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This course takes a quick tour through the essentials of R / Bioconductor for high-throughput sequence
analysis. We start with a refresher on using R efficiently, including tips for managing large data. The
next stop explores how R / Bioconductor represents genome and other bioloical sequences, short reads, and
alignments; we are reminded of the strengths and challenges of R’s S4 class system. Ranges are a central
concept in Bioconductor’s approach to sequence analysis; we use these in a variety of contexts. The tour
concludes with an exploration of how Bioconductor can be used to place quantitative results in to a richer
biological context of annotation and visualization.

There are many books to help with using R, but not yet a book-length treatment of Bioconductor tools for
sequence analysis; Recent training material is available on the Bioconductor web site1 novices, one place to
start is Pardis’ R for Beginners2. General R programming recommendations include Dalgaard’s Introductory
Statistics with R [4], Matloff’s The Art of R Programming [5], and Meys and de Vies’ R For Dummies [6];
an interesting internet resource for intermediate R programming is Burns’ The R Inferno3.

Table 1: Approximate schedule.

9:00 - 10:30 Up to speed with R and Bioconductor
10:30 - 12:00 Sequences, reads, and alignments
12:00 - 12:30 Ranges: introduction
12:30 - 1:30 Lunch
1:30 - 3:30 Ranges: in action
3:30 - 4:15 Variants, annotations, and visualization
4:15 - 5:00 Working with large data

1http://bioconductor.org/help/course-materials/.. For R
2http://cran.r-project.org/doc/contrib/Paradis-rdebuts_en.pdf
3http://www.burns-stat.com/documents/books/the-r-inferno/
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Chapter 1

Efficient R

R is an open-source statistical programming language. It is used to manipulate data, to perform statistical
analysis, and to present graphical and other results. R consists of a core language, additional ‘packages’
distributed with the R language, and a very large number of packages contributed by the broader community.
Packages add specific functionality to an R installation. R has become the primary language of academic
statistical analysis, and is widely used in diverse areas of research, government, and industry.

R has several unique features. It has a surprisingly ‘old school’ interface: users type commands into
a console; scripts in plain text represent work flows; tools other than R are used for editing and other
tasks. R is a flexible programming language, so while one person might use functions provided by R to
accomplish advanced analytic tasks, another might implement their own functions for novel data types. As
a programming language, R adopts syntax and grammar that differ from many other languages: objects
in R are ‘vectors’, and functions are ‘vectorized’ to operate on all elements of the object; R objects have
‘copy on change’ and ‘pass by value’ semantics, reducing unexpected consequences for users at the expense
of less efficient memory use; common paradigms in other languages, such as the ‘for’ loop, are encountered
much less commonly in R. Many authors contribute to R, so there can be a frustrating inconsistency of
documentation and interface. R grew up in the academic community, so authors have not shied away from
trying new approaches. Common statistical analysis functions are very well-developed.

1.1 R

Opening an R session results in a prompt. The user types instructions at the prompt. Here is an example:

> ## assign values 5, 4, 3, 2, 1 to variable 'x'
> x <- c(5, 4, 3, 2, 1)

> x

[1] 5 4 3 2 1

The first line starts with a # to represent a comment; the line is ignored by R. The next line creates a
variable x. The variable is assigned (using <-, we could have used = almost interchangeably) a value. The
value assigned is the result of a call to the c function. That it is a function call is indicated by the symbol
named followed by parentheses, c(). The c function takes zero or more arguments, and returns a vector.
The vector is the value assigned to x. R responds to this line with a new prompt, ready for the next input.
The next line asks R to display the value of the variable x. R responds by printing [1] to indicate that the
subsequent number is the first element of the vector. It then prints the value of x.

R has many features to aid common operations. Entering sequences is a very common operation, and
expressions of the form 2:4 create a sequence from 2 to 4. Sub-setting one vector by another is enabled with
[. Here we create an integer sequence from 2 to 4, and use the sequence as an index to select the second,
third, and fourth elements of x
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Table 1.1: Essential aspects of the R language.

Category Function Description
Vectors integer, numeric Vectors holding a single type of data length 0 or more

complex, character
raw, factor

List-like list Arbitrary collections of elements
data.frame List of equal-length vectors
environment Pass-by-reference data storage; hash

Array-like matrix Two-dimensional, homogeneous types
data.frame Homogeneous columns; row- and column indexing
array 0 or more dimensions

Statistical NA, factor Essential statistical concepts, integral to the language.
Classes ‘S3’ List-like structured data; simple inheritance & dispatch

‘S4’ Formal classes, multiple inheritance & dispatch
Functions ‘function’ A simple function with arguments, body, and return value

‘generic’ A (S3 or S4) function with associated methods
‘method’ A function implementing a generic for an S3 or S4 class

> x[2:4]

[1] 4 3 2

Index values can be repeated, and if outside the domain of x return the special value NA. Negative index
values remove elements from the vector. Logical and character vectors (described below) can also be used
for sub-setting.

R functions operate on variables. Functions are usually vectorized, acting on all elements of their argu-
ment and obviating the need for explicit iteration. Functions can generate warnings when performing suspect
operations, or errors if evaluation cannot proceed; try log(-1).

> log(x)

[1] 1.6094379 1.3862944 1.0986123 0.6931472 0.0000000

1.1.1 Essential data types

R has a number of built-in data types, summarized in Table 1.1. These represent integer, numeric (floating
point), complex, character, logical (Boolean), and raw (byte) data. It is possible to convert between data
types, and to discover the type or mode of a variable.

> c(1.1, 1.2, 1.3) # numeric

[1] 1.1 1.2 1.3

> c(FALSE, TRUE, FALSE) # logical

[1] FALSE TRUE FALSE

> c("foo", "bar", "baz") # character, single or double quote ok

[1] "foo" "bar" "baz"

> as.character(x) # convert 'x' to character
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[1] "5" "4" "3" "2" "1"

> typeof(x) # the number 5 is numeric, not integer

[1] "double"

> typeof(2L) # append 'L' to force integer

[1] "integer"

> typeof(2:4) # ':' produces a sequence of integers

[1] "integer"

R includes data types particularly useful for statistical analysis, including factor to represent categories
and NA (used in any vector) to represent missing values.

> sex <- factor(c("Male", "Female", NA), levels=c("Female", "Male"))

> sex

[1] Male Female <NA>

Levels: Female Male

Lists, data frames, and matrices All of the vectors mentioned so far are homogeneous, consisting of a
single type of element. A list can contain a collection of different types of elements and, like all vectors,
these elements can be named to create a key-value association.

> lst <- list(a=1:3, b=c("foo", "bar"), c=sex)

> lst

$a

[1] 1 2 3

$b

[1] "foo" "bar"

$c

[1] Male Female <NA>

Levels: Female Male

Lists can be subset like other vectors to get another list, or subset with [[ to retrieve the actual list element;
as with other vectors, sub-setting can use names

> lst[c(3, 1)] # another list

$c

[1] Male Female <NA>

Levels: Female Male

$a

[1] 1 2 3

> lst[["a"]] # the element itself, selected by name

[1] 1 2 3
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A data.frame is a list of equal-length vectors, representing a rectangular data structure not unlike a
spread sheet. Each column of the data frame is a vector, so data types must be homogeneous within a
column. A data.frame can be subset by row or column, and columns can be accessed with $ or [[.

> df <- data.frame(age=c(27L, 32L, 19L),

+ sex=factor(c("Male", "Female", "Male")))

> df

age sex

1 27 Male

2 32 Female

3 19 Male

> df[c(1, 3),]

age sex

1 27 Male

3 19 Male

> df[df$age > 20,]

age sex

1 27 Male

2 32 Female

A matrix is also a rectangular data structure, but subject to the constraint that all elements are the
same type. A matrix is created by taking a vector, and specifying the number of rows or columns the vector
is to represent.

> m <- matrix(1:12, nrow=3)

> m

[,1] [,2] [,3] [,4]

[1,] 1 4 7 10

[2,] 2 5 8 11

[3,] 3 6 9 12

> m[c(1, 3), c(2, 4)]

[,1] [,2]

[1,] 4 10

[2,] 6 12

On sub-setting, R coerces a single column data.frame or single row or column matrix to a vector if possible;
use drop=FALSE to stop this behavior.

> m[, 3]

[1] 7 8 9

> m[, 3, drop=FALSE]

[,1]

[1,] 7

[2,] 8

[3,] 9

An array is a data structure for representing homogeneous, rectangular data in higher dimensions.
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1.1.2 S3 (and S4) classes

More complicated data structures are represented using the ‘S3’ or ‘S4’ object system. Objects are often
created by functions (for example, lm, below), with parts of the object extracted or assigned using accessor
functions. The following generates 1000 random normal deviates as x, and uses these to create another 1000
deviates y that are linearly related to x but with some error. We fit a linear regression using a ‘formula’ to
describe the relationship between variables, summarize the results in a familiar ANOVA table, and access
fit (an S3 object) for the residuals of the regression, using these as input first to the var (variance) and
then sqrt (square-root) functions. Objects can be interrogated for their class.

> x <- rnorm(1000, sd=1)

> y <- x + rnorm(1000, sd=.5)

> fit <- lm(y ~ x) # formula describes linear regression

> fit # an 'S3' object

Call:

lm(formula = y ~ x)

Coefficients:

(Intercept) x

0.005389 0.971044

> anova(fit)

Analysis of Variance Table

Response: y

Df Sum Sq Mean Sq F value Pr(>F)

x 1 920.84 920.84 3923.9 < 2.2e-16 ***

Residuals 998 234.21 0.23

---

Signif. codes: 0 âĂŸ***âĂŹ 0.001 âĂŸ**âĂŹ 0.01 âĂŸ*âĂŹ 0.05 âĂŸ.âĂŹ 0.1 âĂŸ âĂŹ 1

> sqrt(var(resid(fit))) # residuals accessor and subsequent transforms

[1] 0.4841906

> class(fit)

[1] "lm"

Many Bioconductor packages implement S4 objects to represent data. S3 and S4 systems are quite differ-
ent from a programmer’s perspective, but fairly similar from a user’s perspective: both systems encapsulate
complicated data structures, and allow for methods specialized to different data types; accessors are used to
extract information from the objects.

1.1.3 Functions

R has a very large number of functions; Table 1.2 provides a brief list of those that might be commonly used
and particularly useful. See the help pages (e.g., ?lm) and examples (example(match)) for more details on
each of these functions.

R functions accept arguments, and return values. Arguments can be required or optional. Some functions
may take variable numbers of arguments, e.g., the columns in a data.frame
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Table 1.2: A selection of R function.

dir, read.table (and friends), scan List files in a directory, read spreadsheet-like
data into R, efficiently read homogeneous data (e.g., a file of numeric values)
to be represented as a matrix.

c, factor, data.frame, matrix Create a vector, factor, data frame or matrix.

summary, table, xtabs Summarize, create a table of the number of times elements occur
in a vector, cross-tabulate two or more variables.

t.test, aov, lm, anova, chisq.test Basic comparison of two (t.test) groups, or several
groups via analysis of variance / linear models (aov output is probably more
familiar to biologists), or compare simpler with more complicated models (anova);
χ2 tests.

dist, hclust Cluster data.

plot Plot data.

ls, str, library, search List objects in the current (or specified) workspace, or peak
at the structure of an object; add a library to or describe the search path of
attached packages.

lapply, sapply, mapply, aggregate Apply a function to each element of a list (lapply,
sapply), to elements of several lists (mapply), or to elements of a list partitioned
by one or more factors (aggregate).

with Conveniently access columns of a data frame or other element without having to
repeat the name of the data frame.

match, %in% Report the index or existence of elements from one vector that match
another.

split, cut, unlist Split one vector by an equal length factor, cut a single vector into
intervals encoded as levels of a factor, unlist (concatenate) list elements.

strsplit, grep, sub Operate on character vectors, splitting it into distinct fields,
searching for the occurrence of a patterns using regular expressions (see ?regex,
or substituting a string for a regular expression.

install.packages Install a package from an on-line repository into your R.

traceback, debug, browser Report the sequence of functions under evaluation at the
time of the error; enter a debugger when a particular function or statement is
invoked.
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> y <- 5:1

> log(y)

[1] 1.6094379 1.3862944 1.0986123 0.6931472 0.0000000

> args(log) # arguments 'x' and 'base'; see ?log

function (x, base = exp(1))

NULL

> log(y, base=2) # 'base' is optional, with default value

[1] 2.321928 2.000000 1.584963 1.000000 0.000000

> try(log()) # 'x' required; 'try' continues even on error

> args(data.frame) # ... represents variable number of arguments

function (..., row.names = NULL, check.rows = FALSE, check.names = TRUE,

stringsAsFactors = default.stringsAsFactors())

NULL

Arguments can be matched by name or position. If an argument appears after ..., it must be named.

> log(base=2, y) # match argument 'base' by name, 'x' by position

[1] 2.321928 2.000000 1.584963 1.000000 0.000000

A function such as anova is a generic that provides an overall signature but dispatches the actual work
to the method corresponding to the class(es) of the arguments used to invoke the generic. A generic may
have fewer arguments than a method, as with the S3 function anova and its method anova.glm.

> args(anova)

function (object, ...)

NULL

> args(anova.glm)

function (object, ..., dispersion = NULL, test = NULL)

NULL

The ... argument in the anova generic means that additional arguments are possible; the anova generic
hands these arguments to the method it dispatches to.

1.1.4 Packages

Packages provide functionality beyond that available in base R. There are over 4000 packages in CRAN
(comprehensive R archive network) and more than 670 Bioconductor packages. Packages are contributed
by diverse members of the community; they vary in quality (many are excellent) and sometimes contain
idiosyncratic aspects to their implementation. Table 1.3 outlines key base packages and selected contributed
packages; see a local CRAN mirror (including the task views summarizing packages in different domains)
and Bioconductor for additional contributed packages.
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Table 1.3: Selected base and contributed packages.

Package Description
base Data input and manipulation; scripting and programming.
stats Essential statistical and plotting functions.
lattice, ggplot2 Approaches to advanced graphics.
methods ‘S4’ classes and methods.
parallel Facilities for parallel evaluation.

1.1.5 Exercise
Exercise 1
This exercise uses data describing 128 microarray samples as a basis for exploring R functions. Covariates
such as age, sex, type, stage of the disease, etc., are in a data file pData.csv.

The following command creates a variable pdataFiles that is the location of a comma-separated value
(‘csv’) file to be used in the exercise. A csv file can be created using, e.g., ‘Save as...’ in spreadsheet software.

> pdataFile <- system.file(package="SequenceAnalysisData", "extdata",

+ "pData.csv")

Input the csv file using read.table, assigning the input to a variable pdata. Use dim to find out the
dimensions (number of rows, number of columns) in the object. Are there 128 rows? Use names or colnames

to list the names of the columns of pdata. Use summary to summarize each column of the data. What are the
data types of each column in the data frame?

A data frame is a list of equal length vectors. Select the ‘sex’ column of the data frame using [[ or $.
Pause to explain to your neighbor why this sub-setting works. Since a data frame is a list, use sapply to ask
about the class of each column in the data frame. Explain to your neighbor what this produces, and why.

Use table to summarize the number of males and females in the sample. Consult the help page ?table

to figure out additional arguments required to include NA values in the tabulation.
The mol.biol column summarizes molecular biological attributes of each sample. Use table to summarize

the different molecular biology levels in the sample. Use %in% to create a logical vector of the samples that
are either BCR/ABL or NEG. Subset the original phenotypic data to contain those samples that are BCR/ABL or
NEG.

