the derived class (thanks to inheritance), and, because you used class(object), it will
correctly display their class.

28

b. Copy/paste the definition of the show method into your current R session and try to display your
SNPLocations object again (by just typing the name of the object followed by <Enter>).

Solution:

> setMethod("show", "SNPLocations",

+ function(object)

+ cat(class(object), "instance with", length(object),

+ "SNPs on genome", genome(object), "\n")

+)

[1] "show"

Testing:

> mysnps

SNPLocations instance with 2 SNPs on genome hg19

3.2.6 The validity method

One limitation of the setClass statement is that the representation component only allows us to specify the
types of the slots, but not their lengths or any other restriction that we’d want to impose.

For example, the setClass statement for our SNPLocations class just requires the genome slot to be a
character vector, without imposing any restriction on its length or content. But what we really want is a
single string i.e. a character vector of length 1 that is not an NA. A SNPLocations object with a character
vector of length 0 or an NA in its genome slot could fairly be considered broken. Of course, we could put some
sanity checks in the SNPLocations constructor in order to avoid this, but, a better approach is to define a
validity method that will be in charge of those checks.

Any S4 object can be validated at any time with a call to validObject. By default (i.e. if no validity
method is defined), the validation only consists in checking that the types of the slot values are compatible
with the expected types i.e. with the types that are specified in the class definition (compatible here means
that the slot value belongs to the specified class or to one of its subclasses). This validation is automatically
performed by the low-level constructor new (and this is why trying to create an object with an incompatible
slot value generates an error).

By defining a validity method for his/her objects, the developer can be much more specific about what
values can go into each slot. Furthermore, it allows him/her to validate an object as a whole by checking
that the values in the different slots are compatible with each other.

Defining a validity method is done with a setValidity statement:

setValidity("SNPLocations",

function(object)

{

...

...

}

)

29

The method should return TRUE if the object is valid, and one or more descriptive strings if any problems
are found. It should never generate an error.

In the next exercise, we implement a simple (incomplete) validity method for SNPLocations objects.

Exercise 5
a. Implement a validity method for SNPLocations objects that will be in charge of checking that:

� The genome slot is a single string (i.e. a character vector of length 1 that is not an NA);

� All the other slots have the same length N (the number of SNPs).

b. Copy/paste the definition of the validity method into your current R session and call validObject on
your SNPLocations object. Break the object by setting its chrom slot to "chr1". Call validObject

again on the object.

c. Is it valid to set the pos slot to c(25, 8)?

Solution:

> setValidity("SNPLocations",

+ function(object)

+ {

+ if (!is.character(genome(object)) ||

+ length(genome(object)) != 1 || is.na(genome(object)))

+ return("'genome' slot must be a single string")

+ slot_lengths <- c(length(snpid(object)),

+ length(chrom(object)),

+ length(pos(object)))

+ if (length(unique(slot_lengths)) != 1)

+ return("lengths of slots 'snpid', 'chrom' and 'pos' differ")

+ TRUE

+ }

+)

Testing:

> validObject(mysnps)

[1] TRUE

3.2.7 Coercion methods

It’s often convenient for the user to be able to turn an object of a given class (the original class) into an object
of another class (the target class). This transformation is called coercion in R jargon (explicit type-casting or
type conversion in other programming languages). Depending on the classes that are involved, the coercion
can be with or without loss of information.

When implementing an S4 class, it’s good to think about potentially useful coercions that the user might
need. In the case of our SNPLocations class for example, we’d like the user to be able to turn a SNPLocations
object into a data frame.

30

R supports 2 syntaxes for performing a coercion: (1) the as.targetclass(x) syntax, and (2) the as(x,

"targetclass") syntax.
The former syntax only supports a limited set of target classes through some predefined generic functions

such as as.logical, as.integer, as.double, as.numeric, as.complex, as.character, as.raw, as.vector, as.list,
as.factor, as.matrix, as.array, as.data.frame, etc...

The latter syntax makes use of a single generic function, the as generic. This is the preferred syntax
when working with S4 objects: it offers greater flexibility and better integration to the S4 class system itself.

However, whenever possible, it’s good to support both syntaxes to we want our user to be able to turn a
SNPLocations object x into a data frame with as.data.framex or as(x, "data.frame"). For this to work, we
need to implement 2 coercion methods: an as.data.frame method for SNPLocations objects and a coerce

method for coercing from SNPLocations to data.frame.
The former is implemented with:

setMethod("as.data.frame", "SNPLocations",

function(x, row.names=NULL, optional=FALSE, ...)

{

...

}

)

The latter is implemented with a setAs statement:

setAs("SNPLocations", "data.frame", function(from) as.data.frame(from))

The from argument contains the object to coerce.
Both methods must of course return the same thing, which is the coerced object. Note that the latter

can be a simple wrapper to the former: there is no need to re-implement the real work done by the former
in the latter.

Exercise 6
a. Implement the 2 coercion methods from SNPLocations to data.frame.

b. Copy/paste the definitions of the coercion methods into your current R session and test them by doing
as.data.frame(mysnps) and as(mysnps, "data.frame").

Solution:

> setMethod("as.data.frame", "SNPLocations",

+ function(x, row.names=NULL, optional=FALSE, ...)

+ {

+ ## We ignore the 'row.names' and 'optional' arguments.

+ data.frame(snpid=snpid(x), chrom=chrom(x), pos=pos(x))

+ }

+)

[1] "as.data.frame"

> setAs("SNPLocations", "data.frame", function(from) as.data.frame(from))

Testing:

31

> as.data.frame(mysnps)

snpid chrom pos

1 rs0001 chr1 224033

2 rs0002 chrX 1266886

> as(mysnps, "data.frame")

snpid chrom pos

1 rs0001 chr1 224033

2 rs0002 chrX 1266886

3.3 Integrating the SNPLocations class to our package

Now we need to integrate the code produced in the previous section to our package. This is done in 4 steps.

3.3.1 Add the SNPLocations-class.R file to the package

Exercise 7
a. Put the SNPLocations-class.R file under the R/ folder of your package. In case you are using a

revision control system like Subversion to develop your code, don’t forget to add the file to the system
with e.g. svn add.

b. Add the name of the new .R file to the Collate field of the DESCRIPTION file. The new file should
be listed after any other file that contains material used in the new file and before any other file that
depends on material defined in the new file.

3.3.2 Import the required packages and modify the NAMESPACE file

Using S4 in a package requires that we import the methods package. We also need to import any other
thing used internally in our package. For example, we need to import the genome generic function from the
GenomicRanges package because we define a genome method in our package.

Exercise 8
a. Make sure the methods package is in the Imports field of your package. For GenomicRanges, you

could also put it in the Imports field, but, since your package is defining a genome method, it’s a good
idea to make sure that the user will also have access to the man page for the genome generic (located in
GenomicRanges) in addition to the man page for your method (which will be located in your package).
This is achived by putting GenomicRanges in the Depends field instead of Imports.

b. Then make the following modifications to the NAMESPACE file of your package:

� Make sure the file contains the following directive:

import(methods)

If not, add it before any other imports.

32

� Import the genome generic from the GenomicRanges package:

importFrom(GenomicRanges,genome)

� Export the SNPLocations class by adding the name of the class inside the exportClasses directive.
Syntax:

exportClasses(

Class1,

Class2,

...

...

)

� In the export directive: Add the functions (non-generic and generic) defined in your package
that you want to export. Note that what you export will need to be documented in a man page.
The stuff that is not intended to be used directly by the user of your package should not be
exported (and not documented, of course, but that doesn’t mean it doesn’t deserve some brief
documentation in the form of a short comment in your source code).

� In the exportMethods directive: Add the methods you want to export (usually all the methods
defined in your package, including coercion methods, but excluding validity methods). Note that
the names you need to put in the directive are those of the corresponding generics with no specifi-
cation of the classes for which the methods are defined. This means that if you implemented more
than one method for the generic foo, then foo only needs to be listed once in the exportMethods

directive:

exportMethods(

...

foo, # exports all the methods attached to this generic

...

)

To export the coercion methods, add coerce to the exportMethods directive.

3.3.3 Add a man page for the SNPLocations class

Documenting the new class and its basic functionality might not be the most exciting part of the story
but, unfortunately, it’s an indispensable one! To help get us motivated, let’s remember that undocumented
functionality is probably not going to be used, or, in the best case, will make our most adventurous users
feel frustrated.

An easy approach would be to use promptClass("SNPLocations") which automatically generates a mini-
malist man page for our class. However, in our opinion, this automatic man page does not provide useful
information to the user. It’s also a little bit misleading since it encourages the user to create objects with
direct calls to (new) (instead of using our higher-level constructor) and to manipulate slots directly (instead
of using our accessors).

In our experience, using the following template for documenting our classes leads to more valuable
documentation than the promptClass solution:

\name{SNPLocations-class}

\docType{class}

33

\alias{SNPLocations-class}

\alias{SNPLocations}

\alias{...}

\alias{...}

\alias{...}

\title{SNPLocations objects}

\description{

~~ A concise (1-5 lines) description of what the class is. ~~

}

\section{Constructor}{

\describe{

\item{}{

\code{SNPLocations(...)}:

~~ A description of the constructor and its arguments. ~~

}

}

}

\section{Length and accessors}{

In the code snippets below, \code{x} is a SNPLocations object.

\describe{

\item{}{

\code{length(x)}:

~~ What the length of x is. ~~

}

\item{}{

\code{accessor1(x)}:

~~ A description of accessor 1. ~~

}

\item{}{

\code{accessor2(x)}:

~~ A description of accessor 2. ~~

}

... etc ...

}

}

\section{Coercion}{

In the code snippets below, \code{x} is a SNPLocations object.

34

\describe{

\item{}{

\code{as(x, "class1")}:

~~ A description of what this coercion does. ~~

}

\item{}{

\code{as(x, "class2")}:

~~ A description of what this coercion does. ~~

}

... etc ...

}

}

\references{

~~ Put references to the literature/web site here. ~~

}

\author{Your Name}

\seealso{

~~ Put links of the form \code{\link{FUNCTIONNAME}} here ~~

~~ to link to other functions. ~~

~~ Put links of the form \code{\linkS4class{CLASSNAME}} here ~~

~~ to link to other classes. ~~

}

\examples{

~~ Put code here that illustrates at least the use of the ~~

~~ constructor, accessors and coercion methods (if any). ~~

}

\keyword{classes}

Exercise 9
Use the above template to produce the SNPLocations-class.Rd file. This file needs to be located under the
man/ folder of your package. In case you are using a revision control system, don’t forget to add the file to
it. Note that:

� There must be an alias of the form

\alias{foo}

for each exported function (ordinary or generic). Also there must be an alias for each exported method.
The form of this alias depends on the number of arguments involved in the dispatch. It’s

35

\alias{foo,Class1-method}

for dispatch on 1 argument (e.g. for the accessor methods), and

\alias{bar,Class1,Class2-method}

for dispatch on 2 arguments (e.g. for the coercion methods), and so on...

� There is no alias for the validity methods (they are not exported and they don’t need to be documented).
What needs to be documented with great details however is what the arguments of our high-level
constructor are expected to be. In the case of paths to on-disk files like for our (SNPLocations)
constructor, it’s also a good idea to describe what the content of those files is expected to be.

� There must be an alias for the show method just to avoid an R CMD check warning (see below) even
though it’s ok to not document the method.

� The examples section is probably the most important part of any man page since most users tend to
go directly there without taking the time to read the whole story (either because they already know it
or because they are in a hurry).

3.3.4 Check the package

Exercise 10
a. Run R CMD build on the package source tree. This produces a source tarball. Then run R CMD check

on this source tarball and pay attention to any NOTE or WARNING that shows up. Fix them if
necessary.

b. Install the source tarball by running R CMD INSTALL on it. Start a fresh R session, load the package,
and try to use the new code. In particular, go to the new man page (?SNPLocations) so you can see
what it looks like from an end-user point of view.

If you are using a revision control system and are satisfied with your work so far, then it’s a good time
to commit it.

3.4 Extending an existing class

Like any other OO programming language, S4 lets you extend an existing class. Most of the time (but not
always), the child class will have additional slots, and only those slots need to be specified in the setClass

statement defining the child class:

> setClass("AnnotatedSNPs",

+ contains="SNPLocations",

+ representation(

+ geneid="character" # a character vector of length N

+)

+)

The slots from the parent class are inherited:

> showClass("AnnotatedSNPs")

36

Class "AnnotatedSNPs" [in ".GlobalEnv"]

Slots:

Name: geneid genome snpid chrom pos

Class: character character character character integer

Extends: "SNPLocations"

The amount of work that needs to be done to bring the child class to the same level of functionality as
its parent class is greatly reduced. Let’s walk thru each of them.

3.4.1 Constructor

By calling the constructor for the parent class from within the constructor for the child class, we hide the
implementation details of the parent class:

> AnnotatedSNPs <- function(genome, snpid, chrom, pos, geneid)

+ {

+ new("AnnotatedSNPs",

+ SNPLocations(genome, snpid, chrom, pos),

+ geneid=geneid)

+ }

> mysnps2 <- AnnotatedSNPs("hg19",

+ c("rs0001", "rs0002"),

+ c("chr1", "chrX"),

+ c(224033L, 1266886L),

+ c("AAU1", "SXW-23"))

A note about instance versus object:

> is(mysnps2, "AnnotatedSNPs") # 'mysnps2' is an AnnotatedSNPs object

[1] TRUE

> is(mysnps2, "SNPLocations") # and is also a SNPLocations object

[1] TRUE

> class(mysnps2) # but is *not* a SNPLocations *instance*

[1] "AnnotatedSNPs"

attr(,"package")

[1] ".GlobalEnv"

Exercise 11
Is mysnps an AnnotatedSNPs object?

37

3.4.2 length(), accessors, and show method

They all work out-of-the-box:

> length(mysnps2)

[1] 2

> genome(mysnps2)

[1] "hg19"

> snpid(mysnps2)

[1] "rs0001" "rs0002"

> chrom(mysnps2)

[1] "chr1" "chrX"

> pos(mysnps2)

[1] 224033 1266886

> mysnps2 # show method

AnnotatedSNPs instance with 2 SNPs on genome hg19

so only the geneid() accessor would need to be implemented:

> setGeneric("geneid", function(x) standardGeneric("geneid"))

> setMethod("geneid", "AnnotatedSNPs", function(x) x@geneid)

3.4.3 The validity method

The validity method for AnnotatedSNPs objects only needs to validate what’s not already validated by the
validity method for SNPLocations objects:

> setValidity("AnnotatedSNPs",

+ function(object) {

+ if (length(object@geneid) != length(object))

+ return("'geneid' slot must have the length of the object")

+ TRUE

+ }

+)

Testing:

> validObject(mysnps2) # starts by calling validity method for SNPLocations

[1] TRUE

> # objects internally

In other words, before an AnnotatedSNPs object can be considered valid, it must first be a valid SNPLo-
cations object. This is why we sometimes say that validity methods are incremental.

38

3.4.4 Coercion methods

Even though, all the methods defined for SNPLocations objects work out-of-the-box on a AnnotatedSNPs
object, sometimes they don’t do the right thing. This is the case for example for our coercion methods to
data frame:

> as(mysnps2, "data.frame") # the 'geneid' slot is ignored

snpid chrom pos

1 rs0001 chr1 224033

2 rs0002 chrX 1266886

When this happens, we can override the current method with a more specific method:

> setMethod("as.data.frame", "AnnotatedSNPs",

+ function(x, row.names=NULL, optional=FALSE, ...)

+ {

+ ## Note the use of callNextMethod() to call the method for

+ ## SNPLocations objects.

+ cbind(callNextMethod(), geneid=geneid(x))

+ }

+)

[1] "as.data.frame"

Testing:

> as.data.frame(mysnps2)

snpid chrom pos geneid

1 rs0001 chr1 224033 AAU1

2 rs0002 chrX 1266886 SXW-23

Finally, note that there is no need to implement the following method:

> ## NOT needed!

> #setAs("AnnotatedSNPs", "data.frame", function(from) as.data.frame(from))

It just works:

> as(mysnps2, "data.frame")

snpid chrom pos geneid

1 rs0001 chr1 224033 AAU1

2 rs0002 chrX 1266886 SXW-23

selectMethod can help provide us some insight on why this works:

> selectMethod("coerce", c(from="AnnotatedSNPs", to="data.frame"))

39

Method Definition:

function (from, to = "data.frame", strict = TRUE)

as.data.frame(from)

Signatures:

from to

target "AnnotatedSNPs" "data.frame"

defined "SNPLocations" "data.frame"

3.5 Other important S4 features

Here are a few other important S4 features not covered here:

� Virtual classes: equivalent to abstract classes in Java.

� Class unions (see ?setClassUnion).

� Multiple inheritance: a powerful feature that should be used with caution. If used inappropriately, can
lead to a class hierarchy that is hard or impossible to maintain.

� Reference classes (introduced in the next chapter).

3.6 Resources

� Man pages in the methods package: ?setClass, ?showMethods, ?selectMethod, ?getMethod, ?is, ?setVa-
lidity, ?as.

� Note: S4 is not covered in the An Introduction to R or The R language definition manuals2.

� The Writing R Extensions manual for details about integrating S4 classes to a package.

� The bioc-devel mailing list3.

� The R Programming for Bioinformatics book by Robert Gentleman4.

2http://cran.fhcrc.org/manuals.html
3http://bioconductor.org/help/mailing-list/
4http://bioconductor.org/help/publications/books/r-programming-for-bioinformatics/

40

Chapter 4

Reference classes

4.1 Introduction

Reference classes were introduced to R relatively recently. An instance of a reference class has fields and
methods associated with it. The methods can reference the instance, and can modify the content of the
instance. In this way reference classes seem more familiar to Java or C++ programmers. Of course R’s
reference classes have unique features that expose some complicated issues.

A short example The following snippet illustrates a simple reference class

> Account <- setRefClass("Account",

+ fields=list(

+ balance = "integer"),

+ methods=list(

+ initialize = function(..., balance = 0L) {

+ callSuper(..., balance=as.integer(balance))

+ },

+ deposit = function(amount) {

+ "add amount to current balance"

+ .self$balance <- .self$balance + as.integer(amount)

+ .self

+ },

+ withdraw = function(amount) {

+ "withdraw amount from current balance, if possible"

+ if (.self$balance < amount)

+ stop("insufficient funds")

+ .self$balance <- .self$balance - as.integer(amount)

+ .self

+ },

+ show = function() {

+ cat("class:", class(.self), "\n")

41

+ cat("balance:", .self$balance, "\n")

+ }))

The example illustrates key features. Classes are created with setRefClass. The setRefClass function returns
a generator function, which by convention we have named after the class. The class has fields and methods.
The fields and methods are typically defined with the class, rather than separately (it is possible to define
methods after the class has been created, but this does not seem like a good practice). Fields can contain
any R class, including S4 and reference classes. Like S4 methods, reference classes can have initialize

methods invoked when a new instance is created. Methods can start with a single character string to display
help. Methods written on the class can reference the instance itself, as with the .self object in the deposit

and withdraw methods. Fields and methods are accessed with $. Some methods are invoked as part of R’s
normal evaluation, e.g., the show method for object printing.

Here is our reference class in action:

> acct <- Account$new(balance = 100)

> Account$help("deposit")

Call:

$deposit(amount)

add amount to current balance

> acct$balance

[1] 100

> acct$deposit(20)

class: Account

balance: 120

> acct$withdraw(100)

class: Account

balance: 20

> try(acct$withdraw(100))

> acct

class: Account

balance: 20

We use the generator function to instantiate an instance of the class. Direct field access is possible. Invoking
a method on the instance, e.g., deposit, modifies the instance.

A key difference between reference classes and most other R data types, include S4 classes, is reference,
rather than copy-on-change, semantics: note how modifying b does not modify a:

42

> a <- b <- 10

> b <- 20

> a

[1] 10

whereas modifying acct1 modifies acct2

> acct1 <- acct2 <- Account$new(balance = 100)

> acct1$deposit(20)

class: Account

balance: 120

> acct2

class: Account

balance: 120

As experience R users we are probably surprised by this reference semantics, appreciating immediately the
disastrous consequences such ‘action at a distance’ might have for an analysis and marveling that such
behavior is the norm in other programming languages. Why on earth would one want to use a reference
class?

Uses There are several situations where a reference class might be appropriate. One possibility is when the
instance represents some objective reality, e.g., a window in a user interface, a file from which one is reading,
or a ‘singleton’ such as package-level configuration options; it does not make sense to have copy-on-change
semantics for data that must necessarily be shared by all instances referring to the same object. A second
possibility is to circumvent the consequences of copy-on-change semantics and the memory inefficiencies it
produces. For instance, modifying the small field in the following S4 class actually copies the entire object

> AA <- setClass("AA", representation(small="character", big="matrix"))

> a <- AA(small="foo", big=matrix(numeric(), 10000, 10000))

> system.time(slot(a, "small") <- "bar") # copies 'big'

user system elapsed

0.188 0.308 0.500

In contrast, only modified fields are copied in reference classes.

> B <- setRefClass("B", fields=list(small="character", big="matrix"))

> b <- B$new(small="foo", big=matrix(numeric(), 10000, 10000))

> system.time(b$small <- "bar") # does not copy 'big'

user system elapsed

0 0 0

This can have significant performance consequences, both in terms of speed (as shown above) and memory
use.

43

4.2 Implementing reference classes

We have seen the basic steps required for reference class implementation. There are a number of additional
salient points; a good starting points are the ?ReferenceClasses and ?setRefClass help pages.

4.2.1 Fields

While fields can be declared as above, through a named list of types, they may also be implemented as accessor
functions; this is particularly useful when the ‘field’ is represented outside of R, e.g., as a C structure or data
base reference.

> A <- setRefClass("A",

+ fields=list(

+ x=function(value) {

+ if (missing(value)) { ## 'get'

+ message("get")

+ 1

+ } else ## 'set'

+ stop("'set' not implemented")

+ }))

> a <- A$new()

> a$x

[1] 1

> try(a$x <- 2)

Fields can be locked so that they are ‘read only’

> A <- setRefClass("A", fields = list(x="numeric"))

> A$lock("x")

> a <- A$new(x=1:5)

> try(a$x <- 5:1)

4.2.2 Inheritance

Reference classes support inheritance

> A <- setRefClass("A", fields=list(a="integer"))

> B <- setRefClass("B", fields=list(b="numeric"), contains="A")

> B$new(a=1:5, b=1.41)

Reference class object of class "B"

Field "a":

[1] 1 2 3 4 5

Field "b":

[1] 1.41

44

including multiple inheritance (and inheritance from S4 and reference classes). Fields and methods can
over-ride and invoke inherited methods.

> A <- setRefClass("A",

+ fields=list(a="integer"),

+ methods=list(value = function() { message("'A'"); .self$a}))

> B <- setRefClass("B", contains = "A",

+ methods=list(value = function() { message("'B'"); callSuper() }))

> B$new(a=1:5)$value()

[1] 1 2 3 4 5

All reference classes contain the class envRefClass. This class has several interesting methods, inheritted by
all reference classes. Examples include:

callSuper(...) calls inheritted method.

copy(shallow=FALSE) create a copy of the instance.

getRefClass(), getClass() return the generator object or class definition of the class.

show() print the instance.

trace(what, ...), untrace(what) enable the trace function on method what.

4.2.3 Best practices?

As a developer, it is tempting to embrace reference classes. They are conceptually easier to deal with
than S4 classes, and have very appealing benefits in terms of performance. However, the reference based
semantics make them exceedingly poor candidates for end users. They are appropriately deployed under a
narrow set of circumstances, perhaps with some effort to leverage their benefits (e.g., efficient memory use)
without exposing the underlying semantics. A recent example of this is in the SummarizedExperiment class
of GenomicRanges, where the Assays slot of an S4 class is a implemented using a reference class designed to
have favorable memory copying properties but not to expose reference semantics to the end user. Reference
classes are also used fairly extensively in Rsamtools to represent files, which as mentioned have a natural
reference semantics.

The interface to reference class fields and methods is potentially confusing to users who have been schooled
in existing paradigms, especially accessors and replacement methods rather than direct access to S3 fields
or S4 slots. For this reason some reference classes have been implemented behind a facade of standard R
functions or S4 methods that dispatch to the underling class, e.g.,

> .A <- setRefClass("A", fields=list(value="numeric"))

> ## public interface 'A()', 'value()'

> A <- function(value = numeric(), ...)

+ .A$new(value=value, ...)

> value <- function(x, ...)

+ x$value

> a <- A(value=1:5)

> value(a)

[1] 1 2 3 4 5

45

http://bioconductor.org/packages/release/bioc/html/GenomicRanges.html
http://bioconductor.org/packages/release/bioc/html/Rsamtools.html

4.2.4 Cautions?

Validity Reference classes do not support validity methods directly; one can write a validity method and
invoke it manually.

> A <- setRefClass("A", fields=list(a="numeric"))

> xx <- setValidity("A", function(object) {

+ if (length(object$a) > 1)

+ "'a' is too long"

+ else TRUE

+ })

> A$new(a=1:5) # no validity checking

Reference class object of class "A"

Field "a":

[1] 1 2 3 4 5

> try(validObject(A$new(a=1:5)))

initialize The use of an initialize method imposes a subtle contract – derived classes may invoke
callSuper(...), expecting their arguments to be passed through your initialize method to the default
initialize method. Further, unnamed arguments may be instances of the class itself (i.e., new is a copy
constructor) or of an inherited class. Thus the initialize method should allow for additional arugments ...,
to invoke callSuper, and to structure the signature so as not to capture, via matching by position, unnamed
arguments:

> A <- setRefClass("A", fields=list(a="integer"))

> B <- setRefClass("B", fields = list(b="numeric"), contains="A",

+ methods = list(

+ initialize = function(..., b=3.14) {

+ callSuper(..., b=b)

+ }))

> B$new(a=1:5, b=1.41)

Reference class object of class "B"

Field "a":

[1] 1 2 3 4 5

Field "b":

[1] 1.41

> B$new(A$new(a=5:1), b=1.41)

Reference class object of class "B"

Field "a":

[1] 5 4 3 2 1

Field "b":

[1] 1.41

46

> B$new()

Reference class object of class "B"

Field "a":

integer(0)

Field "b":

[1] 3.14

4.3 Exercises
Exercise 12
Develop the simple bank account example above in S4 and reference classes. Reflect on the ease of develop-
ment and the ‘end-user’ experience.

47

Chapter 5

Accessing Data: Data Base and Web
Resources

5.1 Introduction

The most common interface for retrieving data in Bioconductor is now the select method. The interface
provides a simple way of extracting data.

There are really 4 methods that work together to allow a select interface. The 1st one is cols, which
tells you about what kinds of values you can retrieve as columns in the final result.

> library(Homo.sapiens)

> cols(Homo.sapiens)

[1] "GOID" "TERM" "ONTOLOGY" "DEFINITION" "ENTREZID"

[6] "PFAM" "IPI" "PROSITE" "ACCNUM" "ALIAS"

[11] "CHR" "CHRLOC" "CHRLOCEND" "ENZYME" "MAP"

[16] "PATH" "PMID" "REFSEQ" "SYMBOL" "UNIGENE"

[21] "ENSEMBL" "ENSEMBLPROT" "ENSEMBLTRANS" "GENENAME" "UNIPROT"

[26] "GO" "EVIDENCE" "GOALL" "EVIDENCEALL" "ONTOLOGYALL"

[31] "OMIM" "UCSCKG" "CDSID" "CDSNAME" "CDSCHROM"

[36] "CDSSTRAND" "CDSSTART" "CDSEND" "EXONID" "EXONNAME"

[41] "EXONCHROM" "EXONSTRAND" "EXONSTART" "EXONEND" "GENEID"

[46] "TXID" "EXONRANK" "TXNAME" "TXCHROM" "TXSTRAND"

[51] "TXSTART" "TXEND"

The next method is keytypes which tells you the kinds of things that can be used as keys.

> keytypes(Homo.sapiens)

[1] "GOID" "ENTREZID" "PFAM" "IPI" "PROSITE"

[6] "ACCNUM" "ALIAS" "CHR" "CHRLOC" "CHRLOCEND"

[11] "ENZYME" "MAP" "PATH" "PMID" "REFSEQ"

48

[16] "SYMBOL" "UNIGENE" "ENSEMBL" "ENSEMBLPROT" "ENSEMBLTRANS"

[21] "GENENAME" "UNIPROT" "GO" "EVIDENCE" "ONTOLOGY"

[26] "GOALL" "EVIDENCEALL" "ONTOLOGYALL" "OMIM" "UCSCKG"

[31] "GENEID" "TXID" "TXNAME" "EXONID" "EXONNAME"

[36] "CDSID" "CDSNAME"

The third method is keys which is used to retrieve all the viable keys of a particular type.

> k <- head(keys(Homo.sapiens,keytype="ENTREZID"))

> k

[1] "1" "2" "3" "9" "10" "11"

And finally there is select, which extracts data by using values supplied by the other method.

> result <- select(Homo.sapiens, keys=k,

+ cols=c("TXNAME","TXSTART","TXSTRAND"),

+ keytype="ENTREZID")

> head(result)

ENTREZID TXNAME TXSTRAND TXSTART

1 1 uc002qsd.4 - 58858172

2 1 uc002qsf.2 - 58859832

3 2 uc001qvk.1 - 9220304

4 2 uc009zgk.1 - 9220304

5 3 uc021qum.1 - 9381129

6 9 uc010ltd.3 + 18027971

But why would we want to implement these specific methods? It’s a fair question. Why would we want
to write a select interface for our annotation data? Why not just save a .rda file to the data directory and
be done with it? There are basically two reasons for this. The 1st reason is convenience for end users. When
your end users can access your data using the same four methods that they use everywhere else, they will
have a more effortless time retrieving their data. And things that benefit your users benefit you.

The second reason is that by enabling a consistent interface across all annotation resources, we allow for
things to be used in a programmatic manner. By implementing a select interface, we are creating a universal
API for the whole project.

Lets look again at the example I described above and think about what is happening. The Homo.sapiens
package is able to integrate data from many different resources largely because the separate resources
all implemented a select method. This allows the OrganismDbi package to pull together resources from
org.Hs.eg.db, GO.db and TxDb.Hsapiens.UCSC.hg19.knownGene.

If these packages all exposed different interfaces for retrieving the data, then it would be a lot more
challenging to retrieve it, and writing general code that retrieved the appropriate data would be a lost cause.
So implementing a set of select methods is a way to convert your package from a data file into an actual
resource.

49

http://bioconductor.org/packages/release/data/annotation/html/Homo.sapiens.html
http://bioconductor.org/packages/release/bioc/html/OrganismDbi.html
http://bioconductor.org/packages/release/data/annotation/html/org.Hs.eg.db.html
http://bioconductor.org/packages/release/data/annotation/html/GO.db.html
http://bioconductor.org/packages/release/data/annotation/html/TxDb.Hsapiens.UCSC.hg19.knownGene.html

Figure 5.1: Packages and relationships represented by the Homo.sapiens package

5.2 Creating other kinds of Annotation packages

A few more automated options already exist for generating specific kinds of annotation packages. For users
who seek to make custom chip packages, users should see the SQLForge: An easy way to create a new
annotation package with a standard database schema. in the AnnotationForge package. And, for users who
seek to make a probe package, there is another vignette called Creating probe packages that is also in the
AnnotationForge package. And finally, for custom organism packages users should look at the manual page
for makeOrgPackageFromNCBI. This function will attempt to make you an simplified organism package from
NCBI resources. However, this function is not meant as a way to refresh annotation packages between
releases. It is only meant for people who are working on less popular model organisms (so that annotations
can be made available in this format).