After sub-setting, what are the levels of the mol.biol column? Set the levels to be BCR/ABL and NEG, i.e.,
the levels in the subset.

One would like covariates to be similar across groups of interest. Use t.test to assess whether BCR/ABL

and NEG have individuals with similar age. To do this, use a formula that describes the response age in terms
of the predictor mol.biol. If age is not independent of molecular biology, what complications might this
introduce into subsequent analysis? Use

Solution: Here we input the data and explore basic properties.

> pdata <- read.table(pdataFile)

> dim(pdata)

[1] 128 21

> names(pdata)

[1] "cod" "diagnosis" "sex" "age"

[5] "BT" "remission" "CR" "date.cr"

[9] "t.4.11." "t.9.22." "cyto.normal" "citog"

[13] "mol.biol" "fusion.protein" "mdr" "kinet"

[17] "ccr" "relapse" "transplant" "f.u"

[21] "date.last.seen"
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> summary(pdata)

cod diagnosis sex age BT

10005 : 1 1/15/1997 : 2 F :42 Min. : 5.00 B2 :36

1003 : 1 1/29/1997 : 2 M :83 1st Qu.:19.00 B3 :23

1005 : 1 11/15/1997: 2 NA's: 3 Median :29.00 B1 :19

1007 : 1 2/10/1998 : 2 Mean :32.37 T2 :15

1010 : 1 2/10/2000 : 2 3rd Qu.:45.50 B4 :12

11002 : 1 (Other) :116 Max. :58.00 T3 :10

(Other):122 NA's : 2 NA's :5 (Other):13

remission CR date.cr t.4.11.

CR :99 CR :96 11/11/1997: 3 Mode :logical

REF :15 DEATH IN CR : 3 1/21/1998 : 2 FALSE:86

NA's:14 DEATH IN INDUCTION: 7 10/18/1999: 2 TRUE :7

REF :15 12/7/1998 : 2 NA's :35

NA's : 7 1/17/1997 : 1

(Other) :87

NA's :31

t.9.22. cyto.normal citog mol.biol

Mode :logical Mode :logical normal :24 ALL1/AF4:10

FALSE:67 FALSE:69 simple alt. :15 BCR/ABL :37

TRUE :26 TRUE :24 t(9;22) :12 E2A/PBX1: 5

NA's :35 NA's :35 t(9;22)+other:11 NEG :74

complex alt. :10 NUP-98 : 1

(Other) :21 p15/p16 : 1

NA's :35

fusion.protein mdr kinet ccr relapse

p190 :17 NEG :101 dyploid:94 Mode :logical Mode :logical

p190/p210: 8 POS : 24 hyperd.:27 FALSE:74 FALSE:35

p210 : 8 NA's: 3 NA's : 7 TRUE :26 TRUE :65

NA's :95 NA's :28 NA's :28

transplant f.u date.last.seen

Mode :logical REL :61 1/7/1998 : 2

FALSE:91 CCR :23 12/15/1997: 2

TRUE :9 BMT / DEATH IN CR: 4 12/31/2002: 2

NA's :28 BMT / CCR : 3 3/29/2001 : 2

DEATH IN CR : 2 7/11/1997 : 2

(Other) : 7 (Other) :83

NA's :28 NA's :35

A data frame can be subset as if it were a matrix, or a list of column vectors.

> head(pdata[,"sex"], 3)

[1] M M F

Levels: F M

> head(pdata$sex, 3)

[1] M M F

Levels: F M
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> head(pdata[["sex"]], 3)

[1] M M F

Levels: F M

> sapply(pdata, class)

cod diagnosis sex age BT

"factor" "factor" "factor" "integer" "factor"

remission CR date.cr t.4.11. t.9.22.

"factor" "factor" "factor" "logical" "logical"

cyto.normal citog mol.biol fusion.protein mdr

"logical" "factor" "factor" "factor" "factor"

kinet ccr relapse transplant f.u

"factor" "logical" "logical" "logical" "factor"

date.last.seen

"factor"

The number of males and females, including NA, is

> table(pdata$sex, useNA="ifany")

F M <NA>

42 83 3

An alternative version of this uses the with function: with(pdata, table(sex, useNA="ifany")).
The mol.biol column contains the following samples:

> with(pdata, table(mol.biol, useNA="ifany"))

mol.biol

ALL1/AF4 BCR/ABL E2A/PBX1 NEG NUP-98 p15/p16

10 37 5 74 1 1

A logical vector indicating that the corresponding row is either BCR/ABL or NEG is constructed as

> ridx <- pdata$mol.biol %in% c("BCR/ABL", "NEG")

We can get a sense of the number of rows selected via table or sum (discuss with your neighbor what sum

does, and why the answer is the same as the number of TRUE values in the result of the table function).

> table(ridx)

ridx

FALSE TRUE

17 111

> sum(ridx)

[1] 111

The original data frame can be subset to contain only BCR/ABL or NEG samples using the logical vector
ridx that we created.

> pdata1 <- pdata[ridx,]
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The levels of each factor reflect the levels in the original object, rather than the levels in the subset object,
e.g.,

> levels(pdata1$mol.biol)

[1] "ALL1/AF4" "BCR/ABL" "E2A/PBX1" "NEG" "NUP-98" "p15/p16"

These can be re-coded by updating the new data frame to contain a factor with the desired levels.

> pdata1$mol.biol <- factor(pdata1$mol.biol)

> table(pdata1$mol.biol)

BCR/ABL NEG

37 74

To ask whether age differs between molecular biology types, we use a formula age ~ mol.biol to describe
the relationship (‘age as a function of molecular biology’) that we wish to test

> with(pdata1, t.test(age ~ mol.biol))

Welch Two Sample t-test

data: age by mol.biol

t = 4.8172, df = 68.529, p-value = 8.401e-06

alternative hypothesis: true difference in means is not equal to 0

95 percent confidence interval:

7.13507 17.22408

sample estimates:

mean in group BCR/ABL mean in group NEG

40.25000 28.07042

This summary can be visualize with, e.g., the boxplot function

> ## not evaluated

> boxplot(age ~ mol.biol, pdata1)

Molecular biology seem to be strongly associated with age; individuals in the NEG group are considerably
younger than those in the BCR/ABL group. We might wish to include age as a covariate in any subsequent
analysis seeking to relate molecular biology to gene expression.

1.2 Bioconductor

Bioconductor is a collection of R packages for the analysis and comprehension of high-throughput genomic
data. Bioconductor started more than 10 years ago, and is widely used. It gained credibility for its statisti-
cally rigorous approach to microarray pre-processing and analysis of designed experiments, and integrative
and reproducible approaches to bioinformatic tasks. There are now more than 670 Bioconductor packages
for expression and other microarrays, sequence analysis, flow cytometry, imaging, and other domains. The
Bioconductor web site provides installation, package repository, help, and other documentation.

The Bioconductor web site is at bioconductor.org. Features include:

• Introductory work flows.

• A manifest of Bioconductor packages arranged in BiocViews.
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Table 1.4: Selected Bioconductor packages for high-throughput sequence analysis.

Concept Packages
Data representation IRanges, GenomicRanges, GenomicFeatures, Biostrings, BSgenome,

girafe.
Input / output ShortRead (fastq), Rsamtools (bam), rtracklayer (gff, wig, bed), Vari-

antAnnotation (vcf), R453Plus1Toolbox (454).
Annotation GenomicFeatures, ChIPpeakAnno, VariantAnnotation.
Alignment gmapR, Rsubread, Biostrings.
Visualization ggbio, Gviz.
Quality assessment qrqc, seqbias, ReQON , htSeqTools, TEQC , Rolexa, ShortRead.
RNA-seq BitSeq, cqn, cummeRbund, DESeq, DEXSeq, EDASeq, edgeR, gage,

goseq, iASeq, tweeDEseq.
ChIP-seq, etc. BayesPeak, baySeq, ChIPpeakAnno, chipseq, ChIPseqR, ChIPsim,

CSAR, DiffBind, MEDIPS, mosaics, NarrowPeaks, nucleR, PICS,
PING, REDseq, Repitools, TSSi.

Variants VariantAnnotation, VariantTools, gmapR
SNPs snpStats, GWASTools, hapFabia, GGtools
Copy number cn.mops, genoset, CNAnorm, exomeCopy , seqmentSeq.
Motifs MotifDb, BCRANK , cosmo, cosmoGUI , MotIV , seqLogo, rGADEM .
3C, etc. HiTC , r3Cseq.
Microbiome phyloseq, DirichletMultinomial, clstutils, manta, mcaGUI .
Work flows QuasR, easyRNASeq, ArrayExpressHTS, Genominator, oneChannel-

GUI , rnaSeqMap.
Database SRAdb.

• Annotation (data bases of relevant genomic information, e.g., Entrez gene ids in model organisms,
KEGG pathways) and experiment data (containing relatively comprehensive data sets and their anal-
ysis) packages.

• Mailing lists, including searchable archives, as the primary source of help.

• Course and conference information, including extensive reference material.

• General information about the project.

• Package developer resources, including guidelines for creating and submitting new packages.

1.2.1 Packages for high-throughput sequence analysis

Table 1.4 enumerates many of the packages available for sequence analysis. The table includes packages
for representing sequence-related data (e.g., GenomicRanges, Biostrings), as well as domain-specific anal-
ysis such as RNA-seq (e.g., edgeR, DEXSeq), ChIP-seq (e.g,. ChIPpeakAnno, DiffBind), variants (e.g.,
VariantAnnotation, VariantTools, and SNPs and copy number variation (e.g., genoset, ggtools).

1.2.2 S4 Classes and methods

Bioconductor makes extensive use of ‘S4’ classes. Essential operations are sketched in Table 1.5. Bioconduc-
tor has tried to develop and use ‘best practices’ for use of S4 classes. Usually instances are created by a call to
a constructor, such as GRanges (an object representing genomic ranges, with information on sequence, strand,
start, and end coordinate of each range), or are returned by a function call that makes the object ‘behind
the scenes’ (e.g., readFastq). Objects can have complicated structure, but users are not expected to have to
concern themselves with the internal representation, just as the details of the S3 object returned by the lm

function are not of direct concern. Instead, one might query the object to retrieve information; functions
providing this functionality are sometimes called accessors, e.g., seqnames; the data that is returned by the
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Table 1.5: Using S4 classes and methods.

Best practices
gr <- GRanges() ‘Constructor’; create an instance of the GRanges class
seqnames(gr) ‘Accessor’, extract information from an instance
countOverlaps(gr1, gr2) A method implementing a generic with useful functionality

Older packages
s <- new("MutliSet) A constructor
s@annotation A ‘slot’ accessor

accessor may involve some calculation, e.g., querying a data base, that the user can remain blissfully unaware
of. It can be important to appreciate that objects can be related to one another, in particular inheriting
parts of its internal structure and external behavior from other classes. For instance, the GRanges class
inherits structure and behavior from the GenomicRanges class. The details of structural inheritance should
not be important to the user, but the fact that once class inherits from another can be useful information to
know.

One often calls a function in which one or more objects are arguments, e.g., countOverlaps can take two
GRanges instances. The role of the function is to transform inputs into outputs. In the case of countOverlaps
the transformation is to summarize the number of ranges in the second argument (the subject function
argument) overlap with ranges in the first argument (the query) argument. This establishes a kind of
contract, e.g., the return value of countOverlaps should be a non-negative integer vector, with as many
elements as there are ranges in the query argument, and with a one-to-one correspondence between elements
in the query input argument and the output. Having established such a contract, it can be convenient to
write variations of countOverlaps that fulfill the contract but for different objects, e.g., when the arguments
are instances of class IRanges, which do not have information about chromosomal sequence or strand. To
indicate that the same contract is being fulfilled, and perhaps to simplify software development, one typically
makes countOverlaps a generic function, and implements methods for different types of arguments.

Attending course and reading vignettes pages are obviously an excellent way to get an initial orientation
about classes and methods that are available. It can be very helpful, as one becomes more proficient, to
use the interactive help system to discover what can be done with the objects one has or the functions one
knows about.

The showMethods function is a key entry point into discovery of available methods, e.g., showMeth-

ods("countOverlaps") to show methods defined on the countOverlaps generic, or showMethods(class="GRanges",
where=search()) to discover methods available to transform GRanges instances. The definition of a method
can be retrieved as

> selectMethod(countOverlaps, c("GRanges", "GRanges"))

1.2.3 Help!

S4 classes, generics, and methods To illustrate how help work with S4 classes and generics, consider
the DNAStringSet class complement generic in the Biostrings package:

> library(Biostrings)

> showMethods(complement)

Function: complement (package Biostrings)

x="DNAString"

x="DNAStringSet"

x="MaskedDNAString"

x="MaskedRNAString"

x="RNAString"
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Table 1.6: Using S4 classes and methods.

Help
S4 Help

class(gr) Discover class of instance
getClass(gr) Display class structure, e.g., inheritance
showMethods(findOverlaps) Classes for which methods of findOverlaps are imple-

mented
showMethods(class="GRanges", where=search())

Generics with methods implemented for the GRanges
class, limited to currently loaded packages.

class?GRanges Documentation for the GRanges class.
method?"findOverlaps,GRanges,GRanges"

Documentation for the findOverlaps method when the
two arguments are both GRanges instances.

selectMethod(findOverlaps, c("GRanges", "GRanges"))

View source code for the method, including method
‘dispatch’

Table 1.7: Common ways to improve efficiency of R code.

Easy

1. Selective input

2. Vectorize

3. Pre-allocate and fill

4. Avoid expensive conveniences

Moderate

1. Know relevant packages

2. Understand algorithm complexity

3. Use parallel evaluation

4. Exploit libraries and C++ code

x="RNAStringSet"

x="XStringViews"

(Most) methods defined on the DNAStringSet class of Biostrings and available on the current search path can
be found with

> showMethods(class="DNAStringSet", where=search())

Obtaining help on S4 classes and methods requires syntax such as

> class ? DNAStringSet

> method ? "complement,DNAStringSet"

The specification of method and class in the latter must not contain a space after the comma.

1.3 Efficient R

There are often many ways to accomplish a result in R, but these different ways often have very different speed
or memory requirements. For small data sets these performance differences are not that important, but for
large data sets (e.g., high-throughput sequencing; genome-wide association studies, GWAS) or complicated
calculations (e.g., bootstrapping) performance can be important. Several approaches to achieving efficient
R programming are summarized in Table 1.7.
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1.3.1 Easy solutions

Several common performance bottlenecks often have easy solutions; these are outlined here.
Text files often contain more information, for example 1000’s of individuals at millions of SNPs, when

only a subset of the data is required, e.g., during algorithm development. Reading in all the data can be
demanding in terms of both memory and time. A solution is to use arguments such as colClasses to specify
the columns and their data types that are required, and to use nrow to limit the number of rows input. For
example, the following ignores the first and fourth column, reading in only the second and third (as type
integer and numeric).

> ## not evaluated

> colClasses <-

+ c("NULL", "integer", "numeric", "NULL")

> df <- read.table("myfile", colClasses=colClasses)

R is vectorized, so traditional programming for loops are often not necessary. Rather than calculating
100000 random numbers one at a time, or squaring each element of a vector, or iterating over rows and
columns in a matrix to calculate row sums, invoke the single function that performs each of these operations.