But what if you had another kind of web resource or database and you wanted to expose it to the world

50

http://bioconductor.org/packages/release/bioc/html/AnnotationForge.html
http://bioconductor.org/packages/release/bioc/html/AnnotationForge.html

using something like this new select method interface? How could you go about this?

5.3 Retrieving data from a web resource

If you choose to expose a web resource, then you will need to learn some skills for retrieving that data from
the web. The R programming language has tools that can help you interact with web resources, pulling
down files that are tab-delimited or formatted as XML etc. R pacakges such as XML and RJSONIO can
help parse what you retrieve. In this section we retrieve data in both tab-delimited and XML format from
the Uniprot web service and demonstrate how you can expose resources like this for your own purposes.

These days many web services are exposed using a representational state transfer or RESTful interface.
An example of this are the services offered at Uniprot. Starting with the Uniprot base URI you can add
details to simply indicate what it is that you wish to retrieve.

So in the case of Uniprot the base URI for the service we want today is this:

http://www.uniprot.org/uniprot/

This URI can be extended to retrieve individual records by specifying a query argument like this:

http://www.uniprot.org/uniprot/?query=P13368

We can then request multiple records like this:

http://www.uniprot.org/uniprot/?query=P13368+or+Q6GZX4

And we can ask that the records be returned to us in tabular form by adding another argument like this.

http://www.uniprot.org/uniprot/?query=P13368+or+Q6GZX4&format=tab

As you might guess, each RESTful interface is a little different, but you can easily see how once you read
the documentation for a given RESTful interface, you can start to retrieve the data in R. Here is an example.

> uri <- 'http://www.uniprot.org/uniprot/?query='

> ids <- c('P13368', 'Q6GZX4')

> idStr <- paste(ids, collapse="+or+")

> format <- '&format=tab'

> fullUri <- paste0(uri,idStr,format)

> read.delim(fullUri)

Entry Entry.name Status Protein.names

1 Q6GZX4 001R_FRG3G reviewed Putative transcription factor 001R

2 P13368 7LESS_DROME reviewed Protein sevenless (EC 2.7.10.1)

Gene.names Organism Length

1 FV3-001R Frog virus 3 (isolate Goorha) (FV-3) 256

2 sev HD-265 CG18085 Drosophila melanogaster (Fruit fly) 2554

Exercise 13
If you use the columns argument you can also specify which columns you want returned. So for example,
you can choose to only have the sequence and id columns returned like this:

51

http://www.uniprot.org/uniprot/?query=P13368+or+Q6GZX4&format=tab&columns=id,sequence

Use this detail about the Uniprot web service along with what was learned above to write a function that
takes a character vector of uniprot IDs and another character vector of columns arguments and then returns
the appropriate values. Be careful to filter out any extra records that the service returns.

Solution:

> getUniprotGoodies <- function(query, cols)

+ {

+ ## query and cols start as a character vectors

+ qstring <- paste(query, collapse="+or+")

+ cstring <- paste(cols, collapse=",")

+ uri <- 'http://www.uniprot.org/uniprot/?query='

+ fullUri <- paste0(uri,qstring,'&format=tab&columns=',cstring)

+ dat <- read.delim(fullUri, stringsAsFactors=FALSE)

+ ## now remove things that were not in the specific original query...

+ dat <- dat[dat[,1] %in% query,]

+ dat

+ }

5.3.1 Parsing XML

Data for the previous example were downloaded from Uniprot in tab-delimited format. This is a convienent
output to work with but unfortunately not always available. XML is still very common and it is useful to
have some familiarity with parsing it. In this section we give a brief overview to using the XML package for
navigating XML data.

The XML package provides functions to parse XML in both the tree-based DOM (document object
model) or the event-driven SAX (Simple API for XML). We will use the DOM approach. The XML is first
parsed into a tree-structure where the different elements of the data are nodes. The elements are processed
by traversing the tree and generating a user-level representation of the nodes. XPath syntax is used to
traverse the nodes. A detailed description of XPath can be found at http://www.w3.org/xml.

Retrieve the data: Data will be retrieved for the same id’s as in the previous example. Unlike tab-
delimited, the XML queries cannot be subset by column so the full record will be returned for each id.
Details for what is possible with each type of data retrieval are found at http://www.uniprot.org/faq/28.

Parse the XML into a tree structure with xmlTreeParse. When useInternalNodes=TRUE and no handlers

are specified the return value is a reference to C-level nodes. This storage mode allows us to traverse the
tree of data in C instead of R objects.

> library(XML)

> uri <- "http://www.uniprot.org/uniprot/?query=P13368+or+Q6GZX4&format=xml"

> xml <- xmlTreeParse(uri, useInternalNodes=TRUE)

52

http://www.w3.org/xml
http://www.uniprot.org/faq/28

XML namespace: XML pages can have namespaces which facilatate the use of different XML vocabularies
by resolving conflicts arrising from identical tags. Namepaces are represented by a uri pointing to an XML
schema page. When a namespace is defined on a node in an XML document it must be included in the
XPath expression.

Use the xmlNamespaceDefinitions function to check if the XML has a namespace.

> defs <- xmlNamespaceDefinitions(xml, recurisve=TRUE)

> defs

[[1]]

$id

[1] ""

$uri

[1] "http://uniprot.org/uniprot"

$local

[1] TRUE

attr(,"class")

[1] "XMLNamespaceDefinition"

$xsi

$id

[1] "xsi"

$uri

[1] "http://www.w3.org/2001/XMLSchema-instance"

$local

[1] TRUE

attr(,"class")

[1] "XMLNamespaceDefinition"

attr(,"class")

[1] "XMLNamespaceDefinitions"

The uri’s present in this listing confirm there is a namespace. Alternatively we could have looked at
the XML nodes for declarstions of the form xmlns:myNamespace="http://www.namspace.org". We organize the
namespaces and will use them directly in parsing.

> ns <- structure(sapply(defs, function(x) x$uri), names=names(defs))

Parsing with XPath: There are two high level ’entry’ nodes which represent the two id’s requested in
the original query.

53

> entry <- getNodeSet(xml, "//ns:entry", "ns")

> xmlSize(entry)

[1] 2

List the attributes of the top nodes and extract the names.

> nms <- xpathSApply(xml, "//ns:entry/ns:name", xmlValue, namespaces="ns")

> attrs <- xpathApply(xml, "//ns:entry", xmlAttrs, namespaces="ns")

> names(attrs) <- nms

> attrs

$`001R_FRG3G`

dataset created modified version

"Swiss-Prot" "2011-06-28" "2012-04-18" "24"

$`7LESS_DROME`

dataset created modified version

"Swiss-Prot" "1990-01-01" "2012-10-03" "134"

Inspect the direct children of each node.

> fun1 <- function(elt) unique(names(xmlChildren(elt)))

> xpathApply(xml, "//ns:entry", fun1, namespaces="ns")

[[1]]

[1] "accession" "name" "protein" "gene"

[5] "organism" "organismHost" "reference" "comment"

[9] "dbReference" "proteinExistence" "keyword" "feature"

[13] "sequence"

[[2]]

[1] "accession" "name" "protein" "gene"

[5] "organism" "reference" "comment" "dbReference"

[9] "proteinExistence" "keyword" "feature" "evidence"

[13] "sequence"

Query Q6GZX4 has 2 ’feature’ nodes and query P13368 has 48.

> Q6GZX4 <- "//ns:entry[ns:accession='Q6GZX4']/ns:feature"

> xmlSize(getNodeSet(xml, Q6GZX4, namespaces="ns"))

[1] 2

> P13368 <- "//ns:entry[ns:accession='P13368']/ns:feature"

> xmlSize(getNodeSet(xml, P13368, namespaces="ns"))

[1] 48

54

List all possible values for the ’type’ attribute of the ’feature’ nodes.

> path <- "//ns:feature"

> unique(xpathSApply(xml, path, xmlGetAttr, "type", namespaces="ns"))

[1] "chain" "compositionally biased region"

[3] "topological domain" "transmembrane region"

[5] "domain" "repeat"

[7] "nucleotide phosphate-binding region" "active site"

[9] "binding site" "modified residue"

[11] "glycosylation site" "mutagenesis site"

[13] "sequence conflict"

For query P13368 extract the features with ‘type=sequence conflict’.

> path <- "//ns:entry[ns:accession='P13368']/ns:feature[@type='sequence conflict']"

> data.frame(t(xpathSApply(xml, path, xmlAttrs, namespaces="ns")))

type description ref

1 sequence conflict In Ref. 1; AAA28882. 1

2 sequence conflict In Ref. 3; AAF47992. 3

3 sequence conflict In Ref. 3; AAF47992. 3

4 sequence conflict In Ref. 3; AAF47992. 3

5 sequence conflict In Ref. 3; AAF47992. 3

6 sequence conflict In Ref. 2; CAA31960/CAB55310. 2

7 sequence conflict In Ref. 1; AAA28882. 1

Put the sequence information in an AAStringSet and add the names we extracted previously.

> library(Biostrings)

> path <- "//ns:entry/ns:sequence"

> seqs <- xpathSApply(xml, path, xmlValue, namespaces="ns")

> aa <- AAStringSet(unlist(lapply(seqs, function(elt) gsub("\n", "", elt)),

+ use.names=FALSE))

> names(aa) <- nms

> aa

A AAStringSet instance of length 2

width seq names

[1] 256 MAFSAEDVLKEYDRRRRMEALLL...KGVLYDDSFRKIYTDLGWKFTPL 001R_FRG3G

[2] 2554 MTMFWQQNVDHQSDEQDKQAKGA...NLTLREVPLKDKQLYANEGVSRL 7LESS_DROME

5.4 Setting up a package to expose a web service

In order to expose a web service using select, you will need to create an object that will be loaded at the
time when the package is loaded. Unlike with a database, the purpose of this object is pretty much purely
for dispatch. We just need select and it’s friends to know which select method to call

The first step is to create an object. Creating an object is simple enough:

55

> setClass("uniprot", representation(name="character"),

+ prototype(name="uniprot"))

Once you have a class defined, all you need is to make an instance of this class. Making an instance is
easy enough:

> uniprot <- new("uniprot")

But of course it’s a little more complicated because one of these objects will need to be spawned up
whenever our package loads. This is acclomplished by calling the .onLoad function in the zzz.R file. The
following code will create an object, and then assign it to the package namespace as the package loads.

> .onLoad <- function(libname, pkgname)

+ {

+ ns <- asNamespace(pkgname)

+ uniprot <- new("uniprot")

+ assign("uniprot", uniprot, envir=ns)

+ namespaceExport(ns, "uniprot")

+ }

5.5 Creating package accessors for a web service

At this point you have all that you need to know in order to implement keytype,cols,keys and select for
your package. In this section we will explore how you could implement some of these if you were making a
package that exposed uniprot.

5.5.1 Example: creating keytypes and cols methods

The keytype and cols methods are always the 1st ones you should implement. They are the easiest, and
their existence is required to be able to use keys or select. In this simple case we only have one value that
can be used as a keytype, and that is a UNIPROT ID.

> setMethod("keytypes", "uniprot",function(x){return("UNIPROT")})

[1] "keytypes"

> uniprot <- new("uniprot")

> keytypes(uniprot)

[1] "UNIPROT"

So what about cols? Well it’s not a whole lot more complicated in this case since we are limited to things
that we can return from the web service. Since this is just an example, lets limit it to the following fields:
”ID”, ”SEQUENCE”, ”ORGANISM”.

> setMethod("cols", "uniprot",

+ function(x){return(c("ID", "SEQUENCE", "ORGANISM"))})

56

[1] "cols"

> cols(uniprot)

[1] "ID" "SEQUENCE" "ORGANISM"

Also, notice how for both keytypes and cols I am using all capital letters. This is a style adopted throughout
the project.

5.5.2 Example 2: creating a select method

At this point we have enough to be able to make a select method.

Exercise 14
Using what you have learned above, and the helper function from earlier, define a select method. This select
method will have a default keytype of ”UNIPROT”.

Solution:

> .select <- function(x, keys, cols){

+ colsTranslate <- c(id='ID', sequence='SEQUENCE', organism='ORGANISM')

+ cols <- names(colsTranslate)[colsTranslate %in% cols]

+ getUniprotGoodies(query=keys, cols=cols)

+ }

> setMethod("select", "uniprot",

+ function(x, keys, cols, keytype)

+ {

+ .select(keys=keys, cols=cols)

+ })

[1] "select"

> select(uniprot, keys=c("P13368","P20806"), cols=c("ID","ORGANISM"))

Entry Organism

1 P13368 Drosophila melanogaster (Fruit fly)

2 P20806 Drosophila virilis (Fruit fly)

5.6 Retrieving data from a database resource

If your package is retrieving data from a database, then there are some additional skills you will need to be
able to interface with this database from R. This section will introduce you to those skills.

57

5.6.1 Getting a connection

If all you know is the name of the SQLite database, then to get a DB connection you need to do something
like this:

> drv <- SQLite()

> library("org.Hs.eg.db")

> con <- dbConnect(drv, dbname=system.file("extdata", "org.Hs.eg.sqlite",

+ package = "org.Hs.eg.db"))

> con

> dbDisconnect(con)

But in our case the connection has already been created here as part of the object that was generated when
the package was loaded:

> require(hom.Hs.inp.db)

> str(hom.Hs.inp.db)

Reference class 'InparanoidDb' [package "AnnotationDbi"] with 2 fields

$ conn :Formal class 'SQLiteConnection' [package "RSQLite"] with 1 slots

.. ..@ Id:<externalptr>

$ packageName: chr "hom.Hs.inp.db"

and 11 methods,

So we can do something like below:

> hom.Hs.inp.db$conn

<SQLiteConnection: DBI CON (3250, 11)>

> ## or better we can use a helper function to wrap this:

> AnnotationDbi:::dbConn(hom.Hs.inp.db)

<SQLiteConnection: DBI CON (3250, 11)>

> ## or we can just call the provided convenience function

> ## from when this package loads:

> hom.Hs.inp_dbconn()

<SQLiteConnection: DBI CON (3250, 9)>

5.6.2 Getting data out

Now we just need to get our data out of the DB. There are several useful functions for doing this. Most of
these come from the RSQLite or DBI packages. For the sake of simplicity, I will only discuss those that are
immediately useful for exploring and extracting data from a database in this vignette. One pair of useful
methods are the dbListTables and dbListFields which are useful for exploring the schema of a database.

> con <- AnnotationDbi:::dbConn(hom.Hs.inp.db)

> head(dbListTables(con))

58

[1] "Acyrthosiphon_pisum" "Aedes_aegypti" "Anopheles_gambiae"

[4] "Apis_mellifera" "Arabidopsis_thaliana" "Aspergillus_fumigatus"

> dbListFields(con, "Mus_musculus")

[1] "inp_id" "clust_id" "species" "score" "seed_status"

For actually executing SQL to retrieve data, you probably want to use something like dbGetQuery. The only
caveat is that this will actually require you to know a little SQL.

> dbGetQuery(con, "SELECT * FROM metadata")

name value

1 INPSOURCEDATE 29-Apr-2009

2 INPSOURCENAME Inparanoid Orthologs

3 INPSOURCEURL http://inparanoid.sbc.su.se/download/current/sqltables/

4 DBSCHEMA INPARANOID_DB

5 ORGANISM Homo sapiens

6 SPECIES Human

7 package AnnotationDbi

8 Db type InparanoidDb

9 DBSCHEMAVERSION 2.1

5.6.3 Some basic SQL

The good news is that SQL is pretty easy to learn. Especially if you are primarily interested in just retrieving
data from an existing database. Here is a quick run-down to get you started on writing simple SELECT
statements. Consider a table that looks like this:

Table sna
foo bar
1 baz
2 boo

This statement:

SELECT bar FROM sna;

Tells SQL to get the ”bar” field from the ”foo” table. If we wanted the other field called ”sna” in addition to
”bar”, we could have written it like this:

SELECT foo, bar FROM sna;

Or even this (* is a wildcard character here)

SELECT * FROM sna;

Now lets suppose that we wanted to filter the results. We could also have said something like this:

SELECT * FROM sna WHERE bar='boo';

59

That query will only retrieve records from foo that match the criteria for bar. But there are two other things
to notice. First notice that a single = was used for testing equality. Second notice that I used single quotes
to demarcate the string. I could have also used double quotes, but when working in R this will prove to be
less convenient as the whole SQL statement itself will frequently have to be wrapped as a string.

What if we wanted to be more general? Then you can use LIKE. Like this:

SELECT * FROM sna WHERE bar LIKE 'boo\%';

That query will only return records where bar starts with ”boo”, (the % character is acting as another kind
of wildcard in this context).

You will often find that you need to get things from two or more different tables at once. Or, you may
even find that you need to combine the results from two different queries. Sometimes these two queries may
even come from the same table. In any of these cases, you want to do a join. The simplest and most common
kind of join is an inner join. Lets suppose that we have two tables:

Table sna Table fu
foo bar foo bo
1 baz 1 hi
2 boo 2 ca

And we want to join them where the records match in their corresponding ”foo” columns. We can do this
query to join them:

SELECT * FROM sna,fu WHERE sna.foo=fu.foo;

Something else we can do is tidy this up by using aliases like so:

SELECT * FROM sna AS s,fu AS f WHERE s.foo=f.foo;

This last trick is not very useful in this particular example since the query ended up being longer than we
started with, but is still great for other cases where queries can become really long.

5.6.4 Exploring the SQLite database from R

Now that we know both some SQL and also about some of the methods in DBI and RSQLite we can begin
to explore the underlying database from R. How should we go about this? Well the 1st thing we always want
to know are what tables are present. We already know how to learn this:

> head(dbListTables(con))

[1] "Acyrthosiphon_pisum" "Aedes_aegypti" "Anopheles_gambiae"

[4] "Apis_mellifera" "Arabidopsis_thaliana" "Aspergillus_fumigatus"

And we also know that once we have a table we are curious about, we can then look up it’s fields using
dbListFields

> dbListFields(con, "Apis_mellifera")

[1] "inp_id" "clust_id" "species" "score" "seed_status"

60

And once we know something about which fields are present in a table, we can compose a SQL query. perhaps
the most straightforward query is just to get all the results from a given table. We know that the SQL for
that should look like:

SELECT * FROM Apis_mellifera;

So we can now call a query like that from R by using dbGetQuery:

> head(dbGetQuery(con, "SELECT * FROM Apis_mellifera"))

inp_id clust_id species score seed_status

1 XP_623957.2 1 APIME 1 100%

2 ENSP00000262442 1 HOMSA 1 99%

3 ENSP00000300671 1 HOMSA 0.095

4 XP_001121322.1 2 APIME 1 100%

5 ENSP00000265104 2 HOMSA 1 100%

6 ENSP00000333363 2 HOMSA 0.236

Exercise 15
Now use what you have learned to explore the hom.Hs.inp.db database. The formal scientific name for one of
the mosquitoes that carry the malaria parasite is Anopheles gambiae. Now find the table for that organism
in the hom.Hs.inp.db database and extract it into R. How many species are present in this table? Inparanoid
uses a five letter designation for each species that is composed of the 1st 2 letters of the genus followed by
the 1st 3 letters of the species. Using this fact, write a SQL query that will retrieve only records from this
table that are from humans (Homo sapiens).

Solution:

> head(dbGetQuery(con, "SELECT * FROM Anopheles_gambiae"))

> ## Then only retrieve human records

> ## Query: SELECT * FROM Anopheles_gambiae WHERE species='HOMSA'

> head(dbGetQuery(con, "SELECT * FROM Anopheles_gambiae WHERE species='HOMSA'"))

> dbDisconnect(con)

5.7 Setting up a package to expose a SQLite database object

For the sake of simplicity, lets look at an existing example of this in the hom.Hs.inp.db package. If you
download this tarball from the website you can see that it contains a .sqlite database inside of the inst/extdata
directory. There are a couple of important details though about this database. The 1st is that we recommend
that the database have the same name as the package, but end with the extension .sqlite. The second detail
is that we recommend that the metadata table contain some important fields. This is the metadata from
the current hom.Hs.inp.db package.

name value

1 INPSOURCEDATE 29-Apr-2009

2 INPSOURCENAME Inparanoid Orthologs

61

http://bioconductor.org/packages/release/data/annotation/html/hom.Hs.inp.db.html
http://bioconductor.org/packages/release/data/annotation/html/hom.Hs.inp.db.html
http://bioconductor.org/packages/release/data/annotation/html/hom.Hs.inp.db.html
http://bioconductor.org/packages/release/data/annotation/html/hom.Hs.inp.db.html

3 INPSOURCEURL http://inparanoid.sbc.su.se/download/current/sqltables/

4 DBSCHEMA INPARANOID_DB

5 ORGANISM Homo sapiens

6 SPECIES Human

7 package AnnotationDbi

8 Db type InparanoidDb

9 DBSCHEMAVERSION 2.1

As you can see there are a number of very useful fields stored in the metadata table and if you list the
equivalent table for other packages you will find even more useful information than you find here. But the
most important fields here are actually the ones called ”package”and ”Db type”. Those fields specify both the
name of the package with the expected class definition, and also the name of the object that this database
is expected to be represented by in the R session respectively. If you fail to include this information in your
metadata table, then loadDb will not know what to do with the database when it is called. In this case, the
class definition has been stored in the AnnotationDbi package, but it could live anywhere you need it too.
By specifying the metadata field, you enable loadDb to find it.

Once you have set up the metadata you will need to create a class for your package that extends the
AnnotationDb class. In the case of the hom.Hs.inp.db package, the class is defined to be a InparanoidDb
class. This code is inside of AnnotationDbi.

> .InparanoidDb <-

+ setRefClass("InparanoidDb", contains="AnnotationDb")

Finally the .onLoad call for your package will have to contain code that will call the loadDb method. This
is what it currently looks like in the hom.Hs.inp.db package.

> sPkgname <- sub(".db$","",pkgname)

> db <- loadDb(system.file("extdata", paste(sPkgname,

+ ".sqlite",sep=""), package=pkgname, lib.loc=libname),

+ packageName=pkgname)

> dbNewname <- AnnotationDbi:::dbObjectName(pkgname,"InparanoidDb")

> ns <- asNamespace(pkgname)

> assign(dbNewname, db, envir=ns)

> namespaceExport(ns, dbNewname)

When the code above is run (at load time) the name of the package (AKA ”pkgname”, which is a parameter
that will be passed into .onLoad) is then used to derive the name for the object. Then that name, is used by
onload to create an InparanoidDb object. This object is then assigned to the namespace for this package so
that it will be loaded for the user.

5.8 Creating package accessors for databases

At this point, all that remains is to create the means for accessing the data in the database. This should
prove a lot less difficult than it may initially sound. For the new interface, only the four methods that were
described earlier are really required: cols,keytypes,keys and select.

In order to do this you need to know a small amount of SQL and a few tricks for accessing the database
from R. The point of providing these 4 accessors is to give users of these packages a more unified experience

62

http://bioconductor.org/packages/release/bioc/html/AnnotationDbi.html
http://bioconductor.org/packages/release/bioc/html/AnnotationDbi.html
http://bioconductor.org/packages/release/data/annotation/html/hom.Hs.inp.db.html

when retrieving data from the database. But other kinds of accessors (such as those provided for the
TranscriptDb objects) may also be warranted.

5.8.1 Examples: creating a cols and keytypes method

Now lets suppose that we want to define a cols method for our hom.Hs.inp.db object. And lets also suppose
that we want is for it to tell us about the actual organisms for which we can extract identifiers. How could
we do that?

> .cols <- function(x)

+ {

+ con <- AnnotationDbi:::dbConn(x)

+ list <- dbListTables(con)

+ ## drop unwanted tables

+ unwanted <- c("map_counts","map_metadata","metadata")

+ list <- list[!list %in% unwanted]

+ ## Then just to format things in the usual way

+ list <- toupper(list)

+ dbDisconnect(con)

+ list

+ }

> ## Then make this into a method

> setMethod("cols", "InparanoidDb", .cols(x))

> ## Then we can call it

> cols(hom.Hs.inp.db)

Notice again how I formatted the output to all uppercase characters? This is just done to make the
interface look consistent with what has been done before for the other select interfaces. But doing this
means that we will have to do a tiny bit of extra work when we implement out other methods.

Exercise 16
Now use what you have learned to try and define a method for keytypes on hom.Hs.inp.db. The keytypes
method should return the same results as cols (in this case). What if you needed to translate back to the
lowercase table names? Also write an quick helper function to do that.

Solution:

> setMethod("keytypes", "InparanoidDb", .cols(x))

> ## Then we can call it

> keytypes(hom.Hs.inp.db)

> ## refactor of .cols

> .getLCcolnames <- function(x)

+ {

+ con <- AnnotationDbi:::dbConn(x)

+ list <- dbListTables(con)

+ ## drop unwanted tables

+ unwanted <- c("map_counts","map_metadata","metadata")

63

+ list <- list[!list %in% unwanted]

+ dbDisconnect(con)

+ list

+ }

> .cols <- function(x)

+ {

+ list <- .getLCcolnames(x)

+ ## Then just to format things in the usual way

+ toupper(list)

+ }

> ## Test:

> cols(hom.Hs.inp.db)

> ## new helper function:

> .getTableNames <- function(x)

+ {

+ LC <- .getLCcolnames(x)

+ UC <- .cols(x)

+ names(UC) <- LC

+ UC

+ }

> .getTableNames(hom.Hs.inp.db)

5.8.2 Example: creating a keys method

Exercise 17
Now define a method for keys on hom.Hs.inp.db. The keys method should return the keys from a given
organism based on the appropriate keytype. Since each table has rows that correspond to both human and
non-human IDs, it will be necessary to filter out the human rows from the result

Solution:

> .keys <- function(x, keytype)

+ {

+ ## translate keytype back to table name

+ tabNames <- .getTableNames(x)

+ lckeytype <- names(tabNames[tabNames %in% keytype])

+ ## get a connection

+ con <- AnnotationDbi:::dbConn(x)

+ sql <- paste("SELECT inp_id FROM",lckeytype, "WHERE species!='HOMSA'")

+ res <- dbGetQuery(con, sql)

+ res <- as.vector(t(res))

+ dbDisconnect(con)

+ res

+ }

> setMethod("keys", "InparanoidDb", .keys(x, keytype))

64

> ## Then we can call it

> keys(hom.Hs.inp.db, "TRICHOPLAX_ADHAERENS")

5.9 Creating a database resource from available data

Sometimes you may have a lot of data that you want to organize into a database. Or you may have another
existing database that you wish to convert into a SQLite database. This section will deal with some simple
things you can do to create and import a SQLite database of your own.

5.9.1 Making a new connection

First, lets close the connection to our other DB:

> dbDisconnect(con)

[1] TRUE

Then lets make a new database. Notice that we specify the database name with ”dbname” This allows it
to be written to disc instead of just memory.

> drv <- dbDriver("SQLite")

> dbname <- file.path(tempdir(), "myNewDb.sqlite")

> con <- dbConnect(drv, dbname=dbname)

5.9.2 Importing data

Imagine that we want to reate a database and then put a table in it called genePheno to store the genes
mutated and a phenotypes associated with each. Plan for genePheno to hold the following gene IDs and
phenotypes (as a toy example):

> data = data.frame(id=c(1,2,9),

+ string=c("Blue",

+ "Red",

+ "Green"),

+ stringsAsFactors=FALSE)

Making the table is very simple, and just involves a create table statement.

CREATE Table genePheno (id INTEGER, string TEXT);

The SQL create table statement just indicates what the table is to be called, as well as the different fields
that will be present and the type of data each field is expected to contain.

> dbGetQuery(con, "CREATE Table genePheno (id INTEGER, string TEXT)")

NULL

65

But putting the data into the database is a little bit more delicate. We want to take control over which
columns we want to insert from our data.frame. Fortunately, the RSQLite package provides these facilities
for us.

> names(data) <- c("id","string")

> sql <- "INSERT INTO genePheno VALUES ($id, $string)"

> dbBeginTransaction(con)

[1] TRUE

> dbGetPreparedQuery(con, sql, bind.data = data)

NULL

> dbCommit(con)

[1] TRUE

Please notice that we want to use strings instead of factors in our data.frame. If you insert the data as
factors, you may not be happy with what ends up in the DB.

5.9.3 Attaching other database resources

In SQLite it is possible to attach another database to your session and then query across both resources as
if they were the same DB.

The SQL what we want looks quite simple:

ATTACH "TxDb.Hsapiens.UCSC.hg19.knownGene.sqlite" AS db;

So in R we need to do something similar to this:

> db <- system.file("extdata", "TxDb.Hsapiens.UCSC.hg19.knownGene.sqlite",

+ package="TxDb.Hsapiens.UCSC.hg19.knownGene")

> dbGetQuery(con, sprintf("ATTACH '%s' AS db",db))

NULL

Here we have attached a DB from one of the packages that this vignette required you to have installed,
but we could have attached any SQLite database that we provided a path to.

Once we have attached the database, we can join to it’s tables as if they were in our own database. All
that is required is a prefix, and some knowledge about how to do joins in SQL. In the end the SQL to take
advantage of the attached database looks like this:

SELECT * FROM db.gene AS dbg, genePheno AS gp

WHERE dbg.gene_id=gp.id;

Then in R:

66

> sql <- "SELECT * FROM db.gene AS dbg,

+ genePheno AS gp WHERE dbg.gene_id=gp.id"

> res <- dbGetQuery(con, sql)

> res

gene_id _tx_id id string

1 1 72180 1 Blue

2 1 72182 1 Blue

3 2 48258 2 Red

4 2 48259 2 Red

5 9 31362 9 Green

6 9 31363 9 Green

7 9 31364 9 Green

8 9 31365 9 Green

9 9 31366 9 Green

10 9 31367 9 Green

11 9 31368 9 Green

12 9 31369 9 Green

13 9 31370 9 Green

The version number of R and packages loaded for generating the vignette were:

R version 2.15.1 (2012-06-22)

Platform: x86_64-unknown-linux-gnu (64-bit)

locale:

[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C

[3] LC_TIME=en_US.UTF-8 LC_COLLATE=en_US.UTF-8

[5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8

[7] LC_PAPER=C LC_NAME=C

[9] LC_ADDRESS=C LC_TELEPHONE=C

[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C

attached base packages:

[1] stats graphics grDevices utils datasets methods base

other attached packages:

[1] hom.Hs.inp.db_2.8.0

[2] Biostrings_2.25.3

[3] XML_3.9-4

[4] Homo.sapiens_1.0.0

[5] TxDb.Hsapiens.UCSC.hg19.knownGene_2.7.1

[6] org.Hs.eg.db_2.7.1

[7] GO.db_2.8.0

[8] RSQLite_0.11.1

[9] DBI_0.2-5

[10] OrganismDbi_1.0.0

67

[11] GenomicFeatures_1.9.11

[12] GenomicRanges_1.9.20

[13] IRanges_1.15.10

[14] AnnotationDbi_1.20.1

[15] Biobase_2.17.5

[16] BiocGenerics_0.3.0

[17] BiocInstaller_1.8.2

loaded via a namespace (and not attached):

[1] biomaRt_2.13.1 bitops_1.0-4.1 BSgenome_1.25.1 graph_1.35.1

[5] RBGL_1.34.0 RCurl_1.91-1 Rsamtools_1.9.12 rtracklayer_1.17.0

[9] stats4_2.15.1 tools_2.15.1 zlibbioc_1.3.0

68

Chapter 6

Performance: time and space

Burns [2] provides a fun and comprehensive reference for thinking about the merits and otherwise of the R
code you write.

6.1 Measuring performance

When trying to improve performance, one wants to ensure (a) that the new code is actually faster than the
previous code, and (b) both solutions arrive at the same, correct, answer.

Time The system.time function is a straight-forward way to measure the length of time a portion of code
takes to evaluate. Here we see that the use of apply to calculate row sums of a matrix is much less efficient
than the specialized rowSums function.