> x <- runif(100000); x2 <- x^2

> m <- matrix(x2, nrow=1000); y <- rowSums(m)

This often requires a change of thinking, turning the sequence of operations ‘inside-out’. For instance,
calculate the log of the square of each element of a vector by calculating the square of all elements, followed
by the log of all elements x2 <- x^2; x3 <- log(x2), or simply logx2 <- log(x^2).

It may sometimes be natural to formulate a problem as a for loop, or the formulation of the problem
may require that a for loop be used. In these circumstances the appropriate strategy is to pre-allocate the
result object, and to fill the result in during loop iteration.

> ## not evaluated

> result <- numeric(nrow(df))

> for (i in seq_len(nrow(df)))

+ result[[i]] <- some_calc(df[i,])

Failure to pre-allocate and fill is the second cirle of R hell [2].
Some R operations are helpful in general, but misleading or inefficient in particular circumstances. An

example is the behavior of unlist when the list is named – R creates new names that have been made
unique. This can be confusing (e.g., when Entrez gene identifiers are ‘mangled’ to unintentionally look like
other identifiers) and expensive (when a large number of new names need to be created). Avoid creating
unnecessary names, e.g.,

> unlist(list(a=1:2)) # name 'a' becomes 'a1', 'a2'

a1 a2

1 2

> unlist(list(a=1:2), use.names=FALSE) # no names

[1] 1 2

Names can be very useful for avoiding book-keeping errors, but are inefficient for repeated look-ups; use
vectorized access or numeric indexing.
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Table 1.8: Tools for measuring performance.

Function Description
identical Compare content of objects.
all.equal

system.time Time required to evaluate an expression
Rprof Time spent in each function; also summaryRprof.
tracemem Indicate when memory copies occur (R must be configured to support this).
rbenchmark Packages for standardizing speed measurment
microbenchmark

1.3.2 Moderate solutions

Several solutions to inefficient code require greater knowledge to implement.
Using appropriate functions can greatly influence performance; it takes experience to know when an

appropriate function exists. For instance, the lm function could be used to assess differential expression of
each gene on a microarray, but the limma package implements this operation in a way that takes advantage
of the experimental design that is common to each probe on the microarray, and does so in a very efficient
manner.

Using appropriate algorithms can have significant performance benefits, especially as data becomes larger.
This solution requires moderate skills, because one has to be able to think about the complexity (e.g.,
expected number of operations) of an algorithm, and to identify algorithms that accomplish the same goal
in fewer steps. For example, a naive way of identifying which of 100 numbers are in a set of size 10 might
look at all 100 × 10 combinations of numbers (i.e., polynomial time), but a faster way is to create a ‘hash’
table of one of the set of elements and probe that for each of the other elements (i.e., linear time). The latter
strategy is illustrated with

> x <- 1:100; s <- sample(x, 10)

> inS <- x %in% s

R supports parallel evaluation, most easily through the mclapply function of the parallel package dis-
tributed with base R (mclapply is unfortunately not available on Windows). Parallel evaluation is discussed
further in Chapter 5.

R is an interpreted language, and for very challenging computational problems it may be appropriate to
write critical stages of an analysis in a compiled language like C or Fortran, or to use an existing programming
library (e.g., the BOOST library) that efficiently implements advanced algorithms. R has a well-developed
interface to C or Fortran, so it is ‘easy’ to do this; the Rcpp package provides a very nice approach for those
familiar with C++ concepts. This places a significant burden on the person implementing the solution,
requiring knowledge of two or more computer languages and of the interface between them.

1.3.3 Measuring performance

When trying to improve performance, one wants to ensure (a) that the new code is actually faster than the
previous code, and (b) both solutions arrive at the same, correct, answer. common tools used to help with
assessing performance (including comparison of results from different implementations!) are in Table 1.8.

The system.time function is a straight-forward way to measure the length of time a portion of code takes
to evaluate.

> m <- matrix(runif(200000), 20000)

> system.time(apply(m, 1, sum))

user system elapsed

0.092 0.000 0.090
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When comparing performance of different functions, it is appropriate to replicate timings to average over
vagaries of system use, and to shuffle the order in which timings of alternative algorithms are calculated to
avoid artifacts such as initial memory allocation. Rather than creating ad hoc approaches to timing, it is
convenient to use packages such as rbenchmark:

> library(rbenchmark)

> f0 <- function(x) apply(x, 1, sum)

> f1 <- function(x) rowSums(x)

> benchmark(f0(m), f1(m),

+ columns=c("test", "elapsed", "relative"),

+ replications=5)

test elapsed relative

1 f0(m) 0.451 112.75

2 f1(m) 0.004 1.00

Speed is an important metric, but equivalent results are also needed. The functions identical and
all.equal provide different levels of assessing equivalence, with all.equal providing ability to ignore some
differences, e.g., in the names of vector elements.

> res1 <- apply(m, 1, sum)

> res2 <- rowSums(m)

> identical(res1, res2)

[1] TRUE

> identical(c(1, -1), c(x=1, y=-1))

[1] FALSE

> all.equal(c(1, -1), c(x=1, y=-1),

+ check.attributes=FALSE)

[1] TRUE

Two additional functions for assessing performance are Rprof and tracemem; these are mentioned only
briefly here. The Rprof function profiles R code, presenting a summary of the time spent in each part of
several lines of R code. It is useful for gaining insight into the location of performance bottlenecks when these
are not readily apparent from direct inspection. Memory management, especially copying large objects, can
frequently contribute to poor performance. The tracemem function allows one to gain insight into how R
manages memory; insights from this kind of analysis can sometimes be useful in restructuring code into a
more efficient sequence.
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Chapter 2

Sequences, Reads, and Alignments

2.1 DNA (and other) strings with the Biostrings package

The Biostrings package provides tools for working with sequences. The essential data structures are DNAS-
tring and DNAStringSet , for working with one or multiple DNA sequences. The Biostrings package contains
additional classes for representing amino acid and general biological strings.

2.1.1 Whole-genome sequences

There are a diversity of packages and classes available for representing large genomes. Several include:

TxDb.* For transcript and other genome / coordinate annotation.

BSgenome For whole-genome representation. See available.packages for pre-packaged genomes, and the
vignette ‘How to forge a BSgenome data package’ in the

SNPlocs.* For model organism SNP locations derived from dbSNP.

FaFile (Rsamtools) for accessing indexed FASTA files.

Homo.sapiens For integrating TxDb* and org.* packages.

The BSgenome and related packages (e.g., BSgenome.Dmelanogaster.UCSC.dm3) are used to represent
whole-genome sequences. Table 2.1 summarizes common operations.

Exercise 2
The objective of this exercise is to calculate the GC content of chromosomes 1-22, X, and Y.

Load the BSgenome.Hsapiens.UCSC.hg19 data package, containing the UCSC representation of H. sapi-
ens genome assembly hg19. Discover the content of the package by evaluating Hsapiens.

Use alphabetFrequency to develop a function gcContent that calculates GC content of a single chromo-
some.

Use the gcContent function to calculate the GC content on chromosome 1. Use the function to calculation
GC content on chromosomes 1-22, X, and Y.

Solution: Here we load the H. sapiens genome select a single chromosome, and create a light-weight ‘view’
onto the sequence at a particular (arbitrary) location.

> library(BSgenome.Hsapiens.UCSC.hg19)

> Hsapiens

> Hsapiens[[1]]

> Views(Hsapiens[[1]], 1000000, 1001000)

Here is the gcContent helper function to calculate GC content:
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Table 2.1: Operations on strings in the Biostrings package.

Function Description
Access length, names Number and names of sequences

[, head, tail, rev Subset, first, last, or reverse sequences
c Concatenate two or more objects
width, nchar Number of letters of each sequence
Views Light-weight sub-sequences of a sequence

Compare ==, !=, match, %in% Element-wise comparison
duplicated, unique Analog to duplicated and unique on character vectors
sort, order Locale-independent sort, order
split, relist Split or relist objects to, e.g., DNAStringSetList

Edit subseq, subseq<- Extract or replace sub-sequences in a set of sequences
reverse, complement Reverse, complement, or reverse-complement DNA
reverseComplement

translate Translate DNA to Amino Acid sequences
chartr Translate between letters
replaceLetterAt Replace letters at a set of positions by new letters
trimLRPatterns Trim or find flanking patterns

Count alphabetFrequency Tabulate letter occurrence
letterFrequency

letterFrequencyInSlidingView

consensusMatrix Nucleotide × position summary of letter counts
dinucleotideFrequency 2-mer, 3-mer, and k-mer counting
trinucleotideFrequency

oligonucleotideFrequency

nucleotideFrequencyAt Nucleotide counts at fixed sequence positions
Match matchPattern, countPattern Short patterns in one or many (v*) sequences

vmatchPattern, vcountPattern
matchPDict, countPDict Short patterns in one or many (v*) sequences (mismatch only)
whichPDict, vcountPDict
vwhichPDict

pairwiseAlignment Needleman-Wunsch, Smith-Waterman, etc. pairwise alignment
matchPWM, countPWM Occurrences of a position weight matrix
matchProbePair Find left or right flanking patterns
findPalindromes Palindromic regions in a sequence. Also

findComplementedPalindromes

stringDist Levenshtein, Hamming, or pairwise alignment scores
I/0 readDNAStringSet FASTA (or sequence only from FASTQ). Also

readBStringSet, readRNAStringSet, readAAStringSet
writeXStringSet

writePairwiseAlignments Write pairwiseAlignment as “pair” format
readDNAMultipleAlignment Multiple alignments (FASTA, “stockholm”, or “clustal”). Also

readRNAMultipleAlignment, readAAMultipleAlignment
write.phylip
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> gcContent <-

+ function(x)

+ {

+ alf <- alphabetFrequency(x, as.prob=TRUE)

+ sum(alf[c("G", "C")])

+ }

The gcContent function is really straight-forward: it invokes the function alphabetFrequency from the
Biostrings package. This returns a simple vector of nucleotide probabilities. The sum of the G and C

elements of this vector is the GC content of the arugment.
Here is the GC content of chromosome 1

> gcContent(Hsapiens[["chr1"]])

[1] 0.4174393

and of all chromosomes

> chrs <- paste0("chr", c(1:22, "X", "Y"))

> gc <- numeric(length(chrs)) # pre-allocate...

> for (chr in seq_along(chrs)) # ...and fill

+ gc[[chr]] <- gcContent(Hsapiens[[chr]])

> names(gc) <- chrs

> gc

chr1 chr2 chr3 chr4 chr5 chr6 chr7 chr8

0.4174393 0.4024378 0.3969427 0.3824789 0.3951629 0.3961091 0.4075131 0.4017569

chr9 chr10 chr11 chr12 chr13 chr14 chr15 chr16

0.4131684 0.4158488 0.4156565 0.4081198 0.3852654 0.4088715 0.4220095 0.4478943

chr17 chr18 chr19 chr20 chr21 chr22 chrX chrY

0.4554046 0.3978497 0.4836032 0.4412572 0.4083254 0.4798807 0.3949634 0.3996504

2.2 Reads

2.2.1 Short read formats

The Illumina GAII and HiSeq technologies generate sequences by measuring incorporation of florescent
nucleotides over successive PCR cycles. These sequencers produce output in a variety of formats, but
FASTQ is ubiquitous. Each read is represented by a record of four components:

@SRR031724.1 HWI-EAS299_4_30M2BAAXX:5:1:1513:1024 length=37

GTTTTGTCCAAGTTCTGGTAGCTGAATCCTGGGGCGC

+SRR031724.1 HWI-EAS299_4_30M2BAAXX:5:1:1513:1024 length=37

IIIIIIIIIIIIIIIIIIIIIIIIIIII+HIIII<IE

The first and third lines (beginning with @ and + respectively) are unique identifiers. The identifier produced
by the sequencer typically includes a machine id followed by colon-separated information on the lane, tile, x,
and y coordinate of the read. The example illustrated here also includes the SRA accession number, added
when the data was submitted to the archive. The machine identifier could potentially be used to extract
information about batch effects. The spatial coordinates (lane, tile, x, y) are often used to identify optical
duplicates; spatial coordinates can also be used during quality assessment to identify artifacts of sequencing,
e.g., uneven amplification across the flow cell, though these spatial effects are rarely pursued.
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The second and fourth lines of the FASTQ record are the nucleotides and qualities of each cycle in the
read. This information is given in 5’ to 3’ orientation as seen by the sequencer. A letter N in the sequence is
used to signify bases that the sequencer was not able to call. The fourth line of the FASTQ record encodes
the quality (confidence) of the corresponding base call. The quality score is encoded following one of several
conventions, with the general notion being that letters later in the visible ASCII alphabet

!"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNO
PQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~

are of higher quality; this is developed further below. Both the sequence and quality scores may span multiple
lines.

Technologies other than Illumina use different formats to represent sequences. Roche 454 sequence data
is generated by ‘flowing’ labeled nucleotides over samples, with greater intensity corresponding to longer
runs of A, C, G, or T. This data is represented as a series of ‘flow grams’ (a kind of run-length encoding of
the read) in Standard Flowgram Format (SFF). The Bioconductor package R453Plus1Toolbox has facilities
for parsing SFF files, but after quality control steps the data are frequently represented (with some loss of
information) as FASTQ. SOLiD technologies produce sequence data using a ‘color space’ model. This data
is not easily read in to R, and much of the error-correcting benefit of the color space model is lost when
converted to FASTQ; SOLiD sequences are not well-handled by Bioconductor packages.

2.2.2 Short reads in R

FASTQ files can be read in to R using the readFastq function from the ShortRead package. Use this function
by providing the path to a FASTQ file. There are sample data files available in the SequenceAnalysisData
package, each consisting of 1 million reads from a lane of the Pasilla data set.

> library(ShortRead)

> bigdata <- system.file("bigdata", package="SequenceAnalysisData")

> fastqDir <- file.path(bigdata, "fastq")

> fastqFiles <- dir(fastqDir, full=TRUE)

> fq <- readFastq(fastqFiles[1])

> fq

class: ShortReadQ

length: 1000000 reads; width: 37 cycles

The data are represented as an object of class ShortReadQ .

> head(sread(fq), 3)

A DNAStringSet instance of length 3

width seq

[1] 37 GTTTTGTCCAAGTTCTGGTAGCTGAATCCTGGGGCGC

[2] 37 GTTGTCGCATTCCTTACTCTCATTCGGGAATTCTGTT

[3] 37 GAATTTTTTGAGAGCGAAATGATAGCCGATGCCCTGA

> head(quality(fq), 3)

class: FastqQuality

quality:

A BStringSet instance of length 3

width seq

[1] 37 IIIIIIIIIIIIIIIIIIIIIIIIIIII+HIIII<IE

[2] 37 IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

[3] 37 IIIIIIIIIIIIIIIIIIIIII'IIIIIGBIIII2I+
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> head(id(fq), 3)

A BStringSet instance of length 3

width seq

[1] 58 SRR031724.1 HWI-EAS299_4_30M2BAAXX:5:1:1513:1024 length=37

[2] 57 SRR031724.2 HWI-EAS299_4_30M2BAAXX:5:1:937:1157 length=37

[3] 58 SRR031724.4 HWI-EAS299_4_30M2BAAXX:5:1:1443:1122 length=37

The ShortReadQ class illustrates class inheritance. It extends the ShortRead class

> getClass("ShortReadQ")

Class "ShortReadQ" [package "ShortRead"]

Slots:

Name: quality sread id

Class: QualityScore DNAStringSet BStringSet

Extends:

Class "ShortRead", directly

Class ".ShortReadBase", by class "ShortRead", distance 2

Known Subclasses: "AlignedRead"

Methods defined on ShortRead are available for ShortReadQ .