> m <- matrix(runif(200000), 20000)

> replicate(5, system.time(apply(m, 1, sum))[[1]])

[1] 0.060 0.060 0.056 0.064 0.056

> replicate(5, system.time(rowSums(m))[[1]])

[1] 0.004 0.004 0.000 0.000 0.000

Usually it is appropriate to replicate timings to average over vagaries of system use, and to shuffle the order
in which timings of alternative algorithms are calculated to avoid artifacts such as initial memory allocation.

Comparing objects

There are many fast ways to get the wrong result – R. Gentleman

Speed is an important metric, but equivalent results are also needed. The functions identical and all.equal

provide different levels of assessing equivalence, with all.equal providing ability to ignore some differences,
e.g., in the names of vector elements.

69

> res1 <- apply(m, 1, sum)

> res2 <- rowSums(m)

> identical(res1, res2)

[1] TRUE

> identical(c(1, -1), c(x=1, y=-1))

[1] FALSE

> all.equal(c(1, -1), c(x=1, y=-1),

+ check.attributes=FALSE)

[1] TRUE

Profiling Two additional functions for assessing performance are Rprof and tracemem; these are mentioned
only briefly here. The Rprof function profiles R code, presenting a summary of the time spent in each part
of several lines of R code. It is useful for gaining insight into the location of performance bottlenecks when
these are not readily apparent from direct inspection. Memory management, especially copying large objects,
can frequently contribute to poor performance. The tracemem function allows one to gain insight into how
R manages memory; insights from this kind of analysis can sometimes be useful in restructuring code into a
more efficient sequence.

Exercise 18
A recent example requiring some performance tuning involved the consensusString function in Biostrings.
This function takes a collection of aligned DNA sequences and identifies the consensus nucleotides at each
site. Here is some sample data, 100 sequences each of 200,000 nucleotides.

> library(Biostrings)

> dna0 <- replicate(2, {

+ paste(sample(c("A", "C", "G", "T"), 200000, TRUE),

+ collapse="")

+ })

> dna <- DNAStringSet(dna0)[sample(1:2, 100, TRUE)]

Use system.time to measure how long the following function takes:

> system.time({

+ res0 <- consensusString(dna, ambiguityMap="?")

+ })

consensusString is an S4 method, and written in a way that makes it a little difficult to profile. Take a peak
at the source code for the appropriate method. Use system.time and identical to convince yourself that
fun, defined below, does the same thing as consensusString, for this particular set of data.

> ## like selectMethod(consensusString, "DNAStringSet")

> fun <- function(x) {

+ mat <- consensusMatrix(x, as.prob = TRUE)

+ consensusString(mat, ambiguityMap = "?", threshold = .25)

+ }

70

http://bioconductor.org/packages/release/bioc/html/Biostrings.html

Use Rprof to determine whether time is spent in consensusMatrix,DNAStringSet-method, or consensusString,matrix-
method.

As a bonus, take a peak at the slowest method and suggest some way of improving performance; perhaps
there is a simple alternative for the special case that we’re interested in?

As an additional bonus, investigate the performance of consensusString and consensusMatrix with dif-
ferent dimensions of data, e.g., many short sequences.

The microbenchmark package The system.time function provides one way to measure time required
for function evaluation. However, time required for function evaluation often varies for reasons unrelated to
implementation, e.g., load on other operating system components, garbage collection, or ‘first time’ costs
associated with loading or allocating resources required in the function. For these reasons it is useful to
replicate measures of speed, and to do so in a way that does not bias measurement toward one function or
another. While one could come up with ad hoc approaches, the microbenchmark package offers a straight-
forward solution. The central function in this package is microbenchmark, with arguments being one or
more functions or expressions to be evaluated coupled with simple parameters to control key features of
the comparison, such as the number of times a function will be evaluated. The microbenchmark package is
particularly useful when functions are not dramatically different in speed. A simple example

> library(microbenchmark)

> lst <- list(a=1:1000)

> f0 <- function(x) unlist(x)

> f1 <- function(x) unlist(x, use.names=FALSE)

> microbenchmark(f0(lst), f1(lst))

The default evaluates each function 100 times. The results under one system configuration show a 50-fold
increase in speed associated with omitting names:

> microbenchmark(f0(lst), f1(lst))

Unit: microseconds

expr min lq median uq max

1 f0(lst) 2322.654 2331.200 2340.367 2357.686 2893.120

2 f1(lst) 42.566 44.914 49.487 56.813 100.507

The rbenchmark offers similar functionality.

6.2 Debugging

6.2.1 R Warnings and Errors

R signals unexpected results through warnings and errors. Warnings occur when the calculation produces
an unusual result that nonetheless does not preclude further evaluation. For instance log(-1) results in a
value NaN (‘not a number’) that allows computation to continue, but at the same time signals an warning

> log(-1)

[1] NaN

Warning message:

In log(-1) : NaNs produced

71

Errors result when the inputs or outputs of a function are such that no further action can be taken, e.g.,
trying to take the square root of a character vector

> sqrt("two")

Error in sqrt("two") : Non-numeric argument to mathematical function

Warnings and errors occurring at the command prompt are usually easy to diagnose. They can be more
enigmatic when occurring in a function, and exacerbated by sometimes cryptic (when read out of context)
error messages.

An initial step in coming to terms with errors is to simplify the problem as much as possible, aiming
for a ‘reproducible’ error. The reproducible error might involve a very small (even trivial) data set that
immediately provokes the error. Often the process of creating a reproducible example helps to clarify what
the error is, and what possible solutions might be.

Invoking traceback() immediately after an error occurs provides a ‘stack’ of the function calls that
were in effect when the error occurred. This can help understand the context in which the error occurred.
Knowing the context, one might use debug to enter into a browser (see ?browser) that allows one to step
through the function in which the error occurred.

It can sometimes be useful to use global options (see ?options) to influence what happens when an error
occurs. Two common global options are error and warn. Setting error=recover combines the functionality
of traceback and debug, allowing the user to enter the browser at any level of the call stack in effect at the
time the error occurred. Default error behavior can be restored with options(error=NULL). Setting warn=2

causes warnings to be promoted to errors. For instance, initial investigation of an error might show that
the error occurs when one of the arguments to a function has value NaN. The error might be accompanied
by a warning message that the NaN has been introduced, but because warnings are by default not reported
immediately it is not clear where the NaN comes from. warn=2 means that the warning is treated as an error,
and hence can be debugged using traceback, debug, and so on.

Additional useful debugging functions include browser, trace, and setBreakpoint.
Fixme: tryCatch

6.3 Writing efficient scripts

6.3.1 Easy solutions

Several common performance bottlenecks often have easy solutions; these are outlined here.

Selective input Text files often contain more information, for example 1000’s of individuals at millions of
SNPs, when only a subset of the data is required, e.g., during algorithm development. Reading in all the data
can be demanding in terms of both memory and time. A solution is to use arguments such as colClasses

to specify the columns and their data types that are required, and to use nrow to limit the number of rows
input. For example, the following ignores the first and fourth column, reading in only the second and third
(as type integer and numeric).

> ## not evaluated

> colClasses <-

+ c("NULL", "integer", "numeric", "NULL")

> df <- read.table("myfile", colClasses=colClasses)

72

Recognizing ‘vectorization’ R is vectorized, so traditional programming for loops are often not neces-
sary. Rather than calculating 100000 random numbers one at a time, or squaring each element of a vector, or
iterating over rows and columns in a matrix to calculate row sums, invoke the single function that performs
each of these operations.

> x <- runif(100000); x2 <- x^2

> m <- matrix(x2, nrow=1000); y <- rowSums(m)

This often requires a change of thinking, turning the sequence of operations ‘inside-out’. For instance,
calculate the log of the square of each element of a vector by calculating the square of all elements, followed
by the log of all elements x2 <- x^2; x3 <- log(x2), or simply logx2 <- log(x^2).

Pre-allocate and fill It may sometimes be natural to formulate a problem as a for loop, or the formulation
of the problem may require that a for loop be used. In these circumstances the appropriate strategy is to
pre-allocate the result object, and to fill the result in during loop iteration.

> ## not evaluated

> result <- numeric(nrow(df))

> for (i in seq_len(nrow(df)))

+ result[[i]] <- some_calc(df[i,])

Known inefficiencies Some R operations are helpful in general, but misleading or inefficient in particular
circumstances. An example is the behavior of unlist when the list is named – R creates new names that have
been made unique. This can be confusing (e.g., when Entrez gene identifiers are ‘mangled’ to unintentionally
look like other identifiers) and expensive (when a large number of new names need to be created). Avoid
creating unnecessary names, e.g.,

> unlist(list(a=1:2)) # name 'a' becomes 'a1', 'a2'

a1 a2

1 2

> unlist(list(a=1:2), use.names=FALSE) # no names

[1] 1 2

Names can be very useful for avoiding book-keeping errors, but are inefficient for repeated look-ups; use
vectorized access or numeric indexing.

Exercise 19
Use the microbenchmark package to convince yourself of your favorite inefficiency. Can you identify ineffi-
ciencies in your own code?

Can you reason about how much copying is involved in an algorithm like pre-allocate and fill, versus say
append’ing to a vector while iterating over a loop?

6.3.2 Moderate solutions

Several solutions to inefficient code require greater knowledge to implement.

73

Appropriate functions Using appropriate functions can greatly influence performance; it takes experi-
ence to know when an appropriate function exists. For instance, the lm function could be used to assess
differential expression of each gene on a microarray, but the limma package implements this operation in a
way that takes advantage of the experimental design that is common to each probe on the microarray, and
does so in a very efficient manner.

> ## not evaluated

> library(limma) # microarray linear models

> fit <- lmFit(eSet, design)

Appropriate algorithms Using appropriate algorithms can have significant performance benefits, espe-
cially as data becomes larger. This solution requires moderate skills, because one has to be able to think
about the complexity (e.g., expected number of operations) of an algorithm, and to identify algorithms that
accomplish the same goal in fewer steps. For example, a naive way of identifying which of 100 numbers are
in a set of size 10 might look at all 100 × 10 combinations of numbers (i.e., polynomial time), but a faster
way is to create a ‘hash’ table of one of the set of elements and probe that for each of the other elements
(i.e., linear time). The latter strategy is illustrated with

> x <- 1:100; s <- sample(x, 10)

> inS <- x %in% s

Appropriate langauge R is an interpreted language, and for very challenging computational problems
it may be appropriate to write critical stages of an analysis in a compiled language like C or Fortran, or to
use an existing programming library (e.g., the BOOST graph library) that efficiently implements advanced
algorithms. R has a well-developed interface to C or Fortran, so it is ‘easy’ to do this. This places a significant
burden on the person implementing the solution, requiring knowledge of two or more computer languages
and of the interface between them.

74

http://www.boost.org/

Chapter 7

Using C Code

We will learn how to write C functions that can be invoked from R. This is often valuable for performance-
critical algorithms that cannot be implemented efficiently in R, or when linking to existing libraries (e.g.,
SAMtools1 to manipulate aligned sequence reads) written in C. While the latter (linking to existing C code)
probably represents better justification for using C, the former (implementation and performance) probably
more often motivates inclusion of C and is easier to explore in this short course.

7.1 Calling C from R

7.1.1 Example and R Implementation

Many algorithms can be implemented efficiently in R, especially when they can be implemented by using
only fast vectorized operations (R and Bioconductor provide many), thus avoiding the use of long iterations
(e.g. for or lapply loops). One class of problems that can be difficult to conceptualize in a vectorized
framework involves dependence between successive elements of a vector, when the calculation of element i
seems to depend on knowing the current value of element i − 1, for instance. ‘Running sum’ and similar
calculations fall into this category. Suppose we have a numeric vector x of length, e.g., 20, and we’d like to
calculate the sum of the values in windows of size k, e.g., if k == 5 we’d like to compute s[1] = sum(x[1:5]),
s[2] = sum(x[2:6]), . . . , s[16] = sum(x[16:20]).

The function runsum0 is an R implementation of the ‘Running sum’:

> library(AdvancedR)

> runsum0

function (x, k)

{

k <- as.integer(k)

if (length(k) != 1L || is.na(k))

stop("'k' must be a single integer")

if (k < 1 || k > length(x))

stop("'k' must be >= 1 and <= length(x)")

1http://samtools.sourceforge.net/

75

end <- length(x) - k

ans <- numeric(end + 1)

for (i in seq_len(k)) ans <- ans + x[seq(i, end + i)]

ans

}

<environment: namespace:AdvancedR>

We spend some time at the start of the function making sure inputs are valid. Then we allocate the result,
a numeric vector of appropriate length, initialized to 0. We then iterate from 1 to k, calculating the sum in
each window in a vectorized fashion. We should test this, with some easy-to-calculate values, e.g.,

> x <- 1:20

> stopifnot(all(x == runsum0(x, 1)))

> stopifnot(sum(x) == runsum0(x, length(x)))

> k <- 5L

> stopifnot(all(10L + k * 1:16 == runsum0(x, k)))

And perhaps also get a sense of how much time this implementation takes (we use the package microbench-
mark for better timing)

> library(microbenchmark)

> microbenchmark(runsum0(seq_len(100000), 5),

+ runsum0(seq_len(1000000), 5),

+ runsum0(seq_len(100000), 50),

+ runsum0(seq_len(100000), 500),

+ times=5)

Unit: milliseconds

expr min lq median uq

1 runsum0(seq_len(1e+05), 5) 5.976092 6.592205 7.399402 7.757458

2 runsum0(seq_len(1e+05), 50) 94.346549 94.889642 95.185829 97.779747

3 runsum0(seq_len(1e+05), 500) 642.576942 702.191472 724.696595 778.973497

4 runsum0(seq_len(1e+06), 5) 203.894851 219.108547 244.185865 314.251797

max

1 32.45118

2 257.54882

3 826.27985

4 393.34067

The algorithm scales approximately linearly with vector length and window size; it’s useful to reflect on the
algorithm and understand why that is.

However, the implementation of runsum0 doesn’t take advantage of the following observation: s[2] can
be obtained by doing s[1] + x[6] - x[1], s[3] by doing s[2] + x[7] - x[2], etc... In a C implementation
of the ‘Running sum’ we would of course take advantage of this in order to minimize the total number of
additions/subtractions to perform.

76

7.1.2 The ‘.C’ Interface

R offers two different ways to interface with C code. We’ll start with the simpler .C interface, although as
one becomes more confident it pays to move to the more comprehensive .Call interface.

C offers advantages in terms of speed and familiarity of programming idioms (if you know C!), but bugs
can easily be introduced and the code has to be compiled. Both of these make development in C relatively
slow compared to R, so we’d like to minimize the work that we do in C. So the function runsum1

> runsum1

function (x, k)

{

k <- as.integer(k)

if (length(k) != 1L || is.na(k))

stop("'k' must be a single integer")

if (k < 1 || k > length(x))

stop("'k' must be >= 1 and <= length(x)")

ans <- numeric(length(x) - k + 1)

.C("c_runsum1", as.numeric(x), length(x), k, ans = ans)$ans

}

<environment: namespace:AdvancedR>

keeps the input checking in R. The .C interface does not allow us to allocate memory, so we also need to
allocate room for the result. Note how the initial part of runsum1 is similar to runsum0.

We go from R to C using a call to the R function .C. The function requires the name of the C-level
function we want to call (in our case, c_runsum1) followed by arguments to the C function. In our case,
we’re going to pass in our input vector x, its length, the size of the window, and the vector we’ve allocated
for the result.

On the other side, we’ve written some C code:

[1] void c_runsum1(const double *x, const int *x_len, const int *k, double *ans)

[2] {

[3] int i;

[4] int k0 = *k;

[5] int ans_len = *x_len - k0 + 1;

[6]

[7] /* initial window */

[8] ans[0] = 0.0;

[9] for (i = 0; i < k0; ++i)

[10] ans[0] += x[i];

[11] for (i = 1; i < ans_len; ++i)

[12] ans[i] = ans[i - 1] + x[i + k0 - 1] - x[i - 1];

[13] }

The arguments to c_runsum1 are all pointers to C basic data types, with fairly obvious mappings between
their R equivalents, e.g., numeric becomes double *. The calling convention from R to C matches by
position, so the fact that we named one of our arguments to .C result has no consequence for the value

77

associated with the C function argument result. The return value of c_runsum1 is void; we’ll return a
result by modifying the memory pointed to by the C result argument.

The remainder of the function is fairly standard C code. It relies on de-referencing the pointer arguments,
remembering that while R indexing starts at 1, C indexing starts at 0. The actual calculation involves filling
the initial window, then implementing the idea above, in 0-based vectors, that si = si−1+x[i+k−1]−x[i−1].

Let’s make a copy of the package C code in a more convenient location.

> c_code_dir <- system.file("c_code", package="AdvancedR")

> file.copy(c_code_dir, "~/", recursive=TRUE)

The code needs to be compiled into a ‘shared library’ before use by R. At the shell, evaluate the command

cd ~/c_code

R CMD SHLIB c_runsum.c

This should produce a file ~/c_code/c_runsum.so, the shared object that we’re going to use in R. Now,
back in R, load the shared object

> dyn.load("~/c_code/c_runsum.so")

and test out our function

> runsum1(1:20, 5)

[1] 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90

Let’s repeat our basic tests

> x <- 1:20

> stopifnot(all(x == runsum1(x, 1)))

> stopifnot(sum(x) == runsum1(x, length(x)))

> k <- 5L

> stopifnot(all(10L + k * 1:16 == runsum1(x, k)))

and check out some timings

> microbenchmark(runsum1(seq_len(100000), 500),

+ runsum1(seq_len(1000000), 5),

+ runsum1(seq_len(1000000), 50),

+ runsum1(seq_len(1000000), 500),

+ times=10)

Unit: milliseconds

expr min lq median uq

1 runsum1(seq_len(1e+05), 500) 1.461463 2.182132 2.343623 2.590227

2 runsum1(seq_len(1e+06), 5) 77.417028 84.278414 89.875946 101.094425

3 runsum1(seq_len(1e+06), 50) 78.080243 83.318569 85.911726 89.708538

4 runsum1(seq_len(1e+06), 500) 40.175053 85.527084 90.978255 98.753638

max

1 29.59079

2 103.95190

3 101.25288

4 118.32221

78

Our algorithm appears to scale linearly with the length of x, and take approximately constant time in k. Is
this as expected? How does this compare with the R implementation?

7.1.3 The ‘.Call’ Interface

The .Call interface allows one to manipulate R objects at the C level. This provides quite a bit of flexibility
and in the end leads to more robust code, but requires some additional work to understand and implement
C code.

Here’s the function we’ll use for the .Call interface:

> runsum2

function (x, k)

{

.Call("c_runsum2", as.numeric(x), as.integer(k))

}

<environment: namespace:AdvancedR>

The first argument is, as with .C, the name of the C function we’d like to invoke. The second and third
arguments are the vector and window size. Notice that we expend minimal effort at the R level, just ensuring
that x is a numeric vector and k an integer. We’ve moved the error checking and result creation to the C
level, partly to illustrate features of R that are accessible with the .Call interface and partly because it pays
to move checks and so on closer to where they are actually required.

Here is the C code at the other end of the .Call:

[1] #include "c_runsum.h"

[2]

[3] SEXP c_runsum2(SEXP x, SEXP k)

[4] {

[5] SEXP ans;

[6] int x_len, k0, ans_len;

[7] const double *x_p;

[8] double *ans_p;

[9]

[10] /* validate inputs */

[11] if (!IS_NUMERIC(x))

[12] error("'x' must be a numeric vector");

[13] x_len = LENGTH(x);

[14] x_p = REAL(x);

[15] if (!IS_INTEGER(k)

[16] || LENGTH(k) != 1

[17] || (k0 = INTEGER(k)[0]) == NA_INTEGER)

[18] error("'k' must be a single integer");

[19] if (k0 < 1 || k0 > x_len)

[20] error("'k' must be >= 1 and <= length(x)");

[21]

[22] /* allocate and 'protect' ans */

79

[23] ans_len = x_len - k0 + 1;

[24] PROTECT(ans = NEW_NUMERIC(ans_len)); /* REALSXP */

[25] ans_p = REAL(ans);

[26]

[27] /* fill values */

[28] c_runsum1(x_p, &x_len, INTEGER(k), ans_p);

[29]

[30] /* 'unprotect' and return */

[31] UNPROTECT(1);

[32] return ans;

[33] }

The first line includes a header file, the c_runsum.h file:

#ifndef C_RUNSUM_H

#define C_RUNSUM_H

#include <Rinternals.h>

#include <Rdefines.h>

void c_runsum1(const double *x, const int *x_len, const int *k, double *ans);

SEXP c_runsum2(SEXP x, SEXP k);

SEXP c_rungc2(SEXP x, SEXP k);

#endif

which in turn includes Rinternals.h and Rdefines.h: Rinternals.h contains definitions of data types and
the interface that we have access to (API), and Rdefines.h contains additional macros that add an extra
level of convenience for accessing the API. The 2 files are located at:

> R.home("include")

[1] "/home/dtenenba/bin/R-2.15.1/include"

Line 3 is the signature of the C function. Our two arguments are ‘S-expressions’ whose type definition
SEXP is documented in Rinternals.h. Rather than returning void, as with .C, we return an SEXP that we
will allocate.

Lines 5-8 declare variables we will use in our function. We declare 3 C int variables, a pointer to a const

double, and a pointer to a double. We declare an SEXP to contain the answer we will return to the user.
SEXP is a typedef that is in fact a pointer to a complicated structure. For now this pointer is invalid – we
have not yet allocated the structure that it will point to.

Lines 10-20 provide sanity checks on our inputs, analogous to the sanity checks in the R code of runsum0.
You can see that, for the SEXP x, we can ask about its type (with the IS_NUMERIC macro) and length (with
the LENGTH macro), and we can retrieve a pointer to the array of double values “contained” in the SEXP

(with the REAL macro). If the SEXP is of type INTSXP (tested by IS_INTEGER), we access the array of int

values with the INTEGER macro. We can also generate an error message, analogous to the stop function in
R, with a call to error.

80

Lines 22-24 allocate the SEXP that will contain our answer. The NEW_NUMERIC macro takes the length of the
numeric vector we’d like to allocate and returns that numeric vector as an SEXP. Note that NEW_NUMERIC(n)
is the C equivalent of numeric(n) in R, except for the need to PROTECT (more on this below). This allocation
is assigned to our variable ans. Line 25 provides us with a convenient C pointer to the array of double

values that was allocated.
Remember in R that we don’t explicitly manage memory – there is a ‘garbage collector’ that periodically

looks for objects that have been allocated but are no longer in use (i.e. no longer referenced by a symbol).
When we call NEW_NUMERIC, we request memory from R. Because we have not assigned this memory to an
R symbol, we have to protect it from garbage collection. We do this via PROTECT – so even if some action in
our C code triggers garbage collection, the memory allocated to ans won’t be collected.

Line 28 delegates the real work of the function to the c_runsum1 function.
Finally, lines 31-32 indicate to R that we no longer need protection for our SEXP ans, and return that

SEXP to R. This SEXP is returned to the user as the result of .Call; if this numeric vector is assigned to an
R variable, then it will not be garbage collected until that variable is removed or goes out of scope.

Compile and load the file with R CMD SHLIB c_runsum.c and dyn.load("~/c_code/c_runsum.so"). Let’s
see it in action, using the microbenchmark package to get a more accurate representation of timings.

> runsum2(1:20, 5)

[1] 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90

> x <- 1:20

> stopifnot(all(x == runsum2(x, 1)))

> stopifnot(sum(x) == runsum2(x, length(x)))

> k <- 5L

> stopifnot(all(10L + k * 1:16 == runsum2(x, k)))

> library(microbenchmark)

> microbenchmark(runsum1_5=runsum1(seq_len(1000000), 5),

+ runsum1_50=runsum1(seq_len(1000000), 50),

+ runsum1_500=runsum1(seq_len(1000000), 500),

+ runsum2_5=runsum2(seq_len(1000000), 5),

+ runsum2_50=runsum2(seq_len(1000000), 50),

+ runsum2_500=runsum2(seq_len(1000000), 500),

+ times=10)

Unit: milliseconds

expr min lq median uq max

1 runsum1_5 18.719707 45.689057 49.266566 77.77654 81.09493

2 runsum1_50 20.785552 22.209091 44.407027 46.43544 83.66192

3 runsum1_500 16.587984 21.915769 44.352376 70.27538 81.71693

4 runsum2_5 8.336787 13.071693 36.039740 41.26927 44.32418

5 runsum2_50 7.449938 8.085936 9.639057 34.89732 44.48885

6 runsum2_500 7.416440 13.341771 33.303431 37.45327 42.28633

The performance is comparable to .C (differences are in milliseconds, and reflect the relatively small amount
of work we do in the function; ideally we would do more replicates); the primary benefit of .Call is the
flexibility it offers in manipulating and creating R objects.

As an advanced exercise, consider how you would write rungc0 and rungc2, functions to determine the
GC content in a sliding window of a single string (character(1) vector) representing a DNA sequence.

81

7.1.4 Rcpp and inline

There are two very interesting packages for interfacing with C and especially C++ code.

Rcpp The Rcpp package provides a C++ interface to R, masking much of the complexity of the .Call

interface. The window example can be implemented as

> fl <- system.file(package="AdvancedR", "c_code", "cpp_runsum.cpp")

> noquote(readLines(fl))

[1] #include <Rcpp.h>

[2]

[3] using namespace Rcpp;

[4]

[5] RcppExport SEXP cpp_runsum(SEXP x_in, SEXP k_in)

[6] {

[7] int k, ans_len;

[8] NumericVector x, ans;

[9]

[10] try {

[11] k = as<int>(k_in);

[12] x = as<NumericVector>(x_in);

[13] if (k < 1 || k > x.length())

[14] throw not_compatible("'k' must be >= 1 and <= length(x)");

[15] } catch (not_compatible& ex) {

[16] forward_exception_to_r(ex);

[17] }

[18]

[19] ans_len = x.length() - k + 1;

[20] ans = NumericVector(ans_len);

[21] for (int i = 0; i < k; ++i)

[22] ans[0] += x[i];

[23] for (int i = 1; i < ans_len; ++i)

[24] ans[i] = ans[i - 1] + x[i + k - 1] - x[i-1];

[25]

[26] return wrap(ans);

[27] }

[28]

The include file in line 1 provides Rcpp headers; line 3 is a standard C++ idiom to indicate that symbols
mentioned in the source fill will be searched for first in the specified C++ name space. RcppExport annotates
the function signature to indicate external “C” linkage, to avoid C++-style name mangling.

The code illustrates several features of Rcpp. There are C++ classes corresponding to R’s SEXP types,
e.g., NumericVector in line 8. The templated as<> serves to coerce from R types to C++ types. The
implementation throws an error if the coercion is not possible; we can arrange to handle the error with the
C++ try / catch (lines 10-17), or for Rcpp to handle the error for us. Functions like R’s length() are
replaced by C++ methods (e.g., line 19). NumericVector and other classes have familiar subscript access

82

to individual elements (e..g, line 22); C++ iterators and standard template library idioms can be applied to
NumericVector. Note especially that there are no PROTECT statements: Rcpp is managing memory for us.

To compile this code into a dynamic library, we define shell environment variables that point to compiler
flags that indicate where Rcpp header and library files are

cd ~/c_code

export PKG_CXXFLAGS=`R --slave -e "Rcpp:::CxxFlags()"`

export PKG_LIBS=`R --slave -e "Rcpp:::LdFlags()"`

compile. . .

R CMD SHLIB cpp_runsum.cpp

and back in R load and use the function

> dyn.load("~/c_code/cpp_runsum.so")

> .Call("cpp_runsum", 1:20, 5)

The Rcpp package has additional features that make it interesting to use, e.g., it is easy to incorporate
Rcpp code into a package, to create R reference classes that are actually implemented in C++, and to
interface to established C++ libraries. These features are discussed in the vignettes accompanying Rcpp

> vignette(package="Rcpp")

inline The inline package provides a convenient way to write code in R that is compiled ‘on the fly’ to
C or C++. This is useful for quick prototyping and for development of small code chunks that might be
incorporated into a package. To illustrate, we’ll implement our original .C code. We define the signature of
the function, and write the code of our original .C implementation as an R character vector:

> library(inline)

> sig <- signature(x ="numeric", n="integer", k="integer", result="numeric")

> code <- "

+ int i;

+ int k0 = *k;

+ int len = *n - k0 + 1;

+

+ result[0] = 0;

+ for (i = 0; i < k0; ++i)

+ result[0] += x[i];

+ for (i = 1; i < len; ++i)

+ result[i] = result[i-1] + x[i + k0 - 1] - x[i - 1];

+ "

We then provide these arguments to cfunction in the inline package.

> cfun <- cfunction(sig, code, language="C", convention=".C")

This actually compiles the C function – cfun points to a C routine ready to do our bidding:

83

> x <- 1:20

> k <- 5

> result <- numeric(length(x) - k + 1)

> cfun(x, length(x), k, result=result)$result

[1] 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90

Since cfun is compiled, it is fast.

7.2 Using C code in Packages

All C files must be placed in the src directory of the package. They will be automatically compiled and the
resulting object files linked together into a shared object by R CMD INSTALL. Note that R CMD INSTALL also
supports some advanced mechanisms to let the developer take control on how the C code will be configured
and compiled via the use of a Makeconf or Makefile file, and/or a configure script (not covered here).

Additionally the NAMESPACE of the package needs to start with the following line:

useDynLib(AdvancedR)

Also, R calls to .C and .Call need to be modified to have the PACKAGE argument set to the name of the
package. For example, in the runsum2 function:

runsum2 <- function (x, k)

{

.Call("c_runsum2", as.numeric(x), as.integer(k), PACKAGE="AdvancedR")

}

Finally, even though this is not strictly required, it is highly recommended to register the .C and .Call

entry points. Here is the C code we use in the AdvancedR package for this:

[1] #include "c_runsum.h"

[2] #include <R_ext/Rdynload.h>

[3]

[4] static const R_CMethodDef cMethods[] = {

[5] {"c_runsum1", (DL_FUNC) &c_runsum1, 4},

[6] {NULL, NULL, 0}

[7] };

[8]

[9] static const R_CallMethodDef callMethods[] = {

[10] {"c_runsum2", (DL_FUNC) &c_runsum2, 2},

[11] {"c_rungc2", (DL_FUNC) &c_rungc2, 2},

[12] {NULL, NULL, 0}

[13] };

[14]

[15] void R_init_AdvancedR(DllInfo *info)

[16] {

[17] R_registerRoutines(info, cMethods, callMethods, NULL, NULL);

[18] }

[19]

84

This registration mechanism is explained in details in the “5.4 Registering native routines” section of the
Writing R Extensions manual.

7.3 Debugging

Fixme: gdb and other approaches

7.4 Embedding R

The essential information for embedding R comes from “Writing R Extensions” sections 8.1 and 8.2, and
from the examples distributed with R. The material below covers constructing and evaluating an R call;
dealing with the return value is a different (and in some sense easier) topic.

7.4.1 Setup

Let’s suppose a Linux / Mac platform. The first thing is that R must have been compiled to allow linking,
either to a shared or static R library. I work with an svn copy of R’s source, in the directory ~/src/R-devel.
I switch to some other directory, call it ~/bin/R-devel, and then

~/src/R-devel/configure --enable-R-shlib

make -j

This generates ~/bin/R-devel/lib/libR.so; perhaps whatever distribution you’re using already has this?
The -j flag runs make in parallel, which greatly speeds the build. Examples for embedding can be made
with

cd ~/bin/R-devel/tests/Embedding && make

The source code for these examples is extremely instructive.