> showMethods(class="ShortRead", where="package:ShortRead")

For instance, the width can be used to demonstrate that all reads consist of 37 nucleotides.

> table(width(fq))

37

1000000

The alphabetByCycle function summarizes use of nucleotides at each cycle in a (equal width) ShortReadQ or
DNAStringSet instance.

> abc <- alphabetByCycle(sread(fq))

> abc[1:4, 1:8]

cycle

alphabet [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8]

A 78194 153156 200468 230120 283083 322913 162766 220205

C 439302 265338 362839 251434 203787 220855 253245 287010

G 397671 270342 258739 356003 301640 247090 227811 246684

T 84833 311164 177954 162443 211490 209142 356178 246101

FASTQ files are getting larger. A very common reason for looking at data at this early stage in the
processing pipeline is to explore sequence quality. In these circumstances it is often not necessary to parse
the entire FASTQ file. Instead create a representative sample

> sampler <- FastqSampler(fastqFiles[1], 1000000)

> yield(sampler) # sample of 1000000 reads
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class: ShortReadQ

length: 1000000 reads; width: 37 cycles

A second common scenario is to pre-process reads, e.g., trimming low-quality tails, adapter sequences, or
artifacts of sample preparation. The FastqStreamer class can be used to ‘stream’ over the fastq files in
chunks, processing each chunk independently.

2.2.3 Exercise
Exercise 3
Use the file path bigdata and the file.path and dir functions to locate the fastq file from [1] (the file was
obtained as described in the pasilla experiment data package).

Input the fastq files using readFastq from the ShortRead package.
Use alphabetFrequency to summarize the GC content of all reads (hint: use the sread accessor to extract

the reads, and the collapse=TRUE argument to the alphabetFrequency function). Draw a histogram of the
distribution of GC frequencies across reads.

Solution: Discovery:

> bigdata <- system.file("bigdata", package="SequenceAnalysisData")

> fl <- file.path(bigdata, "fastq", "SRR031724_1_subset.fastq")

Input:

> fq <- readFastq(fls[1])

GC content:

> alf0 <- alphabetFrequency(sread(fq), as.prob=TRUE, collapse=TRUE)

> sum(alf0[c("G", "C")])

[1] 0.5457237

A histogram of the GC content of individual reads is obtained with

> alf0 <- alphabetFrequency(sread(fq), as.prob=TRUE)

> hist(alf0[,c("G", "C")])

2.3 Alignments

Most down-stream analysis of short read sequences is based on reads aligned to reference genomes.

2.3.1 Alignment formats

Most main-stream aligners produce output in SAM (text-based) or BAM format. A SAM file is a text file,
with one line per aligned read, and fields separated by tabs. Here is an example of a single SAM line, split
into fields.

[1] EAS51_66:7:68:402:50 137

[3] seq1 22

[5] 99 35M

[7] * 0

[9] 0 GTGTGGTTTAACTCGTCCATGGCCCAGCATTTGGG

[11] <<<<<<<<<<<<<<:<<<9<6;9;;&697;7&<55 MF:i:18

[13] Aq:i:66 NM:i:1

[15] UQ:i:5 H0:i:1

[17] H1:i:0
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Table 2.2: Fields in a SAM record. From http://samtools.sourceforge.net/samtools.shtml

Field Name Value
1 QNAME Query (read) NAME
2 FLAG Bitwise FLAG, e.g., strand of alignment
3 RNAME Reference sequence NAME
4 POS 1-based leftmost POSition of sequence
5 MAPQ MAPping Quality (Phred-scaled)
6 CIGAR Extended CIGAR string
7 MRNM Mate Reference sequence NaMe
8 MPOS 1-based Mate POSition
9 ISIZE Inferred insert SIZE
10 SEQ Query SEQuence on the reference strand
11 QUAL Query QUALity
12+ OPT OPTional fields, format TAG:VTYPE:VALUE

Fields in a SAM file are summarized in Table 2.2. We recognize from the FASTQ file the identifier string,
read sequence and quality. The alignment is to a chromosome ‘seq1’ starting at position 1. The strand of
alignment is encoded in the ‘flag’ field. The alignment record also includes a measure of mapping quality,
and a CIGAR string describing the nature of the alignment. In this case, the CIGAR is 36M, indicating
that the alignment consisted of 36 Matches or mismatches, with no indels or gaps; indels are represented by
I and D; gaps (e.g., from alignments spanning introns) by N.

BAM files encode the same information as SAM files, but in a format that is more efficiently parsed by
software; BAM files are the primary way in which aligned reads are imported in to R.

2.3.2 Aligned reads in R

The readGappedAlignments function from the GenomicRanges package reads essential information from a
BAM file in to R. The result is an instance of the GappedAlignments class. The GappedAlignments class
has been designed to allow useful manipulation of many reads (e.g., 20 million) under moderate memory
requirements (e.g., 4 GB).

> library(RNAseqData.HeLa.bam.chr14)

> bamfls <- RNAseqData.HeLa.bam.chr14_BAMFILES

> aln <- readGappedAlignments(bamfls[1])

> head(aln, 3)

GappedAlignments with 3 alignments and 0 metadata columns:

seqnames strand cigar qwidth start end width

<Rle> <Rle> <character> <integer> <integer> <integer> <integer>

[1] chr14 + 72M 72 19069583 19069654 72

[2] chr14 + 72M 72 19363738 19363809 72

[3] chr14 - 72M 72 19363755 19363826 72

ngap

<integer>

[1] 0

[2] 0

[3] 0

---

seqlengths:

chr1 chr10 ... chrY

249250621 135534747 ... 59373566
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A GappedAlignments instance is like a data frame, but with accessors as suggested by the column names.
It is easy to query, e.g., the distribution of reads aligning to each strand, the width of reads, or the cigar
strings

> table(strand(aln))

+ - *

400242 400242 0

> table(qwidth(aln))

72

800484

> range(width(aln))

[1] 70 404751

> head(sort(table(cigar(aln)), decreasing=TRUE))

72M 35M123N37M 38M670N34M 64M316N8M 36M123N36M 18M123N54M

603939 272 264 261 228 225

The readGappedAlignments function takes an additional argument, param, allowing the user to specify
regions of the BAM file (e.g., known gene coordinates) from which to extract alignments, or other elements
(such as the read sequence) to be extracted from the BAM file. The data input with these extra arguments
is accessed with the mcols function.

> param <- ScanBamParam(what="seq")

> aln <- readGappedAlignments(bamfls[1], param=param)

> head(mcols(aln)$seq)

A DNAStringSet instance of length 6

width seq

[1] 72 TGAGAATGATGATTTCCAATTTCATCCATGTCCC...AGGACATGAACTCATCATTTTTTATGGCTGCAT

[2] 72 CCCATATGTACATCAGGCCCCAGGTATACACTGG...AGGTGGACACCAGCACTCAGTTGGATACACACA

[3] 72 CCCCAGGTATACACTGGACTCCAGGTGGACACCA...CAGTTGGATACACACACTCAAGGTGGACACCAG

[4] 72 CATAGATGCAAGAATCCTCAATCAAATACTAGCA...AATTCAACAGCACATTAAAAAGATAACTTACCA

[5] 72 TAGCACACTGAATTCAACAGCACATTAAAAAGAT...ACCATGCTCAAGTGGATTTACCCCAAGGATACA

[6] 72 TGCTGGTGCAGGATTTATTCTACTAAGCAATGAG...GGATCAAATCCACTTTCTTATCTCAGGAATCAG

2.3.3 Exercise
Exercise 4
What is the GC content of aligned reads in each of the BAM files in bamfls?

Solution: Here is a variation of our now familiar helper function. . .

> bamGCContent <-

+ function(bamfl)

+ {

+ param <- ScanBamParam(what="seq")

+ aln <- readGappedAlignments(bamfl, param=param)

+ seq <- mcols(aln)$seq

+ alf0 <- alphabetFrequency(seq, as.prob=TRUE, collapse=TRUE)

+ sum(alf0[c("G", "C")])

+ }
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applied to one file

> bamGCContent(bamfls[1])

[1] 0.5462378

and to all BAM files

> sapply(bamfls, bamGCContent)

ERR127306 ERR127307 ERR127308 ERR127309 ERR127302 ERR127303 ERR127304 ERR127305

0.5462378 0.5356166 0.5440062 0.5372698 0.5204686 0.5025465 0.5197887 0.5347569
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Chapter 3

Ranges

Ranges describe both features of interest (e.g., genes, exons, promoters) and reads aligned to the genome.
Bioconductor has very powerful facilities for working with ranges, some of which are summarized in Table 3.1.

3.1 The GenomicRanges package

Next-generation sequencing data consists of a large number of short reads. These are, typically, aligned to a
reference genome. Basic operations are performed on the alignment, asking e.g., how many reads are aligned
in a genomic range defined by nucleotide coordinates (e.g., in the exons of a gene), or how many nucleotides
from all the aligned reads cover a set of genomic coordinates. How is this type of data, the aligned reads
and the reference genome, to be represented in R in a way that allows for effective computation?

The IRanges, GenomicRanges, and GenomicFeatures Bioconductor packages provide the essential infras-
tructure for these operations; we start with the GRanges class, defined in GenomicRanges.

3.1.1 The GRanges class

Instances of GRanges are used to specify genomic coordinates. Suppose we wish to represent two D.
melanogaster genes. The first is located on the positive strand of chromosome 3R, from position 19967117
to 19973212. The second is on the minus strand of the X chromosome, with ‘left-most’ base at 18962306,
and right-most base at 18962925. The coordinates are 1-based (i.e., the first nucleotide on a chromosome is
numbered 1, rather than 0), left-most (i.e., reads on the minus strand are defined to ‘start’ at the left-most
coordinate, rather than the 5’ coordinate), and closed (the start and end coordinates are included in the
range; a range with identical start and end coordinates has width 1, a 0-width range is represented by the
special construct where the end coordinate is one less than the start coordinate).

Table 3.1: Selected Bioconductor packages for representing and manipulating ranges, strings, and other data
structures.

Package Description
IRanges Defines important classes (e.g., IRanges, Rle) and methods (e.g., findOver-

laps, countOverlaps) for representing and manipulating ranges of consecu-
tive values. Also introduces DataFrame, SimpleList and other classes tai-
lored to representing very large data.

GenomicRanges Range-based classes tailored to sequence representation (e.g., GRanges,
GRangesList), with information about strand and sequence name.

GenomicFeatures Foundation for manipulating data bases of genomic ranges, e.g., representing
coordinates and organization of exons and transcripts of known genes.
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A complete definition of these genes as GRanges is:

> genes <- GRanges(seqnames=c("3R", "X"),

+ ranges=IRanges(

+ start=c(19967117, 18962306),

+ end=c(19973212, 18962925)),

+ strand=c("+", "-"),

+ seqlengths=c(`3R`=27905053L, `X`=22422827L))

The components of a GRanges object are defined as vectors, e.g., of seqnames, much as one would define a
data.frame. The start and end coordinates are grouped into an IRanges instance. The optional seqlengths
argument specifies the maximum size of each sequence, in this case the lengths of chromosomes 3R and X
in the ‘dm2’ build of the D. melanogaster genome. This data is displayed as

> genes

GRanges with 2 ranges and 0 metadata columns:

seqnames ranges strand

<Rle> <IRanges> <Rle>

[1] 3R [19967117, 19973212] +

[2] X [18962306, 18962925] -

---

seqlengths:

3R X

27905053 22422827

The GRanges class has many useful methods defined on it. Consult the help page

> ?GRanges

and package vignettes (especially ‘An Introduction to GenomicRanges’)

> vignette(package="GenomicRanges")

for a comprehensive introduction. A GRanges instance can be subset, with accessors for getting and updating
information.

> genes[2]

GRanges with 1 range and 0 metadata columns:

seqnames ranges strand

<Rle> <IRanges> <Rle>

[1] X [18962306, 18962925] -

---

seqlengths:

3R X

27905053 22422827

> strand(genes)

factor-Rle of length 2 with 2 runs

Lengths: 1 1

Values : + -

Levels(3): + - *

> width(genes)
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[1] 6096 620

> length(genes)

[1] 2

> names(genes) <- c("FBgn0039155", "FBgn0085359")

> genes # now with names

GRanges with 2 ranges and 0 metadata columns:

seqnames ranges strand

<Rle> <IRanges> <Rle>

FBgn0039155 3R [19967117, 19973212] +

FBgn0085359 X [18962306, 18962925] -

---

seqlengths:

3R X

27905053 22422827

strand returns the strand information in a compact representation called a run-length encoding, this is
introduced in greater detail below. The ‘names’ could have been specified when the instance was constructed;
once named, the GRanges instance can be subset by name like a regular vector.

As the GRanges function suggests, the GRanges class extends the IRanges class by adding informa-
tion about seqnames, strand, and other information particularly relevant to representing ranges that are on
genomes. The IRanges class and related data structures (e.g., RangedData) are meant as a more general
description of ranges defined in an arbitrary space. Many methods implemented on the GRanges class are
‘aware’ of the consequences of genomic location, for instance treating ranges on the minus strand differently
(reflecting the 5’ orientation imposed by DNA) from ranges on the plus strand.

3.1.2 Operations on ranges

The GRanges class has many useful methods from the IRanges class; some of these methods are illus-
trated here. We use IRanges to illustrate these operations to avoid complexities associated with strand and
seqnames, but the operations are comparable on GRanges. We begin with a simple set of ranges:

> ir <- IRanges(start=c(7, 9, 12, 14, 22:24),

+ end=c(15, 11, 12, 18, 26, 27, 28))

These and some common operations are illustrated in the upper panel of Figure 3.1 and summarized in
Table 3.2.

Methods on ranges can be grouped as follows:

Intra-range methods act on each range independently. These include flank, narrow, reflect, resize,
restrict, and shift, among others. An illustration is shift, which translates each range by the
amount specified by the shift argument. Positive values shift to the right, negative to the left; shift
can be a vector, with each element of the vector shifting the corresponding element of the IRanges
instance. Here we shift all ranges to the right by 5, with the result illustrated in the middle panel of
Figure 3.1.

> shift(ir, 5)

IRanges of length 7

start end width

[1] 12 20 9

[2] 14 16 3
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Figure 3.1: Ranges

[3] 17 17 1

[4] 19 23 5

[5] 27 31 5

[6] 28 32 5

[7] 29 33 5

Inter-range methods act on the collection of ranges as a whole. These include disjoin, reduce, gaps, and
range. An illustration is reduce, which reduces overlapping ranges into a single range, as illustrated in
the lower panel of Figure 3.1.

> reduce(ir)

IRanges of length 2

start end width

[1] 7 18 12

[2] 22 28 7

coverage is an inter-range operation that calculates how many ranges overlap individual positions.
Rather than returning ranges, coverage returns a compressed representation (run-length encoding)

> coverage(ir)

integer-Rle of length 28 with 12 runs

Lengths: 6 2 4 1 2 3 3 1 1 3 1 1

Values : 0 1 2 1 2 1 0 1 2 3 2 1

The run-length encoding can be interpreted as ‘a run of length 6 of nucleotides covered by 0 ranges,
followed by a run of length 2 of nucleotides covered by 1 range. . . ’.

Between methods act on two (or sometimes more) IRanges instances. These include intersect, setdiff,
union, pintersect, psetdiff, and punion.
The countOverlaps and findOverlaps functions operate on two sets of ranges. countOverlaps takes its
first argument (the query) and determines how many of the ranges in the second argument (the subject)
each overlaps. The result is an integer vector with one element for each member of query. findOverlaps

performs a similar operation but returns a more general matrix-like structure that identifies each pair
of query / subject overlaps. Both arguments allow some flexibility in the definition of ‘overlap’.

Common operations on ranges are summarized in Table 3.2.
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Table 3.2: Common operations on IRanges, GRanges and GRangesList .

Category Function Description
Accessors start, end, width Get or set the starts, ends and widths

names Get or set the names
mcols, metadata Get or set metadata on elements or object
length Number of ranges in the vector
range Range formed from min start and max end

Ordering <, <=, >, >=, ==, != Compare ranges, ordering by start then width
sort, order, rank Sort by the ordering
duplicated Find ranges with multiple instances
unique Find unique instances, removing duplicates

Arithmetic r + x, r - x, r * x Shrink or expand ranges r by number x

shift Move the ranges by specified amount
resize Change width, anchoring on start, end or mid
distance Separation between ranges (closest endpoints)
restrict Clamp ranges to within some start and end
flank Generate adjacent regions on start or end

Set operations reduce Merge overlapping and adjacent ranges
intersect, union, setdiff Set operations on reduced ranges
pintersect, punion, psetdiff Parallel set operations, on each x[i], y[i]
gaps, pgap Find regions not covered by reduced ranges
disjoin Ranges formed from union of endpoints

Overlaps findOverlaps Find all overlaps for each x in y

countOverlaps Count overlaps of each x range in y

nearest Find nearest neighbors (closest endpoints)
precede, follow Find nearest y that x precedes or follows
x %in% y Find ranges in x that overlap range in y

Coverage coverage Count ranges covering each position
Extraction r[i] Get or set by logical or numeric index

r[[i]] Get integer sequence from start[i] to end[i]

subsetByOverlaps Subset x for those that overlap in y

head, tail, rev, rep Conventional R semantics
Split, combine split Split ranges by a factor into a RangesList

c Concatenate two or more range objects
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3.1.3 Adding data to GRanges

The GRanges class (actually, most of the data structures defined or extending those in the IRanges package)
has two additional very useful data components. The mcols function allows information on each range to be
stored and manipulated (e.g., subset) along with the GRanges instance. The element metadata is represented
as a DataFrame, defined in IRanges and acting like a standard R data.frame but with the ability to hold
more complicated data structures as columns (and with element metadata of its own, providing an enhanced
alternative to the Biobase class AnnotatedDataFrame).

> mcols(genes) <- DataFrame(EntrezId=c("42865", "2768869"),

+ Symbol=c("kal-1", "CG34330"))

metadata allows addition of information to the entire object. The information is in the form of a list; any
data can be provided.

> metadata(genes) <-

+ list(CreatedBy="A. User", Date=date())

3.1.4 GRangesList

The GRanges class is extremely useful for representing simple ranges. Some next-generation sequence data and
genomic features are more hierarchically structured. A gene may be represented by several exons within it.
An aligned read may be represented by discontinuous ranges of alignment to a reference. The GRangesList
class represents this type of information. It is a list-like data structure, which each element of the list itself a
GRanges instance. The gene FBgn0039155 contains several exons, and can be represented as a list of length
1, where the element of the list contains a GRanges object with 7 elements:

GRangesList of length 1:

$FBgn0039155

GRanges with 7 ranges and 2 metadata columns:

seqnames ranges strand | exon_id exon_name

<Rle> <IRanges> <Rle> | <integer> <character>

[1] chr3R [19967117, 19967382] + | 45515 <NA>

[2] chr3R [19970915, 19971592] + | 45516 <NA>

[3] chr3R [19971652, 19971770] + | 45517 <NA>

[4] chr3R [19971831, 19972024] + | 45518 <NA>

[5] chr3R [19972088, 19972461] + | 45519 <NA>

[6] chr3R [19972523, 19972589] + | 45520 <NA>

[7] chr3R [19972918, 19973212] + | 45521 <NA>

---

seqlengths:

chr3R

27905053

The GRangesList object has methods one would expect for lists (e.g., length, sub-setting). Many of the
methods introduced for working with IRanges are also available, with the method applied element-wise.

3.2 Exercises: GRanges in action

See course supplement.
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Chapter 4

Annotation and Visualization

4.1 Annotation

4.1.1 Genes and pathways: org.* and friends

Bioconductor provides extensive annotation resources, summarized in Figure 4.1. These can be gene-, or
genome-centric. Annotations can be provided in packages curated by Bioconductor, or obtained from web-
based resources. Gene-centric AnnotationDbi packages include:

• Organism level: e.g. org.Mm.eg.db, Homo.sapiens.

• Platform level: e.g. hgu133plus2.db, hgu133plus2.probes, hgu133plus2.cdf .

• Homology level: e.g. hom.Dm.inp.db.

• System biology level: GO.db, KEGG.db, Reactome.db.

Organism-level (‘org’) packages contain mappings between a central identifier (e.g., Entrez gene ids) and
other identifiers (e.g. GenBank or Uniprot accession number, RefSeq id, etc.). The name of an org package
is always of the form org.<Sp>.<id>.db (e.g. org.Sc.sgd.db) where <Sp> is a 2-letter abbreviation of the
organism (e.g. Sc for Saccharomyces cerevisiae) and <id> is an abbreviation (in lower-case) describing the
type of central identifier (e.g. sgd for gene identifiers assigned by the Saccharomyces Genome Database,
or eg for Entrez gene ids). The “How to use the ‘.db’ annotation packages” vignette in the AnnotationDbi
package (org packages are only one type of “.db” annotation packages) is a key reference. The ‘.db’ and most
other Bioconductor annotation packages are updated every 6 months.

Annotation packages contain an object named after the package itself. These objects are collectively
called AnnotationDb objects, with more specific classes named OrgDb, ChipDb or TranscriptDb objects.
Methods that can be applied to these objects include cols, keys, keytypes and select. Common operations
for retrieving annotations are summarized in Table 4.1.

4.1.2 Gene models: TxDb.* packages

Examples of packages providign gene models include:

• GenomicFeatures, to represent genomic features, including constructing reproducible feature or tran-
script data bases from file or web resources.

• Pre-built transcriptome packages, e.g. TxDb.Hsapiens.UCSC.hg19.knownGene based on the H. sapiens
UCSC hg19 knownGenes track.

Genome-centric packages are very useful for annotations involving genomic coordinates. It is straight-
forward, for instance, to discover the coordinates of coding sequences in regions of interest, and from these
retrieve corresponding DNA or protein coding sequences. Other examples of the types of operations that
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Figure 4.1: Annotation Packages: the big picture

Table 4.1: Common operations for retrieving and manipulating annotations.

Category Function Description
Discover cols List the kinds of columns that can be returned

keytypes List columns that can be used as keys
keys List values that can be expected for a given keytype
select Retrieve annotations matching keys, keytype and cols

Manipulate setdiff, union, intersect Operations on sets
duplicated, unique Mark or remove duplicates
%in%, match Find matches
any, all Are any TRUE? Are all?
merge Combine two different data.frames based on shared keys

GRanges* transcripts, exons, cds Features (transcripts, exons, coding sequence) as GRanges.
transcriptsBy , exonsBy Features group by gene, transcript, etc., as GRangesList .
cdsBy
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Table 4.2: Selected packages querying web-based annotation services.

Package Description
biomaRt http://biomart.org, Ensembl and other annotations
rtracklayer http://genome.ucsc.edu, genome tracks.
AnnotationHub Ensembl, Encode, dbSNP, UCSC data objects
uniprot.ws http://uniprot.org, protein annotations
KEGGREST http://www.genome.jp/kegg, KEGG pathways
SRAdb http://www.ncbi.nlm.nih.gov/sra, sequencing experiments.
GEOquery http://www.ncbi.nlm.nih.gov/geo/, array and other data
ArrayExpress http://www.ebi.ac.uk/arrayexpress/, array and other data

are easy to perform with genome-centric annotations include defining regions of interest for counting aligned
reads in RNA-seq experiments and retrieving DNA sequences underlying regions of interest in ChIP-seq
analysis, e.g., for motif characterization.

4.1.3 Tracks and on-line resources

A short summary of select Bioconductor packages enabling web-based queries is in Table 4.2. As an example,
The biomaRt package offers access to the online biomart1 resource. This consists of several data base
resources, referred to as ‘marts’. Each mart allows access to multiple data sets; the biomaRt package provides
methods for mart and data set discovery, and a standard method getBM to retrieve data. An exercise at the
end of this section walks through use of biomaRt.

4.1.4 Called variants with VariantAnnotation

A major product of DNASeq experiments are catalogs of called variants (e.g., SNPs, indels). The Vari-
antAnnotation package allows us to explore this type of data. Sample data included in the package are a
subset of chromosome 22 from the 1000 Genomes project. Variant Call Format (VCF; full description) text
files contain meta-information lines, a header line with column names, data lines with information about a
position in the genome, and optional genotype information on samples for each position.

Important operations on VCF files available with the VariantAnnotation package are summarized in
Table 4.3.

To illustrate VariantAnnotation, we load the package and subset of a 1000 genomes data file.

> library(VariantAnnotation)

> fl <- system.file("extdata", "chr22.vcf.gz", package="VariantAnnotation")

Variants can be easily screened for presence in dbSNP, classified to region such as coding, intron, inter-

genic, spliceSite etc. Amino acid coding changes are computed for the non-synonymous variants. The
Ensembl Variant Effect Predictor (accessed via ensemblVEP provide predictions of how severely the coding
changes affect protein function. Additional annotations are easily crafted using the GenomicRanges and
GenomicFeatures software in conjunction with Bioconductor and broader community annotation resources.

The ensemblVEP package ‘wraps’ a perl script provided by Ensembl, so users need to have perl and the
script installed. Instructions for installation are in the package vignette2 (this is already configured on the
AMI used in this training). Basic use is to invoke the ensemblVEP function with the path to a VCF file:

> library(ensemblVEP)

> fl <- system.file("extdata", "gl_chr1.vcf", package="VariantAnnotation")

> gr <- ensemblVEP(fl)

1urlhttp://www.biomart.org
2http://bioconductor.org/packages/release/bioc/vignettes/ensemblVEP/inst/doc/ensemblVEP.pdf
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Table 4.3: Working with VCF files and data.

Category Function Description
Read scanVcfHeader Retrieve file header information

scanVcfParam Select fields to read in
readVcf Read VCF file into a VCF class
scanVcf Read VCF file into a list

Filter filterVcf Filter a VCF from one file to another
Write writeVcf Write a VCF file to disk
Annotate locateVariants Identify where variant overlaps a gene annotation

predictCoding Amino acid changes for variants in coding regions
summarizeVariants Summarize variant counts by sample

SNPs genotypeToSnpMatrix Convert genotypes to a SnpMatrix
GLtoGP Convert genotype likelihoods to genotypes
snpSummary Counts and distribution statistics for SNPs

Manipulate expand Convert CompressedVCF to ExpandedVCF
cbind, rbind Combine by column or row

This returns the ‘consequence’ of each variant.

> head(gr, 3)

GRanges with 3 ranges and 13 metadata columns:

seqnames ranges strand | Allele Gene

<Rle> <IRanges> <Rle> | <factor> <factor>

rs58108140 1 [10583, 10583] * | A ENSG00000223972

rs58108140 1 [10583, 10583] * | A ENSG00000227232

rs58108140 1 [10583, 10583] * | A ENSG00000227232

Feature Feature_type Consequence cDNA_position

<factor> <factor> <factor> <factor>

rs58108140 ENST00000456328 Transcript upstream_gene_variant <NA>

rs58108140 ENST00000488147 Transcript downstream_gene_variant <NA>

rs58108140 ENST00000541675 Transcript downstream_gene_variant <NA>

CDS_position Protein_position Amino_acids Codons

<factor> <factor> <factor> <factor>

rs58108140 <NA> <NA> <NA> <NA>

rs58108140 <NA> <NA> <NA> <NA>

rs58108140 <NA> <NA> <NA> <NA>

Existing_variation DISTANCE CELL_TYPE

<factor> <factor> <factor>

rs58108140 <NA> 1286 <NA>

rs58108140 <NA> 3821 <NA>

rs58108140 <NA> 3780 <NA>

---

seqlengths:

1

NA

The VEPParam() function controls many aspects of VEP evaluation, with arguments divided into base, input,
database, output, and filterqc components; these are described more completely on ?VEPParam and closely
track the options documented on the VEP web site3.

3http://www.ensembl.org/info/docs/variation/vep/vep_script.html

39

http://www.ensembl.org/info/docs/variation/vep/vep_script.html


One useful option is to return the results from VEP as a VCF object.

> fl <- system.file("extdata", "structural.vcf", package="VariantAnnotation")

> param <- VEPParam(input=c(format="vcf"), output=c(vcf=TRUE))

> vep <- ensemblVEP(fl, param)

The ‘consequence’ data are then returned in a compact format as part of the VCF INFO column labeled
CSQ

> head(info(vep)$CSQ, 3)

CharacterList of length 3

[[1]] -||||intergenic_variant||||||||

[[2]] deletion|ENSG00000233684|ENST00000430529|Transcript|intron_variant&nc_t...

[[3]] deletion|ENSG00000230448|ENST00000418420|Transcript|intron_variant&nc_t...

This can be unpacked to a more friendly GRanges instance with

> csq <- parseCSQToGRanges(vep)

> head(csq, 3)

GRanges with 3 ranges and 14 metadata columns:

seqnames ranges strand | VCFRowID Allele

<Rle> <IRanges> <Rle> | <integer> <factor>

1:2827693 1 [2827693, 2827762] * | 1 -

2:321682 2 [ 321682, 321682] * | 2 deletion

2:321682 2 [ 321682, 321682] * | 2 deletion

Gene Feature Feature_type

<factor> <factor> <factor>

1:2827693 <NA> <NA> <NA>

2:321682 ENSG00000233684 ENST00000430529 Transcript

2:321682 ENSG00000233684 ENST00000436808 Transcript

Consequence

<factor>

1:2827693 intergenic_variant

2:321682 intron_variant&nc_transcript_variant&feature_truncation

2:321682 intron_variant&nc_transcript_variant&feature_truncation

cDNA_position CDS_position Protein_position Amino_acids Codons

<factor> <factor> <factor> <factor> <factor>

1:2827693 <NA> <NA> <NA> <NA> <NA>

2:321682 <NA> <NA> <NA> <NA> <NA>

2:321682 <NA> <NA> <NA> <NA> <NA>

Existing_variation DISTANCE CELL_TYPE

<factor> <factor> <factor>

1:2827693 <NA> <NA> <NA>

2:321682 <NA> <NA> <NA>

2:321682 <NA> <NA> <NA>

---

seqlengths:

1 2 3 4

NA NA NA NA
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4.1.5 Exercises
Exercise 5
What is the name of the org package for H. sapiens? Load it. Display the OrgDb object for the org.Hs.eg.db
package. Use the cols method to discover which sorts of annotations can be extracted from it.

Use the keys method to extract UNIPROT identifiers and then pass those keys in to the select method
in such a way that you extract the SYMBOL (gene symbol) and KEGG pathway information for each.

Use select to retrieve the ENTREZ and SYMBOL identifiers of all genes in the KEGG pathway 00310.

Solution: The OrgDb object is named org.Hs.eg.db.