7.4.2 Code

The following illustrates code for embedding R:

> fl <- system.file(package="AdvancedR", "embedding", "embed.c")

> noquote(readLines(fl))

[1] #include <Rembedded.h>

[2] #include <Rinternals.h>

[3]

[4] static void doSplinesExample();

[5]

[6] int main(int argc, char *argv[])

[7] {

[8] Rf_initEmbeddedR(argc, argv);

[9] doSplinesExample();

[10] Rf_endEmbeddedR(0);

85

[11] return 0;

[12] }

[13]

[14] static void doSplinesExample()

[15] {

[16] SEXP e, result;

[17] int errorOccurred;

[18]

[19] // create and evaluate 'library(splines)'

[20] PROTECT(e = lang2(install("library"), mkString("splines")));

[21] R_tryEval(e, R_GlobalEnv, &errorOccurred);

[22] if (errorOccurred) {

[23] // handle error

[24] }

[25] // work with 'e' as in the .Call interface

[26] UNPROTECT(1);

[27]

[28] // 'options(FALSE)' ...

[29] PROTECT(e = lang2(install("options"), ScalarLogical(0)));

[30] // ... modified to 'options(example.ask=FALSE)' (this is obscure)

[31] SET_TAG(CDR(e), install("example.ask"));

[32] R_tryEval(e, R_GlobalEnv, NULL);

[33] UNPROTECT(1);

[34]

[35] // 'example("ns")'

[36] PROTECT(e = lang2(install("example"), mkString("ns")));

[37] R_tryEval(e, R_GlobalEnv, &errorOccurred);

[38] UNPROTECT(1);

[39] }

Lines 1-4 include the headers that define the R embedding interface, and R data structures; these are located
in R.home("include"), and serve as the primary documentation. We also have a prototype for the function
that will do all the work Lines 6-12 start R, invoke a function that will do the work, and end R. The examples
under the R directory Embedding include one that calls library(splines), sets a named option, then runs a
function example("ns"). This routine is repeated in lines 14-39.

7.4.3 Compile and Run

We’re now ready to put everything together. The compiler needs to know where the headers and libraries
are

g++ -I/home/user/bin/R-devel/include -L/home/user/bin/R-devel/lib -lR embed.cpp

The compiled application needs to be run in the correct environment, e.g., with R_HOME set correctly; this
can be arranged easily (obviously a deployed application would want to take a more extensive approach)
with

R CMD ./a.out

86

Depending on your ambitions, some parts of section 8 of “Writing R Extensions” are not relevant, e.g.,
callbacks are needed to implement a GUI on top of R, but not to evaluate simple code chunks.

7.4.4 Some Detail

Running through the forgoing in a bit more detail. . . An SEXP (S-expression) is a data structure fundamental
to R’s representation of basic types (integer, logical, language calls, etc.). The line

PROTECT(e = lang2(install("library"), mkString("splines")));

makes a symbol library and a string“splines”, and places them into a language construct consisting of two ele-
ments. This constructs an unevaluated language object, approximately equivalent to quote(library("splines")).
lang2 returns an SEXP that has been allocated from R’s memory pool, and it needs to be PROTECTed
from garbage collection. PROTECT adds the address pointed to by e to a protection stack, when the memory
no longer needs to be protected, the address is popped from the stack (with UNPROTECT(1), a few lines
down). The line

R_tryEval(e, R_GlobalEnv, &errorOccurred);

tries to evaluate e in R’s global environment. errorOccurred is set to non-0 if an error occurs. R_tryEval

returns an SEXP representing the result of the function, but we ignore it here. Because we no longer need
the memory allocated to store library("splines"), we tell R that it is no longer PROTECT’ed.

The next chunk of code is similar, evaluating options(example.ask=FALSE), but the construction of the
call is more complicated. The S-expression created by lang2 is a pair list, conceptually with a node, a
left pointer (CAR) and a right pointer (CDR). The left pointer of e points to the symbol options. The
right pointer of e points to another node in the pair list, whose left pointer is FALSE (the right pointer is
R_NilValue, indicating the end of the language expression). Each node of a pair list can have a TAG, the
meaning of which depends on the role played by the node. Here we attach an argument name.

SET_TAG(CDR(e), install("example.ask"));

The next line evaluates the expression that we have constructed (options(example.ask=FALSE)), using NULL

to indicate that we’ll ignore the success or failure of the function’s evaluation. A different way of constructing
and evaluating this call is illustrated in ~/bin/R-devel/tests/Embedding/RParseEval.c, adapted here as

PROTECT(tmp = mkString("options(example.ask=FALSE)"));

PROTECT(e = R_ParseVector(tmp, 1, &status, R_NilValue));

R_tryEval(VECTOR_ELT(e, 0), R_GlobalEnv, NULL);

UNPROTECT(2);

but this doesn’t seem like a good strategy in general, as it mixes R and C code and does not allow computed
arguments to be used in R functions. Instead write and manage R code in R (e.g., creating a package with
functions that perform complicated series of R manipulations) that your C code uses.

The final block of code above constructs and evaluates example("ns"). Rf_tryEval returns the result of
the function call, so

SEXP result;

PROTECT(result = Rf_tryEval(e, R_GlobalEnv, &errorOccurred));

// ...

UNPROTECT(1);

would capture that for subsequent processing.

87

7.5 Resources

Hadley Wickam’s devtools c-interface provides a nice overview of .Call. Dirk Eddelbuettel’s site provides
extensive information on Rcpp and it’s companion Rinside for embedding R inside C++.

Th ‘Writing R Extensions’ manual provides definitive documentation on the C interface, available with

> RShowDoc("R-exts")

Section 5, ‘System and foreign language interfaces’, is the place to look. Exploring Rinternals.h and the
other header files in

[1] "/home/dtenenba/bin/R-2.15.1/include"

is also important, especially for the .Call interface.

88

https://github.com/hadley/devtools/wiki/c-interface
http://dirk.eddelbuettel.com/code/rcpp.html

Chapter 8

Parallel Evaluation

Our example involves counting reads overlapping regions of interest. The reads are from bam files subset to
contain chromosome 4 of an RNA-seq experiment [1] using Drosophila melanogaster.

Here we store the locate the bam files (i.e., data) in a BamFileList instance from the Rsamtools package.
We pay a little attention to naming the list elements in a way that will be convenient in subsequent steps.

> library(Rsamtools)

> fls <- c("treated2_chr4.bam", "treated3_chr4.bam",

+ "untreated3_chr4.bam", "untreated4_chr4.bam")

> ams <- sprintf("http://s3.amazonaws.com/AdvancedRbamfiles/%s",

+ fls)

> names(ams) <- sub(".bam$", "", basename(ams))

> ## as BamFileList

> files <- BamFileList(ams, sub(".bam$", "", ams))

We are interested in counting the number of reads overlapping genes in Drosophila. This information can
be extracted from a TxDb package, as follows

> library(TxDb.Dmelanogaster.UCSC.dm3.ensGene)

> features <- exonsBy(TxDb.Dmelanogaster.UCSC.dm3.ensGene, "gene")

To count reads, we use summarizeOverlaps from the GenomicRanges package. This function has several
different modes for counting, we’ll use the default (); it’s worth consulting the help page ?summarizeOverlaps

fo details. Rather than using summarizeOverlaps directly, we create a small wrapper that helps us use the
same code in serial as well as parallel functions. The wrapper accepts an index i indicating the file that we
are suppoed to count. The wrapper returns just the count data, whereas summarizeOverlaps returns more
information.

> counter <-

+ function(i, features, files)

+ ## count overlaps for the i'th bam file (files[i])

+ {

+ se <- summarizeOverlaps(features, files[i], singleEnd=FALSE)

+ assays(se)$counts

+ }

89

http://bioconductor.org/packages/release/bioc/html/Rsamtools.html
http://bioconductor.org/packages/release/bioc/html/GenomicRanges.html

In use, we have

> system.time({

+ res0 <- counter(1, features, files)

+ })

user system elapsed

6.465 0.000 13.469

> head(res0, 3)

treated2_chr4

FBgn0000003 0

FBgn0000008 0

FBgn0000014 0

> colSums(res0)

treated2_chr4

21802

It is important to note that on a single machine, an efficient way to use summarizeOverlaps is simply

> library(parallel)

> options(mc.cores=detectCores()) ## all cores, or as appropriate

> system.time({

+ result <- summarizeOverlaps(features, files, singleEnd=FALSE)

+ })

8.1 R parallelism

To explore parallel evaluation, we write a second helper function, doit.

> doit <-

+ function(features, files, applier, FUN, ...)

+ ## apply (e.g., lapply) a FUNction to count reads in files

+ ## overlapping features, simplifying to an array

+ {

+ idx <- seq_along(files)

+ res <- applier(idx, FUN, features, files, ...)

+ res <- do.call(cbind, res)

+ dimnames(res) <- list(names(features), names(files)[idx])

+ res

+ }

This function takes our features and files, a function applier that can be used to iterate over files (e.g.,
lapply for single-processor evaluation), a function FUN to apply to each file (counter, in our case), and
additional arguments that can be passed to applier or FUN. The function takes care to bind the results from
each application of FUN together as a matrix with appropriate dimension names.

Here we use our counter and doit functions to count reads in two files on a single processor

90

> system.time({

+ res1 <- doit(features, files[1:2], lapply, counter)

+ })

user system elapsed

8.249 0.164 8.438

> identical(res0, res1[,1, drop=FALSE])

[1] TRUE

> colSums(res1)

treated2_chr4 treated3_chr4

21802 29250

On Linux or MacOS machines with with multiple cores, we’ve set things up to parallelize very easily.
Rather than lapply, we can use mclapply, from the package parallel available in all recent versions of R.
The mclapply function is just like lapply, but the ‘tasks’ implied by the first argument are distributed
approximately evenly between the number of cores specified by the argument mc.cores. With doit, we might
have

> library(parallel)

> system.time({

+ res2 <- doit(features, files[1:2], mclapply, counter, mc.cores=2)

+ })

user system elapsed

8.212 1.736 4.943

> identical(res1, res2)

[1] TRUE

We have doubled our throughput and, importantly, halved the time required for evaluation. Scaling to four
processors, one for each bam file, is straight-forward

> system.time({

+ res4 <- doit(features, files, mclapply, counter, mc.cores=4)

+ })

user system elapsed

16.197 3.372 5.192

> identical(res1, res4[,1:2])

[1] TRUE

> colSums(res4)

treated2_chr4 treated3_chr4 untreated3_chr4 untreated4_chr4

21802 29250 29166 25042

With more bam files, we would choose mc.cores to be at most equal to the number of cores available on our
machine (e.g., as reported by detectCores().

91

mclapply behind the scenes The mclapply function is a pretty nice choice for parallel evaluation, fitting
naturally with the lapply-like functions that are familiar to R programmers. mclapply works using the fork

system command: the parent process creates two or more child processes. Each child is given a subset of the
X argument to work on. The creation of child processes is relatively fast. Child processes initially have access
to the same memory – same loaded packages and defined variables, for instance – as the parent process. This
means that forking is very inexpensive, e.g., there is limited cost to communicate data from the parent to
the child. The memory model for forked processes is ‘copy-on-change’, so child processes only require more
memory when they modify the data they are working on; often FUN represents a data reduction, and it’s
arguments are not actually modified but instead rapidly transformed to a much smaller size.

There are trade-offs involved with parallel evaluation. A common mistake is to assign tasks that require
relatively large amounts of memory. The problem is that the memory allocation of each child is amplified by
the number of children – on a 16 core machine, each child requiring 8GB of additional memory would mean a
total of 128GB of memory in the machine. A second issue is that many R functions are vectorized in the sense
that some operation f(x) (applying a function to the vector x) evaluates faster than lapply(x, f) (applying
a function to each element of x). The pvec function makes it relatively easy to take an intermediate kind of
approach, dividing x into elements of length > 1. This represents efficient vector operations on chunks of x,
split across several processors.

The mclapply function is not available on windows, and obviously does not scale above the number of cores
available on a single physical computer. The parallel package provides functions for working across multiple
machines, as well as running completely separate R processes on the same machine; we discuss ‘socket’
clusters below, a second example is clusters based on the well-established MPI (message passing interface)
standard. There are two additional challenges with these approaches. The first is that the communication
and memory footprint costs of clusters need to be given more considerations (moving big objects between
processes can be very expensive). The second is that managing errors can be complicated, especially if
individual tasks fail in unpredictable ways. As an anecdote, it is possible to get some amazing benefits from
parallel evaluation in large clusters. In an early GWAS study here, an investigator fitting general linear
models to SNPs went from a throughput of a few tens of SNPs per second with a naive implementation,
to a few thousands of SNPs per second with careful code optimization on a single processor, to 100,000’s
of thousands of SNPs per second on a cluster with 100’s of CPUs available. This transformed the problem
from a batch job running over the weekend to interactive exploration of alternative models.

8.2 Clusters and clouds

Local clusters Using clusters of computers is more complicated than using processes on a single computer
because the R session on each machine has to be set up to be similar. In addition, the costs of data transfer
and the complexities of machine failure become important. To start, we create a simple cluster of independent
R instances, running on a single machine. The clusterEvalQ function loads required libraries on each member
of the cluster.

> cl <- makePSOCKcluster(4)

> libs <- clusterEvalQ(cl, {

+ library(GenomicRanges)

+ library(Rsamtools)

+ })

92

One applier for a socket (or other multiple-node) cluster is parLapply, the first argument of which is named
cl. We perform our parallel evaluation with

> system.time({

+ rescl <- doit(features, files, parLapply, counter, cl=cl)

+ })

user system elapsed

0.088 0.008 6.920

> identical(res4, rescl)

[1] TRUE

> colSums(rescl)

treated2_chr4 treated3_chr4 untreated3_chr4 untreated4_chr4

21802 29250 29166 25042

The Amazon cloud There are several ways to use clusters of computers from R. Here’s a simple way
using Amazon Web Services, Bioconductor’s Amazon Machine Image (AMI), and a socket cluster from R’s
parallel package.

For the following demo, an Amazon Web Services (AWS) account is required, which in turn requires
credit card information and may incur charges. You do not need to do this as an exercise; the information
is provided for explanatory purposes only.

Visit the Bioconductor AMI page: http://bioconductor.org/help/bioconductor-cloud-ami/
Click ”Using a parallel cluster in the cloud”.
Click ”Start parallel cluster”.
Accept the default values. Click the IAM checkbox. Start the stack.
When the stack is running, the Outputs tab will provide a URL to RStudio server on the master node

of the cluster. A file called /usr/local/Rmpi/hostfile.plain. contains the IP addresses of each machine
in the cluster, and the number of cores on the machine. It might look like this:

10.68.155.37 4

10.50.213.89 4

10.29.191.43 4

Here a bit of code parses this file and constructs a string that contains each IP address multiplied by the
number of cores. We then create a socket cluster using this string.

> library(parallel)

> tbl <- read.delim("/usr/local/Rmpi/hostfile.plain",

+ header=FALSE, sep=" ", stringsAsFactors=FALSE)

> hosts <- rep(tbl[[1]], tbl[[2]])

> awscl <- makePSOCKcluster(hosts)

Looking at the cluster object, you can see that our cluster exists on three separate machines, and consists
of 12 cores altogether.

93

http://bioconductor.org/help/bioconductor-cloud-ami/

> awscl

socket cluster with 12 nodes on hosts '10.190.38.61', '10.6.155.113', '10.159.30.223'

Now we run a trivial function on the cluster:

> system.time(res <- clusterCall(awscl, Sys.sleep, 1))

user system elapsed

0.004 0.000 1.005

The output shows that the function ran in parallel (i.e, took 1 second, not 12).

Overlapping read counting, revisited Now we run doit on our 12-node cluster. But if we think about
it, we don’t really need 12 nodes. There are only 4 BAM files to process. So we could have just started a
4-node cluster (or done all processing on a single 4-core machine, as we have already demonstrated). Instead,
we’ll subset the 12-node cluster and end up with one that just has four nodes.