> library(org.Hs.eg.db)

> cols(org.Hs.eg.db)

[1] "ENTREZID" "PFAM" "IPI" "PROSITE" "ACCNUM"

[6] "ALIAS" "CHR" "CHRLOC" "CHRLOCEND" "ENZYME"

[11] "MAP" "PATH" "PMID" "REFSEQ" "SYMBOL"

[16] "UNIGENE" "ENSEMBL" "ENSEMBLPROT" "ENSEMBLTRANS" "GENENAME"

[21] "UNIPROT" "GO" "EVIDENCE" "ONTOLOGY" "GOALL"

[26] "EVIDENCEALL" "ONTOLOGYALL" "OMIM" "UCSCKG"

> keytypes(org.Hs.eg.db)

[1] "ENTREZID" "PFAM" "IPI" "PROSITE" "ACCNUM"

[6] "ALIAS" "CHR" "CHRLOC" "CHRLOCEND" "ENZYME"

[11] "MAP" "PATH" "PMID" "REFSEQ" "SYMBOL"

[16] "UNIGENE" "ENSEMBL" "ENSEMBLPROT" "ENSEMBLTRANS" "GENENAME"

[21] "UNIPROT" "GO" "EVIDENCE" "ONTOLOGY" "GOALL"

[26] "EVIDENCEALL" "ONTOLOGYALL" "OMIM" "UCSCKG"

> uniprotKeys <- head(keys(org.Hs.eg.db, keytype="UNIPROT"))

> cols <- c("SYMBOL", "PATH")

> select(org.Hs.eg.db, keys=uniprotKeys, cols=cols, keytype="UNIPROT")

UNIPROT SYMBOL PATH

1 P04217 A1BG <NA>

2 P01023 A2M 04610

3 F5H5R8 NAT1 00232

4 F5H5R8 NAT1 00983

5 F5H5R8 NAT1 01100

6 P18440 NAT1 00232

7 P18440 NAT1 00983

8 P18440 NAT1 01100

9 Q400J6 NAT1 00232

10 Q400J6 NAT1 00983

11 Q400J6 NAT1 01100

12 A4Z6T7 NAT2 00232

13 A4Z6T7 NAT2 00983

14 A4Z6T7 NAT2 01100

Selecting UNIPROT and SYMBOL ids of KEGG pathway 00310 is very similar:

> kegg <- select(org.Hs.eg.db, "00310", c("UNIPROT", "SYMBOL"), "PATH")

> nrow(kegg)
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[1] 57

> head(kegg, 3)

PATH UNIPROT SYMBOL

1 00310 P24752 ACAT1

2 00310 Q9BWD1 ACAT2

3 00310 B4DW54 ALDH2

Exercise 6
(Adapted from4) Suppose you have a list of transcription factor binding sites on hg19. How would you obtain
(a) the GC content of each site and (b) the percentage of gene promoters covered by the binding sites?

Solution: As an outline of a solution, the steps for calculating GC content might be

a. Represent the list of transcription factor binding sites (‘regions of interest’) as a GRanges instance,
roi.

b. Load BSgenome and the appropriate genome package, e.g., BSgenome.Hsapiens.UCSC.hg19.

c. Use getSeq to retrieve the sequences, seqs <- getSeq(Hsapiens, gr).

d. Use alphabetFrequency(seqs) to summarize nucleotide use, and simple R functions to determine GC
content of each region of interest.

e. Summarize these as density plots, etc. A meaningful extension of this exercise might compare the
observed GC content to the expected content, where expectation is the product of the independent G
and C frequencies.

To calculate the percentage of promoters covered by binding sites, we might

a. Load the reference genome TxDb package, TxDb.Hsapiens.UCSC.hg19.knownGene.

b. Query the package for promoters using the promoters function, or otherwise manipulating exon or
transcript coordinates to get a GRanges or GRangesList representing genomic regions of interest, groi.

c. Use countOverlaps(groi, roi) to find how many transcription factor binding sites overlap each pro-
moter, and from there use standard R functions to tally the number of promoters that have zero
overlaps.

Exercise 7
Load the biomaRt package and list the available marts. Choose the ensembl mart and list the datasets for
that mart. Set up a mart to use the ensembl mart and the hsapiens gene ensembl dataset.

A biomaRt dataset can be accessed via getBM. In addition to the mart to be accessed, this function
takes filters and attributes as arguments. Use filterOptions and listAttributes to discover values for these
arguments. Call getBM using filters and attributes of your choosing.

Solution:

> library(biomaRt)

> head(listMarts(), 3) ## list the marts

> head(listDatasets(useMart("ensembl")), 3) ## mart datasets

> ensembl <- ## fully specified mart

+ useMart("ensembl", dataset = "hsapiens_gene_ensembl")

> head(listFilters(ensembl), 3) ## filters

4http://www.sph.emory.edu/~hwu/teaching/bioc/bios560R.html
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> myFilter <- "chromosome_name"

> head(filterOptions(myFilter, ensembl), 3) ## return values

> myValues <- c("21", "22")

> head(listAttributes(ensembl), 3) ## attributes

> myAttributes <- c("ensembl_gene_id","chromosome_name")

> ## assemble and query the mart

> res <- getBM(attributes = myAttributes, filters = myFilter,

+ values = myValues, mart = ensembl)

Use head(res) to see the results.

Exercise 8
Load the TxDb.Hsapiens.UCSC.hg19.knownGene annotation package, and read in the chr22.vcf.gz exam-
ple file from the VariantAnnotation package.

Remembering to re-name sequence levels, use the locateVariants function to identify coding variants.
Summarize aspects of your data, e.g., did any coding variants match more than one gene? How many

coding variants are there per gene ID?

Solution: Here we open the known genes data base, and read in the VCF file.

> library(TxDb.Hsapiens.UCSC.hg19.knownGene)

> txdb <- TxDb.Hsapiens.UCSC.hg19.knownGene

> fl <- system.file("extdata", "chr22.vcf.gz", package="VariantAnnotation")

> vcf <- readVcf(fl, "hg19")

> seqlevels(vcf, force=TRUE) <- c("22"="chr22")

The next lines locate coding variants.

> rd <- rowData(vcf)

> loc <- locateVariants(rd, txdb, CodingVariants())

> head(loc, 3)

GRanges with 3 ranges and 7 metadata columns:

seqnames ranges strand | LOCATION QUERYID TXID

<Rle> <IRanges> <Rle> | <factor> <integer> <integer>

[1] chr22 [50301422, 50301422] * | coding 24 73482

[2] chr22 [50301476, 50301476] * | coding 25 73482

[3] chr22 [50301488, 50301488] * | coding 26 73482

CDSID GENEID PRECEDEID FOLLOWID

<integer> <character> <character> <character>

[1] 217009 79087 <NA> <NA>

[2] 217009 79087 <NA> <NA>

[3] 217009 79087 <NA> <NA>

---

seqlengths:

chr22

NA

To answer gene-centric questions data can be summarized by gene regardless of transcript.

> ## Did any coding variants match more than one gene?

> splt <- split(loc$GENEID, loc$QUERYID)

> table(sapply(splt, function(x) length(unique(x)) > 1))
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FALSE TRUE

956 15

> ## Summarize the number of coding variants by gene ID

> splt <- split(loc$QUERYID, loc$GENEID)

> head(sapply(splt, function(x) length(unique(x))), 3)

113730 1890 23209

22 15 30

4.2 Visualization

4.2.1 Static

R has some great visualization packages; essential references include [3] for a general introduction, Murrell [7]
for base graphics, Sarkar [9] for lattice, and Wickham [11] for ggplot2. Here we take a quick tour of
visualization facilities tailed for sequence data and using Bioconductor approaches.

Gviz The Gviz package produces very elegant data organized in a more-or-less familiar ‘track’ format.
The following exercises walk through the Gviz User guide Section 2. We have an opportunity to visit just
one package, Gviz.

Load the Gviz package and sample GRanges containing genomic coordinates of CpG islands. Create a
couple of variables with information on the chromosome and genome of the data (how can this information
be extracted from the cpgIslands object?).

> library(Gviz)

> data(cpgIslands)

> chr <- "chr7"

> genome <- "hg19"

The basic idea is to create a track, perhaps with additional attributes, and to plot it. There are different
types of track, and we create these one at a time. We start with a simple annotation track

> atrack <- AnnotationTrack(cpgIslands, name="CpG")

> plotTracks(atrack)

Then add a track that represents genomic coordinates. Tracks are combined during when plotted, as a simple
list. The vertical ordering of tracks is determined by their position in the list.

> gtrack <- GenomeAxisTrack()

> plotTracks(list(gtrack, atrack))

We can add an ideogram to provide overall orientation. . .

> itrack <- IdeogramTrack(genome=genome, chromosome=chr)

> plotTracks(list(itrack, gtrack, atrack))

and a more elaborate gene model, as an data.frame or GRanges object with specific columns of metadata.

> data(geneModels)

> grtrack <-

+ GeneRegionTrack(geneModels, genome=genome,

+ chromosome=chr, name="Gene Model")

> tracks <- list(itrack, gtrack, atrack, grtrack)

> plotTracks(tracks)
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Zooming out changes the location box on the ideogram

> plotTracks(tracks, from=2.5e7, to=2.8e7)

When zoomed in we can add sequence data

> library(BSgenome.Hsapiens.UCSC.hg19)

> strack <- SequenceTrack(Hsapiens, chromosome=chr)

> plotTracks(c(tracks, strack), from=26450430, to=26450490, cex=.8)

As the Gviz vignette humbly says, ‘so far we have replicated the features of a whole bunch of other
genome browser tools out there‘. We’d like to be able integrate our data into these plots, with a rich range
of plotting options. The key is the DataTrack function, which we demonstrate with some simulated data; this
final result is shown in Figure 4.2.

> ## some data

> lim <- c(26700000, 26900000)

> coords <- seq(lim[1], lim[2], 101)

> dat <- runif(length(coords) - 1, min=-10, max=10)

> ## DataTrack

> dtrack <-

+ DataTrack(data=dat, start=coords[-length(coords)],

+ end= coords[-1], chromosome=chr, genome=genome,

+ name="Uniform Random")

> plotTracks(c(tracks, dtrack))

Section 4.3 of the Gviz vignette illustrates flexibility of the data track.

4.2.2 Interactive

The recently-introduced shiny package and web site5 offers a new model for developing interactive, browser-
based visualizations. These visualizations could be an excellent way to provide sophisticated exploratory or
summary analysis in a very accessible way. The idea is to write a ‘user interface’ component that describes
how a page is to be presented to users, and a ‘server’ that describes how the data are to be calculated
or modified in responses to user choices. The programming model is ‘reactive’, where changes in a user
choice automatically trigger re-calculations in the server. This reactive model is like in a spreadsheet with a
formula, where adjusting a cell that the formula references triggers re-calculation of the formula. Just like
in a spreadsheet, someone creating a shiny application does not have to work hard to make reactivity work.
ReportingTools and other Bioconductor packages are starting to incorporate these interactive displays; a
Google Summer of Code intern is working to develop shiny-based displays to help navigate some of the more
complicated Bioconductor data structures.

5http://www.rstudio.com/shiny/
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Figure 4.2: Gviz ideogram, genome coordinate, annotation, and data tracks.
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Chapter 5

Working with Large Data

5.1 Four strategies

Bioinformatics data is now very large; it is not reasonable to expect all of a fastq or bam file, for instance,
to fit into memory. How is this data to be processed? This challenge confronts us in whatever language
or tool we are using. In R and Bioconductor, three main approaches are to: (1) restrict data input to the
interesting subset of the larger data set; (2) sample from the large data, knowing that an appropriately sized
sample will accurately estimate statistics we are interested in; (3) iterate through large data in chunks; and
(4) use parallel evaluation on one or several computers. Let’s look at each of these approaches.

5.1.1 Restriction

Just because a data file contains a lot of data does not mean that we are interested in all of it. In base
R, one might use the colClasses argument to read.delim or similar function (e.g., setting some elements to
NULL) to read only some columns of a large comma-separated value file. In addition to the obvious benefit
of using less memory than if all of the file had been read in, input will be substantially faster because less
computation needs to be done to coerce values from their representation in the file to their representation
in R’s memory.

A variation on the idea of restricting data input is to organize the data on disk into a representation
that facilitates restriction. In base R, large data might be stored in a relational data base like the sqlite
data bases that are built in to R and used in the AnnotationDbi Bioconductor packages. In addition to
facilitating restriction, these approaches are typically faster than parsing a plain text file, because the data
base software has stored data in a way that efficiently transforms from on-disk to in-memory representation.

Let’s use BAM files and the Rsamtools package to illustrate restriction. Rather than using simple text
files (“sam” format), we use “bam” (binary alignment) files that have been indexed. Use of a binary format
enhances data input speed, while the index facilitates restrictions that take into account genomic coordinates.
The basic approach will use the ScanBamParam function to specify a restriction.

A BAM record can contain a lot of information, including the relatively large sequence, quality, and
query name strings. Not all information in the BAM file is needed for some calculations. For instance, one
could calculate coverage (number of nucleotides overlapping each reference position) using only the rname

(reference sequence name), pos, and cigar fields. We could arrange to input this just information with

> param <- ScanBamParam(what=c("rname", "pos", "cigar"))

Another common restriction is to particular genomic regions, for instance known genes in an RNAseq
differential expression study or to promoter regions in a ChIP-seq study. Restrictions in genome space are
specified using GRanges objects (typically computed from some reference source, rather than entered by hand)
provided as the which argument to ScanBamParam. Here we create a GRanges instance representing all exons
on H. sapiens chromosome 14, and use that as a restriction to ScanBamParam’s which argument:
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> library(TxDb.Hsapiens.UCSC.hg19.knownGene)

> exByGn <- exonsBy(TxDb.Hsapiens.UCSC.hg19.knownGene, "gene")

> seqlevels(exByGn, force=TRUE) <- "chr14"

> gns <- unlist(range(exByGn))

> param <- ScanBamParam(which=gns)

The what and which restrictions can be combined with other restrictions into a single ScanBamParam object

> param <- ScanBamParam(what=c("rname", "pos", "cigar"), which=gns)

We can also restrict input to, e.g., paired-end reads that represent the primary (best) alignment; see the help
page ?ScanBamParam for a more complete description.

Here are some BAM files from an experiment in H. sapiens; the BAM files contain a subset of aligned
reads

> library(RNAseqData.HeLa.bam.chr14)

> bamfls <- RNAseqData.HeLa.bam.chr14_BAMFILES

We’ll read in the first BAM file, but restrict input to “cigar” to find how many reads map to the plus and
minus strands. We use the “low-level” function scanBam to input the data

> param <- ScanBamParam(what="cigar")

> bam <- scanBam(bamfls[1], param=param)[[1]]

> tail(sort(table(bam$cigar)))

18M123N54M 36M123N36M 64M316N8M 38M670N34M 35M123N37M 72M

225 228 261 264 272 603939

Restriction is such a useful concept that many Bioconductor high throughput sequence analysis functions
enable doing the right thing. Functions such as coverage,BamFile-method use restrictions to read in the
specific data required for them to compute the statistic of interest. Most “higher level” functions have a
param=ScanBamParam() argument. For instance, the primary user-friendly function for reading BAM files is
readGappedAlignments (this is renammed to readGAlignments in Bioconductor version 2.13) reads the most
useful information, allowing the user to specify additional fields if desired.

> gal <- readGappedAlignments(bamfls[1])

> head(gal, 3)

GappedAlignments with 3 alignments and 0 metadata columns:

seqnames strand cigar qwidth start end width

<Rle> <Rle> <character> <integer> <integer> <integer> <integer>

[1] chr14 + 72M 72 19069583 19069654 72

[2] chr14 + 72M 72 19363738 19363809 72

[3] chr14 - 72M 72 19363755 19363826 72

ngap

<integer>

[1] 0

[2] 0

[3] 0

---

seqlengths:

chr1 chr10 ... chrY

249250621 135534747 ... 59373566

> param <- ScanBamParam(what="seq") ## also input sequence

> gal <- readGappedAlignments(bamfls[1], param=param)

> head(mcols(gal)$seq)
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A DNAStringSet instance of length 6

width seq

[1] 72 TGAGAATGATGATTTCCAATTTCATCCATGTCCC...AGGACATGAACTCATCATTTTTTATGGCTGCAT

[2] 72 CCCATATGTACATCAGGCCCCAGGTATACACTGG...AGGTGGACACCAGCACTCAGTTGGATACACACA

[3] 72 CCCCAGGTATACACTGGACTCCAGGTGGACACCA...CAGTTGGATACACACACTCAAGGTGGACACCAG

[4] 72 CATAGATGCAAGAATCCTCAATCAAATACTAGCA...AATTCAACAGCACATTAAAAAGATAACTTACCA

[5] 72 TAGCACACTGAATTCAACAGCACATTAAAAAGAT...ACCATGCTCAAGTGGATTTACCCCAAGGATACA

[6] 72 TGCTGGTGCAGGATTTATTCTACTAAGCAATGAG...GGATCAAATCCACTTTCTTATCTCAGGAATCAG

5.1.2 Sampling

R is after all a statistical language, and it sometimes makes sense to draw inferences from a sample of large
data. For instance, many quality assessment statistics summarize overall properties (e.g., GC content or per-
nucleotide base quality of FASTQ reads) that don’t require processing of the entire data. For these statistics
to be valid, the sample from the file needs to be a random sample, rather than a sample of convenience.

There are two advantages to sampling from a FASTQ (or BAM) file. The sample uses less memory than
the full data. And because less data needs to be parsed from the on-disk to in-memory representation the
input is faster.

The ShortRead package FastqSampler (see also Rsamtools::BamSampler visits a FASTQ file but retains
only a random sample from the file. Here is our function to calculate GC content from a DNAStringSet:

> gcFunction <-

+ function(x)

+ {

+ alf <- alphabetFrequency(x, as.prob=TRUE)

+ rowSums(alf[,c("G", "C")])

+ }

and a subset of a FASTQ file with 1 million reads:

> bigdata <- system.file("bigdata", package="SequenceAnalysisData")

> fqfl <- dir(file.path(bigdata, "fastq"), ".fastq$", full=TRUE) #$

FastqSampler works by specifying the file name and desired sample size, e.g., 100,000 reads. This creates an
object from which an independent sample can be drawn using the yield function.

> sampler <- FastqSampler(fqfl, 100000)

> fq <- yield(sampler) # 100,000 reads

> lattice::densityplot(gcFunction(sread(fq)), plot.points=FALSE)

> fq <- yield(sampler) # a different 100,000 reads

Generally, one would choose a sample size large enough to adequately characterize the data but not so
large as to consume all (or a fraction, see section 5.1.4 below) of the memory. The default (1 million) is a
reasonable starting point.

FastqSampler relies on the R random number generator, so the same sequence of reads can be sampled
by using the same random number seed. This is a convenient way to sample the same read pairs from the
FASTQ files typically used to represent paired-end reads

> ## NOT RUN

> set.seed(123)

> end1 <- yield(FastqSampler("end_1.fastq"))

> set.seed(123)

> end2 <- yield(FastqSampler("end_2.fastq"))
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5.1.3 Iteration

Restriction may not be enough to wrestle large data down to size, and sampling may be inappropriate for
the task at hand. A solution is then to iterate through the file. An example in base R is to open a file
connection, and then read and process successive chunks of the file, e.g., reading chunks of 10000 lines

> ## NOT RUN

> con <- file("<hypothetical-file>.txt")

> open(f)

> while (length(x <- readLines(f, n=10000))) {

+ ## work on character vector 'x'
+ }

> close(f)

The pattern length(x <- readLines(f, n=10000)) is a convenient short-hand pattern that reads the next
10000 lines into a variable x and then asks x it’s length. x is created in the calling environment (so it is
available for processing in the while loop) When there are no lines left to read, length(x) will evaluate to
zero and the while loop will end.

Iteration really involves three steps: input of a ‘chunk’ of the data; calculation of a desired summary;
and aggregation of summaries across chunks. We illustrate this with BAM files in the Rsamtools package;
see also FastqStreamer in the ShortRead package and TabixFile for iterating through large VCF files (via
readVCF in the VariantAnnotation package).

The first stage in iteration is to arrange for input of a chunk of data. In many programming languages
one would iterate ‘record-at-a-time’, reading in one record, processing it, and moving to the next. R is not
efficient when used in this fashion. Instead, we want to read in a larger chunk of data, typically as much
as can comfortably fit in the available memory. In Rsamtools for reading BAM files we arrange for this by
creating a BamFile (or TabixFile for VCF) object where we specify an appropriate yieldSize. Here we go
for a bigger BAM file

> library(RNAseqData.HeLa.bam.chr14)

> bamfl <- RNAseqData.HeLa.bam.chr14_BAMFILES[1]

> countBam(bamfl)

space start end width file records nucleotides

1 NA NA NA NA ERR127306_chr14.bam 800484 57634848

> bf <- BamFile(bamfl, yieldSize=200000) # could be larger, e.g., 2 million

A BamFile object can be used to read data from a BAM file, e.g., using readGappedAlignments. Instead of
reading all the data, the reading function will read just yieldSize records. The idea then is to open the
BAM file and iterate through until no records are input. The pattern is

> ## initialize, e.g., for step 3 ...

> open(bf)

> while (length(gal <- readGappedAlignments(bf))) {

+ ## step 2: do work...

+ ## step 3: aggregate results...

+ }

> close(bf)

The second step is to perform a useful calculation on the chunk of data. This is particularly easy to do if
chunks are independent of one another. For instance, a common operation is to count the number of times
reads overlap regions of interest. There are functions that implement a variety of counting modes (see, e.g.,
summarizeOverlaps in the GenomicRanges package); here we’ll go for a simple counter that arranges to tally
one ‘hit’ each time a read overlaps (in any way) at most one range. Here is our counter function, taking
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as arguments a GRanges or GRangesList object representing the regions for which counts are desired, and a
GappedAlignments object representing reads to be counted:

> counter <-

+ function(query, subject, ..., ignore.strand=TRUE)

+ ## query: GRanges or GRangesList

+ ## subject: GappedAlignments

+ {

+ if (ignore.strand)

+ strand(subject) <- "*"

+ hits <- countOverlaps(subject, query)

+ countOverlaps(query, subject[hits==1])

+ }

To set this step up a little more completely, we need to know the regions over which counting is to occur.
Here we retrieve exons grouped by gene for the genome to which the BAM files were aligned:

> library(TxDb.Hsapiens.UCSC.hg19.knownGene)

> query <- exonsBy(TxDb.Hsapiens.UCSC.hg19.knownGene, "gene")

Thus we’ll add the following lines to our loop:

> ## initialize, e.g., for step 3 ...

> open(bf)

> while (length(gal <- readGappedAlignments(bf))) {

+ ## step 2: do work...

+ count0 <- counter(query, gal, ignore.strand=TRUE)

+ ## step 3: aggregate results...

+ }

> close(bf)

It is worth asking whether the ‘do work’ step will always be as straight-forward. The current example is
easy because counting overlaps of one read does not depend on other reads, so the chunks can be processed
independently of one another. FIXME: These are paired-end reads, so counting is not this easy! See
GenomicRanges::summarizeOverlaps

The final step in iteration is to aggregate results across chunks. In our present case, counter always
returns an integer vector with length(query) elements. We want to add these over chunks, and we can
arrange to do this by starting with an initial vector of counts counts <- integer(length(query)) and simply
adding count0 at each iteration. The complete iteration, packaged as a function to facilitate re-use is

> counter1 <-

+ function(bf, query, ...)

+ {

+ ## initialize, e.g., for step 3 ...

+ counts <- integer(length(query))

+ open(bf)

+ while (length(gal <- readGappedAlignments(bf, ...))) {

+ ## step 2: do work...

+ count0 <- counter(query, gal, ignore.strand=TRUE)

+ ## step 3: aggregate results...

+ counts <- counts + count0

+ }

+ close(bf)

+ counts

+ }
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In action, this is invoked as

> bf <- BamFile(bamfl, yieldSize=500000)

> counts <- counter1(bf, query)

Counting is a particularly simple operation; one will often need to think carefully about how to aggregate
statistics derived from individual chunks. A useful general approach is to identify sufficient statistics that
represent a sufficient description of the data and can be easily aggregated across chunks. This is the approach
taken by, for instance, the biglm package for fitting linear models to large data sets – the linear model is fit
to successive chunks and the fit reduced to sufficient statistics, the sufficient statistics are then added across
chunks to arrive at an overall fit.

5.1.4 Parallel evaluation

Each of the preceding sections addressed memory management; what about overall performance?
The starting point is really writing efficient, vectorized code, with common strategies outlined in Chap-

ter 1. Performance differences between poorly written versus well written R code can easily span two orders
of magnitude, whereas parallel processing can only increase throughput by an amount inversely proportional
to the number of processing units (e.g., CPUs) available.

The memory management techniques outlined earlier in this chapter are important in a parallel evaluation
context. This is because we will typically be trying to exploit multiple processing cores on a single computer,
and the cores will be competing for the same pool of shared memory. We thus want to arrange for the
collection of processors to cooperate in dividing available memory between them, i.e., each processor needs
to use only a fraction of total memory.

There are a number of ways in which R code can be made to run in parallel. The least painful and most
effective will use ‘multicore’ functionality provided by the parallel package; the parallel package is installed
by default with base R, and has a useful vignette [8]. Unfortunately, multicore facilities are not available on
Windows computers.

Parallel evaluation on several cores of a single Linux or MacOS computer is particularly easy to achieve
when the code is already vectorized. The solution on these operating systems is to use the functions mclapply

or pvec. These functions allow the ‘master’ process to ‘fork’ processes for parallel evaluation on each of the
cores of a single machine. The forked processes initially share memory with the master process, and only
make copies when the forked process modifies a memory location (‘copy on change’ semantics). On Linux
and MacOS, the mclapply function is meant to be a ‘drop-in’ replacement for lapply, but with iterations
being evaluated on different cores. The following illustrates the use of mclapply and pvec, for a toy vectorized
function f:

> library(parallel)

> f <- function(i) {

+ cat("'f' called, length(i) = ", length(i), "\n")

+ sqrt(i)

+ }

> res0 <- mclapply(1:5, f, mc.cores=2)

'f' called, length(i) = 1

'f' called, length(i) = 1

'f' called, length(i) = 1

'f' called, length(i) = 1

'f' called, length(i) = 1

> res1 <- pvec(1:5, f, mc.cores=2)

'f' called, length(i) = 3

'f' called, length(i) = 2
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> identical(unlist(res0), res1)

[1] TRUE

pvec takes a vectorized function and distributes computation of different chunks of the vector across cores.
Both functions allow the user to specify the number of cores used, and how the data are divided into chunks.

The parallel package does not support fork-like behavior on Windows, where users need to more explicitly
create a cluster of R workers and arrange for each to have the same data loaded into memory; similarly,
parallel evaluation across computers (e.g., in a cluster) require more elaborate efforts to coordinate workers;
this is typically done using lapply-like functions provided by the parallel package but specialized for simple
(‘snow’) or more robust (‘MPI’) communication protocols between workers.

Data movement and random numbers are two important additional considerations in parallel evalua-
tion. Moving data to and from cores to the manager can be expensive, so strategies that minimize explicit
movement (e.g., passing file names data base queries rather than R objects read from files; reducing data
on the worker before transmitting results to the manager) can be important. Random numbers need to be
synchronized across cores to avoid generating the same sequences on each ‘independent’ computation.

How might parallel evaluation be exploited in Bioconductor work flows? One approach when working
with BAM files exploits the fact that data are often organized with one sample per BAM file. Suppose we
are interested in running our iterating counter counter1 over several BAM files. We could do this by creating
a BamFileList with appropriate yieldSize

> fls <- RNAseqData.HeLa.bam.chr14_BAMFILES # 8 BAM files

> bamfls <- BamFileList(fls, yieldSize=500000) # yieldSize can be larger

and using an lapply to take each file in turn and performing the count.

> counts <- simplify2array(lapply(bamfls, counter1, query))

The parallel equivalent of this is simply (note the change from lapply to mclapply)

> options(mc.cores=detectCores()) # use all cores

> counts <- simplify2array(mclapply(bamfls, counter1, query))

> head(counts[rowSums(counts) != 0,], 3)

ERR127306 ERR127307 ERR127308 ERR127309 ERR127302 ERR127303 ERR127304

10001 207 277 217 249 303 335 362

100128927 572 629 597 483 379 319 388

100129075 62 70 56 63 34 51 88

ERR127305

10001 300

100128927 435

100129075 79

5.2 Other Large-Data Resource

The foreach package can be useful for parallel evaluation written using coding styles more like for loops rather
than lapply. The iterator package is an abstraction that simplifies the notion of iterating over objects. The
Rmpi package provides access to MPI, a structured environment for calculation on clusters. The pbdR
formalism1 is especially useful for well-structured distributed matrix computations.

The MatrixEQTL package is an amazing example implementing high performance algorithms on large
data; the corresponding publication [10] is well worth studying.

Bioconductor provides an Amazon machine instance with MPI and Rmpi installed2. This can be an
effective way to gain access to large computing resources.

1https://rdav.nics.tennessee.edu/2012/09/pbdr/
2http://bioconductor.org/help/bioconductor-cloud-ami/
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Chapter 6

Supplement

6.1 Exercises: GRanges in action

Exercise 9
Load the GenomicRanges package. Open the man page for the GRanges class and run the examples in it.

Shift the ranges in gr by 100 positions to the right.
What method is called when doing shift() on a GRanges object? Find the man page for this method.

Solution: The examples in ?GRanges can be run with:

> library(GenomicRanges)

> example(GRanges)

> shift(gr, 100)

GRanges with 10 ranges and 2 metadata columns:

seqnames ranges strand | score GC

<Rle> <IRanges> <Rle> | <integer> <numeric>

a chr1 [101, 110] - | 1 1

b chr2 [102, 110] + | 2 0.888888888888889

c chr2 [103, 110] + | 3 0.777777777777778

d chr2 [104, 110] * | 4 0.666666666666667

e chr1 [105, 110] * | 5 0.555555555555556

f chr1 [106, 110] + | 6 0.444444444444444

g chr3 [107, 110] + | 7 0.333333333333333

h chr3 [108, 110] + | 8 0.222222222222222

i chr3 [109, 110] - | 9 0.111111111111111

j chr3 [110, 110] - | 10 0

---

seqlengths:

chr1 chr2 chr3

1000 2000 1500

> selectMethod("shift", "GRanges")

Method Definition:

function (x, shift = 0L, use.names = TRUE)

{
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ranges <- shift(ranges(x), shift, use.names = use.names)

clone(x, ranges = ranges)

}

<environment: namespace:GenomicRanges>

Signatures:

x

target "GRanges"

defined "GenomicRanges"

The method for GenomicRanges objects is called. Consult its man page with ¿shift,GenomicRanges-method‘.