> hosts[c(1, 2, 5, 9)]

[1] "10.190.38.61" "10.190.38.61" "10.6.155.113" "10.159.30.223"

> bamcl = awscl[c(1, 2, 5, 9)]

> bamcl

socket cluster with 4 nodes on hosts '10.190.38.61', '10.6.155.113', '10.159.30.223'

We need to prepare our new cluster by telling it to load the packages we’ll need:

> libs <- clusterEvalQ(bamcl, {

+ library(GenomicRanges)

+ library(Rsamtools)

+ })

Now we’re ready to run doit() again.

> system.time({

+ rescl <- doit(features, files, parLapply, counter, cl=bamcl)

+ })

user system elapsed

0.708 0.104 23.691

Note: When using Amazon Web Services, be sure and turn off resources when you are done with them!
Otherwise, charges will continue to accrue. To stop the cluster we’ve started, go back to the CloudFormation
Management Console page, select the stack we started, click Delete Stack, and confirm deletion.

94

8.3 C parallelism

There are relatively few examples of C-level parallelism in R. One reason is because R’s C entry points are
generally not thread-safe – two independent threads cannot call in to R simultaneously. Nonetheless, R does
provide support for use of the OpenMP parallel programming specification. OpenMP allows programmers
to define pragma’s that indicate to an OpenMP-aware compiler that the code can be compiled to allow for
parallel evaluation. It is the programmer’s responsibility to ensure that the code is safe to be evaluated
in parallel, and that the use of pragmas is actually effective at increasing speed (this can be surprisingly
challenging to achieve). One subtle advantage of C parallelism is that the user will almost certainly be
unaware of the implementation details – their R code will appear to just ‘run faster’.

Here is a snippet from the ShortRead package, where a buffer containing many fastq records is being
parsed for geometry. The for loop operates independently on each read, and there are no function calls to
compromise thread safety.

/* geometry */

#ifdef SUPPORT_OPENMP

#pragma omp parallel for

#endif

for (int i = 0; i < fastq->n_curr; ++i) {

const Rbyte *buf = fastq->records[i].record;

const Rbyte *start;

start = ++buf; /* id; skip '@' */

while (*buf != '\n')

++buf;

id_w[i] = buf - start;

while (*buf == '\n')

++buf;

sread_w[i] = 0; /* read */

while (*buf != '+') {

while (*buf++ != '\n') /* strip '\n' */

sread_w[i] += 1;

}

}

The code uses a macro SUPPORT_OPENMP determined by R when R was installed. If the macros is defined,
then an openMP directive is inserted that tell the compiler to parallelize the following for loop. Some basic
considerations point to the challenges of effectively parallizing C code. For instance, Amdahl’s law points
out that if a fraction P of the code is parallelized across N threads, the overall code speed-up is at maximum
1/((1 − P) + P/N) – even if were an infinite number of threads, the code only runs 1/(1 − P)-fold faster.
So if only a small fraction of our C code, which in turn is only a small fraction of our overall code, can be
parallelized, our efforts at parallizing C code may not give us much in overall performance.

95

http://openmp.org/wp/
http://bioconductor.org/packages/release/bioc/html/ShortRead.html

Chapter 9

An Extended Example

9.1 Package tour

9.1.1 Bioconductor packages

A brief, slightly dated, summary of Bioconductor packages available for sequence analysis is presented in
Table 9.1; see the BiocViews1 section of the web site for a current listing.

9.1.2 Common work flows

Manipulating reads, counting overlaps

Differential representation

Annotation

Annotation of called variants

9.2 Highlights

The following highlight best practices or other interesting features in Bioconductor packages produced by
our group. Not all packages adopt all approaches.

9.2.1 Package structure

File structure Similar organization of files in R, man, inst/unitTests directories.

DESCRIPTION Explicit collation order. Version dependencies. Appropriate use of Depends:, Imports:,
Suggests: fields.

1http://bioconductor.org/packages/release/BiocViews.html#___Software

96

http://bioconductor.org/packages/release/BiocViews.html#___Software

Table 9.1: Selected Bioconductor packages for high-throughput sequence analysis.

Concept Packages
Data representation IRanges, GenomicRanges, GenomicFeatures, Biostrings, BSgenome,

girafe.
Input / output ShortRead (fastq), Rsamtools (bam), rtracklayer (gff, wig, bed), Vari-

antAnnotation (vcf), R453Plus1Toolbox (454).
Annotation GenomicFeatures, ChIPpeakAnno, VariantAnnotation.
Alignment gmapR, Rsubread, Biostrings.
Visualization ggbio, Gviz.
Quality assessment qrqc, seqbias, ReQON , htSeqTools, TEQC , Rolexa, ShortRead.
RNA-seq BitSeq, cqn, cummeRbund, DESeq, DEXSeq, EDASeq, edgeR, gage,

goseq, iASeq, tweeDEseq.
ChIP-seq, etc. BayesPeak, baySeq, ChIPpeakAnno, chipseq, ChIPseqR, ChIPsim,

CSAR, DiffBind, MEDIPS, mosaics, NarrowPeaks, nucleR, PICS,
PING, REDseq, Repitools, TSSi.

Motifs BCRANK , cosmo, cosmoGUI , MotIV , seqLogo, rGADEM .
3C, etc. HiTC , r3Cseq.
Copy number cn.mops, CNAnorm, exomeCopy , seqmentSeq.
Microbiome phyloseq, DirichletMultinomial, clstutils, manta, mcaGUI .
Work flows ArrayExpressHTS, Genominator, easyRNASeq, oneChannelGUI ,

rnaSeqMap.
Database SRAdb.

NAMESPACE Shared object use via useDynLib. Tightly controlled imports, explicit exports. Reuse of
generics and classes.

Unit tests Moderate use, especially in more recent development cycles. Often introduced in response to
bug reports.

Help pages Working examples. Cross-references. Standardized (?) content.

Vignettes Extensive vignettes with working code. Challenge: vignettes often written when the package is
originally developed, and do not track the leading edge of package development.

9.2.2 Classes and methods

Class hierarchy Extensive class hierarchy. Challenge: hard to avoid overwhelming users; some classes
were useful once (e.g., the AlignedRead class in the ShortRead package) but would not be a ‘first choice’
(GappedAlignments in GenomicRanges) now.

Performance Approaches to minimizing the number of S4 objects, e.g., in GRangesList instances.

97

http://bioconductor.org/packages/release/bioc/html/IRanges.html
http://bioconductor.org/packages/release/bioc/html/GenomicRanges.html
http://bioconductor.org/packages/release/bioc/html/GenomicFeatures.html
http://bioconductor.org/packages/release/bioc/html/Biostrings.html
http://bioconductor.org/packages/release/bioc/html/BSgenome.html
http://bioconductor.org/packages/release/bioc/html/girafe.html
http://bioconductor.org/packages/release/bioc/html/ShortRead.html
http://bioconductor.org/packages/release/bioc/html/Rsamtools.html
http://bioconductor.org/packages/release/bioc/html/rtracklayer.html
http://bioconductor.org/packages/release/bioc/html/VariantAnnotation.html
http://bioconductor.org/packages/release/bioc/html/VariantAnnotation.html
http://bioconductor.org/packages/release/bioc/html/R453Plus1Toolbox.html
http://bioconductor.org/packages/release/bioc/html/GenomicFeatures.html
http://bioconductor.org/packages/release/bioc/html/ChIPpeakAnno.html
http://bioconductor.org/packages/release/bioc/html/VariantAnnotation.html
http://bioconductor.org/packages/release/bioc/html/gmapR.html
http://bioconductor.org/packages/release/bioc/html/Rsubread.html
http://bioconductor.org/packages/release/bioc/html/Biostrings.html
http://bioconductor.org/packages/release/bioc/html/ggbio.html
http://bioconductor.org/packages/release/bioc/html/Gviz.html
http://bioconductor.org/packages/release/bioc/html/qrqc.html
http://bioconductor.org/packages/release/bioc/html/seqbias.html
http://bioconductor.org/packages/release/bioc/html/ReQON.html
http://bioconductor.org/packages/release/bioc/html/htSeqTools.html
http://bioconductor.org/packages/release/bioc/html/TEQC.html
http://bioconductor.org/packages/release/bioc/html/Rolexa.html
http://bioconductor.org/packages/release/bioc/html/ShortRead.html
http://bioconductor.org/packages/release/bioc/html/BitSeq.html
http://bioconductor.org/packages/release/bioc/html/cqn.html
http://bioconductor.org/packages/release/bioc/html/cummeRbund.html
http://bioconductor.org/packages/release/bioc/html/DESeq.html
http://bioconductor.org/packages/release/bioc/html/DEXSeq.html
http://bioconductor.org/packages/release/bioc/html/EDASeq.html
http://bioconductor.org/packages/release/bioc/html/edgeR.html
http://bioconductor.org/packages/release/bioc/html/gage.html
http://bioconductor.org/packages/release/bioc/html/goseq.html
http://bioconductor.org/packages/release/bioc/html/iASeq.html
http://bioconductor.org/packages/release/bioc/html/tweeDEseq.html
http://bioconductor.org/packages/release/bioc/html/BayesPeak.html
http://bioconductor.org/packages/release/bioc/html/baySeq.html
http://bioconductor.org/packages/release/bioc/html/ChIPpeakAnno.html
http://bioconductor.org/packages/release/bioc/html/chipseq.html
http://bioconductor.org/packages/release/bioc/html/ChIPseqR.html
http://bioconductor.org/packages/release/bioc/html/ChIPsim.html
http://bioconductor.org/packages/release/bioc/html/CSAR.html
http://bioconductor.org/packages/release/bioc/html/DiffBind.html
http://bioconductor.org/packages/release/bioc/html/MEDIPS.html
http://bioconductor.org/packages/release/bioc/html/mosaics.html
http://bioconductor.org/packages/release/bioc/html/NarrowPeaks.html
http://bioconductor.org/packages/release/bioc/html/nucleR.html
http://bioconductor.org/packages/release/bioc/html/PICS.html
http://bioconductor.org/packages/release/bioc/html/PING.html
http://bioconductor.org/packages/release/bioc/html/REDseq.html
http://bioconductor.org/packages/release/bioc/html/Repitools.html
http://bioconductor.org/packages/release/bioc/html/TSSi.html
http://bioconductor.org/packages/release/bioc/html/BCRANK.html
http://bioconductor.org/packages/release/bioc/html/cosmo.html
http://bioconductor.org/packages/release/bioc/html/cosmoGUI.html
http://bioconductor.org/packages/release/bioc/html/MotIV.html
http://bioconductor.org/packages/release/bioc/html/seqLogo.html
http://bioconductor.org/packages/release/bioc/html/rGADEM.html
http://bioconductor.org/packages/release/bioc/html/HiTC.html
http://bioconductor.org/packages/release/bioc/html/r3Cseq.html
http://bioconductor.org/packages/release/bioc/html/cn.mops.html
http://bioconductor.org/packages/release/bioc/html/CNAnorm.html
http://bioconductor.org/packages/release/bioc/html/exomeCopy.html
http://bioconductor.org/packages/release/bioc/html/seqmentSeq.html
http://bioconductor.org/packages/release/bioc/html/phyloseq.html
http://bioconductor.org/packages/release/bioc/html/DirichletMultinomial.html
http://bioconductor.org/packages/release/bioc/html/clstutils.html
http://bioconductor.org/packages/release/bioc/html/manta.html
http://bioconductor.org/packages/release/bioc/html/mcaGUI.html
http://bioconductor.org/packages/release/bioc/html/ArrayExpressHTS.html
http://bioconductor.org/packages/release/bioc/html/Genominator.html
http://bioconductor.org/packages/release/bioc/html/easyRNASeq.html
http://bioconductor.org/packages/release/bioc/html/oneChannelGUI.html
http://bioconductor.org/packages/release/bioc/html/rnaSeqMap.html
http://bioconductor.org/packages/release/bioc/html/SRAdb.html
http://bioconductor.org/packages/release/bioc/html/ShortRead.html
http://bioconductor.org/packages/release/bioc/html/GenomicRanges.html

9.2.3 Data resources

Use of sqlite

Retrieval via rtracklayer

9.2.4 C code

Important implementations Examples: XString and related classes. findOverlaps. Run-length encod-
ing.

Reuse of third-party code Examples: Rsamtools, overlap code in IRanges, UCSC access in rtracklayer.

Registration Different approaches, e.g.: IRanges registration at C level; Rsamtools registration in name
space.

9.2.5 . . .

98

http://bioconductor.org/packages/release/bioc/html/rtracklayer.html
http://bioconductor.org/packages/release/bioc/html/Rsamtools.html
http://bioconductor.org/packages/release/bioc/html/IRanges.html
http://bioconductor.org/packages/release/bioc/html/rtracklayer.html
http://bioconductor.org/packages/release/bioc/html/IRanges.html
http://bioconductor.org/packages/release/bioc/html/Rsamtools.html

References

[1] A. N. Brooks, L. Yang, M. O. Duff, K. D. Hansen, J. W. Park, S. Dudoit, S. E. Brenner, and B. R.
Graveley. Conservation of an RNA regulatory map between Drosophila and mammals. Genome Research,
pages 193–202, 2011.

[2] P. Burns. The R inferno. Technical report, 2011.

[3] J. M. Chambers. Software for Data Analysis: Programming with R. Springer, New York, 2008.

[4] P. Dalgaard. Introductory Statistics with R. Springer, 2nd edition, 2008.

[5] R. Gentleman. R Programming for Bioinformatics. Computer Science & Data Analysis. Chapman &
Hall/CRC, Boca Raton, FL, 2008.

[6] R. Kabacoff. R in Action. Manning, 2010.

[7] N. Matloff. The Art of R Programming. No Starch Pess, 2011.

99

	Introduction
	Packages
	Anatomy of a package
	Essentials: a minimal package
	A More Complete Package

	Version Control - Introduction
	Making the package more useful
	Creating good packages and why it matters
	Unit tests
	Interoperability
	From package to Bioconductor package

	An Extended Example: MotifDb
	Introduction
	Highlights
	Package structure
	Class Design
	Classes and methods
	The query method
	zzz.R
	Unit Tests

	S4 classes and methods
	Introduction
	A different OO paradigm
	S4 in Bioconductor
	From an end-user point of view
	Chapter overview

	Implementing the SNPLocations class
	Choosing a good design
	Class definition
	Constructor
	Implementing length() and other accessors
	The show method
	The validity method
	Coercion methods

	Integrating the SNPLocations class to our package
	Add the SNPLocations-class.R file to the package
	Import the required packages and modify the NAMESPACE file
	Add a man page for the SNPLocations class
	Check the package

	Extending an existing class
	Constructor
	length(), accessors, and show method
	The validity method
	Coercion methods

	Other important S4 features
	Resources

	Reference classes
	Introduction
	Implementing reference classes
	Fields
	Inheritance
	Best practices?
	Cautions?

	Exercises

	Accessing Data: Data Base and Web Resources
	Introduction
	Creating other kinds of Annotation packages
	Retrieving data from a web resource
	Parsing XML

	Setting up a package to expose a web service
	Creating package accessors for a web service
	Example: creating keytypes and cols methods
	Example 2: creating a select method

	Retrieving data from a database resource
	Getting a connection
	Getting data out
	Some basic SQL
	Exploring the SQLite database from R

	Setting up a package to expose a SQLite database object
	Creating package accessors for databases
	Examples: creating a cols and keytypes method
	Example: creating a keys method

	Creating a database resource from available data
	Making a new connection
	Importing data
	Attaching other database resources

	Performance: time and space
	Measuring performance
	Debugging
	R Warnings and Errors

	Writing efficient scripts
	Easy solutions
	Moderate solutions

	Using C Code
	Calling C from R
	Example and R Implementation
	The `.C' Interface
	The `.Call' Interface
	Rcpp and inline

	Using C code in Packages
	Debugging
	Embedding R
	Setup
	Code
	Compile and Run
	Some Detail

	Resources

	Parallel Evaluation
	R parallelism
	Clusters and clouds
	C parallelism

	An Extended Example
	Package tour
	Bioconductor packages
	Common work flows

	Highlights
	Package structure
	Classes and methods
	Data resources
	C code
	…

	References