Exercise 10
Load the RNAseqData.HeLa.bam.chr14 package and use the readGappedAlignments function from the Ge-
nomicRanges package to load the reads from the 1st sequencing run.

The object returned by readGappedAlignments is a GappedAlignments object. This is a vector-like object
where each element represents an alignment. In an RNA-seq experiment an alignment can contain one or
more “gaps”. Each gap corresponds to an intron and is represented by an N operation in the CIGAR. If we
ignore the gaps, each alignment corresponds to a single genomic range. The ranges of all the alignments
can be extracted with the granges function from the GenomicRanges package. Use granges to extract the
genomic ranges of the alignments.

Extract the genome-wide coverage of these genomic ranges. What kind of object is used to represent
this coverage? This RleList object is a list-like object that can be manipulated like an ordinary list. Extract
the list element corresponding to chromosome 14. What are the average and maximum coverage on this
chromosome?

Solution:

> library(RNAseqData.HeLa.bam.chr14)

> bamfiles <- RNAseqData.HeLa.bam.chr14_BAMFILES

> gal <- readGappedAlignments(bamfiles[1])

> read_ranges <- granges(gal)

> read_ranges

GRanges with 800484 ranges and 0 metadata columns:

seqnames ranges strand

<Rle> <IRanges> <Rle>

[1] chr14 [19069583, 19069654] +

[2] chr14 [19363738, 19363809] +

[3] chr14 [19363755, 19363826] -

[4] chr14 [19369799, 19369870] +

[5] chr14 [19369828, 19369899] -

... ... ... ...

[800480] chr14 [106989780, 106989851] -

[800481] chr14 [106994763, 106994834] +

[800482] chr14 [106994819, 106994890] -

[800483] chr14 [107003080, 107003151] +

[800484] chr14 [107003171, 107003242] -

---

seqlengths:

chr1 chr10 ... chrY

249250621 135534747 ... 59373566
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> read_cvg <- coverage(read_ranges)

> read_cvg

RleList of length 93

$chr1

integer-Rle of length 249250621 with 1 run

Lengths: 249250621

Values : 0

$chr10

integer-Rle of length 135534747 with 1 run

Lengths: 135534747

Values : 0

$chr11

integer-Rle of length 135006516 with 1 run

Lengths: 135006516

Values : 0

$chr11_gl000202_random

integer-Rle of length 40103 with 1 run

Lengths: 40103

Values : 0

$chr12

integer-Rle of length 133851895 with 1 run

Lengths: 133851895

Values : 0

...

<88 more elements>

> read_cvg$chr14

integer-Rle of length 107349540 with 487597 runs

Lengths: 19069582 72 294083 17 ... 19 72 346298

Values : 0 1 0 1 ... 0 1 0

> mean(read_cvg$chr14)

[1] 6.676184

> max(read_cvg$chr14)

[1] 3900

Exercise 11
In the GRanges object obtained previously, each element can “hit” 0, 1 or more genes. In this exercise, we
want to count the number of hits per gene. For this we first need to load a gene model based on the same
reference genome that was used to align our reads.

Consult the documentation of the RNAseqData.HeLa.bam.chr14 package and find out what reference
genome was used to align the reads.
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The TxDb.* packages in Bioconductor are a collection of annotation packages that contain various gene
models for the most common organisms. Browse the list of annotation packages on the Bioconductor website
and find the TxDb.* packages that are based on the same reference genome that was used to align our reads.

Load the TxDb.Hsapiens.UCSC.hg19.knownGene package then use the transcriptsBy function from the
GenomicFeatures package to extract the transcripts grouped by gene.

The returned object is an GRangesList object with one list element per gene. Each list element is itself
a GRanges object with one element per transcript. Is this object named? What do those names mean.

Use $ or [[ to extract the transcripts of gene with Entrez ID 3183 (HNRNPC gene). How many transcripts
in that gene?

In Bioconductor, elementLengths can be used on a list-like object to perform sapply(x, length) in a very
efficient way. Use it (together with table) to tabulate the number of transcripts per gene.

range can be used on a GRangesList object to compute the range of each list element. Call it on our
object containing the transcripts grouped by gene. Let’s call this object gene_ranges. What kind of object
is it? What’s the range of the HNRNPC gene? Do all the list elements in gene_ranges have a length of 1?
What can be the reasons for this?

Remove the list elements from gene_ranges that have a length > 1 and unlist it. What was the point of
this removal?

Use countOverlaps on gene_ranges and the the GRanges object containing the genomic ranges of the
alignments. Note that the RNA-seq protocol is generally not stranded so we want to ignore the strand when
counting the overlaps.

Finally stick the result to gene_ranges as a metadata column.

Solution: The reads in RNAseqData.HeLa.bam.chr14 were aligned to the hg19 genome. This information
can be found in the description file of the package (with packageDescription("RNAseqData.HeLa.bam.chr14"))
or in its man page (with ¿RNAseqData.HeLa.bam.chr14-package‘).

To find the TxDb.* packages that are based on hg19, go to http://www.bioconductor.org/, then click
on Install, then on Annotation Data, then use the built-in document search of your browser (CTRL+f in
Firefox and Chromium on Linux) to search for the TxDb pattern. There are currently 16 TxDb.* packages
in Bioconductor. 2 of them are based on the hg19 genome from UCSC.

> library(TxDb.Hsapiens.UCSC.hg19.knownGene)

> txdb <- TxDb.Hsapiens.UCSC.hg19.knownGene

> tx_by_gene <- transcriptsBy(txdb, by="gene")

> tx_by_gene

GRangesList of length 22932:

$1

GRanges with 2 ranges and 2 metadata columns:

seqnames ranges strand | tx_id tx_name

<Rle> <IRanges> <Rle> | <integer> <character>

[1] chr19 [58858172, 58864865] - | 68796 uc002qsd.4

[2] chr19 [58859832, 58874214] - | 68797 uc002qsf.2

$10

GRanges with 1 range and 2 metadata columns:

seqnames ranges strand | tx_id tx_name

[1] chr8 [18248755, 18258723] + | 31203 uc003wyw.1

$100

GRanges with 1 range and 2 metadata columns:

seqnames ranges strand | tx_id tx_name

[1] chr20 [43248163, 43280376] - | 70442 uc002xmj.3
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...

<22929 more elements>

---

seqlengths:

chr1 chr2 ... chrUn_gl000249

249250621 243199373 ... 38502

According to the man page for transcriptsBy, tx_by_gene is named with the gene ids. In the case of
txdb, the gene ids are Entrez Gene IDs:

> txdb

TranscriptDb object:

| Db type: TranscriptDb

| Supporting package: GenomicFeatures

| Data source: UCSC

| Genome: hg19

| Organism: Homo sapiens

| UCSC Table: knownGene

| Resource URL: http://genome.ucsc.edu/

| Type of Gene ID: Entrez Gene ID

| Full dataset: yes

| miRBase build ID: GRCh37

| transcript_nrow: 80922

| exon_nrow: 286852

| cds_nrow: 235842

| Db created by: GenomicFeatures package from Bioconductor

| Creation time: 2013-03-08 09:43:09 -0800 (Fri, 08 Mar 2013)

| GenomicFeatures version at creation time: 1.11.14

| RSQLite version at creation time: 0.11.2

| DBSCHEMAVERSION: 1.0

> tx_by_gene[["3183"]]

GRanges with 11 ranges and 2 metadata columns:

seqnames ranges strand | tx_id tx_name

<Rle> <IRanges> <Rle> | <integer> <character>

[1] chr14 [21677296, 21737638] - | 51103 uc001vzw.3

[2] chr14 [21677296, 21737638] - | 51104 uc001vzx.3

[3] chr14 [21677296, 21737638] - | 51105 uc001vzy.3

[4] chr14 [21677296, 21737638] - | 51106 uc001vzz.3

[5] chr14 [21677296, 21737638] - | 51107 uc001waa.3

... ... ... ... ... ... ...

[7] chr14 [21677296, 21737638] - | 51109 uc001wad.3

[8] chr14 [21677296, 21737638] - | 51110 uc010ail.3

[9] chr14 [21677296, 21737638] - | 51111 uc010tlq.2

[10] chr14 [21678927, 21698532] - | 51112 uc010tlr.2

[11] chr14 [21678927, 21737638] - | 51113 uc001wae.3

---

seqlengths:

chr1 chr2 ... chrUn_gl000249

249250621 243199373 ... 38502
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11 transcripts in that gene.

> table(elementLengths(tx_by_gene))

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

8344 4369 3273 2365 1595 1051 632 417 207 152 111 87 52 41 30 31

17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

24 20 6 14 13 3 7 12 6 4 3 9 2 5 1 3

33 34 35 36 38 39 40 42 44 46 47 49 52 56 57 64

4 2 5 2 2 1 4 7 1 1 1 1 1 1 1 1

65 67 69 72 104 120 129 175

1 1 1 1 1 1 1 1

> gene_ranges <- range(tx_by_gene)

> gene_ranges

GRangesList of length 22932:

$1

GRanges with 1 range and 0 metadata columns:

seqnames ranges strand

<Rle> <IRanges> <Rle>

[1] chr19 [58858172, 58874214] -

$10

GRanges with 1 range and 0 metadata columns:

seqnames ranges strand

[1] chr8 [18248755, 18258723] +

$100

GRanges with 1 range and 0 metadata columns:

seqnames ranges strand

[1] chr20 [43248163, 43280376] -

...

<22929 more elements>

---

seqlengths:

chr1 chr2 ... chrUn_gl000249

249250621 243199373 ... 38502

> gene_ranges[["3183"]]

GRanges with 1 range and 0 metadata columns:

seqnames ranges strand

<Rle> <IRanges> <Rle>

[1] chr14 [21677296, 21737638] -

---

seqlengths:

chr1 chr2 ... chrUn_gl000249

249250621 243199373 ... 38502

> table(elementLengths(gene_ranges))
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1 2 3 4 5 6 7 8

22534 195 6 5 19 39 75 59

> gene_ranges[elementLengths(gene_ranges) == 2]

GRangesList of length 195:

$100036519

GRanges with 2 ranges and 0 metadata columns:

seqnames ranges strand

<Rle> <IRanges> <Rle>

[1] chr9 [42717234, 42720342] +

[2] chr9 [70426623, 70429731] -

$100101116

GRanges with 2 ranges and 0 metadata columns:

seqnames ranges strand

[1] chrY [6258442, 6279605] +

[2] chrY [9590765, 9611928] -

$100101120

GRanges with 2 ranges and 0 metadata columns:

seqnames ranges strand

[1] chrY [6317509, 6325947] +

[2] chrY [9544433, 9552871] -

...

<192 more elements>

---

seqlengths:

chr1 chr2 ... chrUn_gl000249

249250621 243199373 ... 38502

> gene_ranges[elementLengths(gene_ranges) == 3]

GRangesList of length 6:

$100133331

GRanges with 3 ranges and 0 metadata columns:

seqnames ranges strand

<Rle> <IRanges> <Rle>

[1] chr1 [ 322037, 326938] +

[2] chr1 [ 661139, 679736] -

[3] chr5 [180743354, 180753553] +

$3119

GRanges with 3 ranges and 0 metadata columns:

seqnames ranges strand

[1] chr6 [32627241, 32634466] -

[2] chr6_cox_hap2 [ 4072511, 4080111] -

[3] chr6_qbl_hap6 [ 3858965, 3866565] -

$3833

GRanges with 3 ranges and 0 metadata columns:

seqnames ranges strand
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[1] chr6 [33359313, 33377699] +

[2] chr6_qbl_hap6 [ 4591540, 4609700] +

[3] chr6_ssto_hap7 [ 4839529, 4857918] +

...

<3 more elements>

---

seqlengths:

chr1 chr2 ... chrUn_gl000249

249250621 243199373 ... 38502

> gene_ranges <- gene_ranges[elementLengths(gene_ranges) == 1]

> gene_ranges <- unlist(gene_ranges)

gene_ranges is now a GRanges object with 1 range per gene. Not removing the list elements that have a
length > 1 before unlisting would produce a GRanges object with possibly more than 1 range per gene.

> nhits_per_gene <- countOverlaps(gene_ranges, read_ranges, ignore.strand=TRUE)

> mcols(gene_ranges)$nhits <- nhits_per_gene

> gene_ranges

GRanges with 22534 ranges and 1 metadata column:

seqnames ranges strand | nhits

<Rle> <IRanges> <Rle> | <integer>

1 chr19 [ 58858172, 58874214] - | 0

10 chr8 [ 18248755, 18258723] + | 0

100 chr20 [ 43248163, 43280376] - | 0

1000 chr18 [ 25530930, 25757445] - | 0

10000 chr1 [243651535, 244006886] - | 0

... ... ... ... ... ...

9991 chr9 [114979995, 115095944] - | 0

9992 chr21 [ 35736323, 35743440] + | 0

9993 chr22 [ 19023795, 19109967] - | 0

9994 chr6 [ 90539619, 90584155] + | 0

9997 chr22 [ 50961997, 50964905] - | 0

---

seqlengths:

chr1 chr2 ... chrUn_gl000249

249250621 243199373 ... 38502

61



References

[1] A. N. Brooks, L. Yang, M. O. Duff, K. D. Hansen, J. W. Park, S. Dudoit, S. E. Brenner, and B. R.
Graveley. Conservation of an RNA regulatory map between Drosophila and mammals. Genome Research,
pages 193–202, 2011.

[2] P. Burns. The R inferno. Technical report, 2011.

[3] W. Chang. R Graphics Cookbook. O’Reilly Media, Incorporated, 2012.

[4] P. Dalgaard. Introductory Statistics with R. Springer, 2nd edition, 2008.

[5] N. Matloff. The Art of R Programming. No Starch Pess, 2011.

[6] J. Meys and A. de Vries. R For Dummies. For Dummies, 2012.

[7] P. Murrell. R graphics. Chapman & Hall/CRC, 2005.

[8] R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical
Computing, Vienna, Austria, 2013. ISBN 3-900051-07-0.

[9] D. Sarkar. Lattice: multivariate data visualization with R. Springer, 2008.

[10] A. A. Shabalin. Matrix eqtl: ultra fast eqtl analysis via large matrix operations. Bioinformatics,
28(10):1353–1358, 2012.

[11] H. Wickham. ggplot2: elegant graphics for data analysis. Springer Publishing Company, Incorporated,
2009.

62


	Efficient R
	R
	Essential data types
	S3 (and S4) classes
	Functions
	Packages
	Exercise

	Bioconductor
	Packages for high-throughput sequence analysis
	S4 Classes and methods
	Help!

	Efficient R
	Easy solutions
	Moderate solutions
	Measuring performance


	Sequences, Reads, and Alignments
	DNA (and other) strings with the Biostrings package
	Whole-genome sequences

	Reads
	Short read formats
	Short reads in R
	Exercise

	Alignments
	Alignment formats
	Aligned reads in R
	Exercise


	Ranges
	The GenomicRanges package
	The GRanges class
	Operations on ranges
	Adding data to GRanges
	GRangesList

	Exercises: GRanges in action

	Annotation and Visualization
	Annotation
	Genes and pathways: org.* and friends
	Gene models: TxDb.* packages
	Tracks and on-line resources
	Called variants with VariantAnnotation
	Exercises

	Visualization
	Static
	Interactive


	Working with Large Data
	Four strategies
	Restriction
	Sampling
	Iteration
	Parallel evaluation

	Other Large-Data Resource

	Supplement
	Exercises: GRanges in action

	References

