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Abstract

This lab will walk you through an end-to-end RNA-Seq differential expression workflow. We
will start from the FASTQ files, align to the reference genome, prepare gene expression values as
a count table by counting the sequenced fragments, perform differential gene expression analysis,
and visually explore the results.

This lab covers the basic introduction. For a more in-depth explanation of the advanced
details, we advise you to proceed to the vignette of the DESeq2 , Differential analysis of count
data – the DESeq2 package. For a treatment of exon-level differential expression, we refer to the
vignette of the DEXSeq package, Analyzing RNA-seq data for differential exon usage with the
DEXSeq package.
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1 Input data

As example data for this lab, we will use publicly available data from the article by Felix Haglund et
al., Evidence of a Functional Estrogen Receptor in Parathyroid Adenomas, J Clin Endocrin Metab, Sep
20121.

The purpose of the experiment was to investigate the role of the estrogen receptor in parathyroid
tumors. The investigators derived primary cultures of parathyroid adenoma cells from 4 patients. These
primary cultures were treated with diarylpropionitrile (DPN), an estrogen receptor β agonist, or with
4-hydroxytamoxifen (OHT). RNA was extracted at 24 hours and 48 hours from cultures under treatment
and control. The blocked design of the experiment allows for statistical analysis of the treatment effects
while controlling for patient-to-patient variation.

Part of the data from this experiment is provided in the Bioconductor data package parathyroidSE .

1.1 Preparing count matrices

As input, the DESeq2 package expects count data as obtained, e. g., from RNA-Seq or another high-
throughput sequencing experiment, in the form of a matrix of integer values. The value in the i-th
row and the j-th column of the matrix tells how many reads have been mapped to gene i in sample j.
Analogously, for other types of assays, the rows of the matrix might correspond e. g. to binding regions
(with ChIP-Seq) or peptide sequences (with quantitative mass spectrometry).

The count values must be raw counts of sequencing reads. This is important for DESeq2 ’s statistical
model to hold, as only the actual counts allow assessing the measurement precision correctly. Hence,

1http://www.ncbi.nlm.nih.gov/pubmed/23024189
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please do not supply other quantities, such as (rounded) normalized counts, or counts of covered base
pairs – this will only lead to nonsensical results.

1.2 Aligning reads to a reference

The computational analysis of an RNA-Seq experiment begins earlier: what we get from the sequencing
machine is a set of FASTQ files that contain the nucleotide sequence of each read and a quality score at
each position. These reads must first be aligned to a reference genome or transcriptome. It is important
to know if the sequencing experiment was single-end or paired-end, as the alignment software will require
the user to specify both FASTQ files for a paired-end experiment. The output of this alignment step is
commonly stored in a file format called BAM.

A number of software programs exist to align reads to the reference genome, and the development is
too rapid for this document to provide a current list. We recommend consulting benchmarking papers
that discuss the advantages and disadvantages of each software, which include accuracy, ability to align
reads over splice junctions, speed, memory footprint, and many other features.

Here we use the TopHat2 spliced alignment software2 [1] in combination with the Bowtie index available
at the Illumina iGenomes page3. For full details on this software and on the iGenomes, users should
follow the links to the manual and information provided in the links in the footnotes. For example, the
paired-end RNA-Seq reads for the parathyroidSE package were aligned using TopHat2 with 8 threads,
with the call:

tophat2 -o file_tophat_out -p 8 genome file_1.fastq file_2.fastq

The BAM files for a number of sequencing runs can then be used to generate count matrices, as
described in the following section.

1.3 Example BAM files

Besides the main count table, which we will use later, the parathyroidSE package also contains a small
subset of the raw data from the Haglund et al. experiment, namely three BAM file each with a subset
of the reads from three of the samples. We will use these files to demonstrate how a count table can be
constructed from BAM files. Afterwards, we will load the full count table corresponding to all samples
and all data, which is already provided in the same package, and will continue the analysis with that
full table.

We load the data package with the example data

library( "parathyroidSE" )

The R function system.file can be used to find out where on your computer the files from a package
have been installed. Here we ask for the full path to the extdata directory, which is part of the
parathyroidSE package:

2http://tophat.cbcb.umd.edu/
3http://tophat.cbcb.umd.edu/igenomes.html

http://samtools.github.io/hts-specs
http://bioconductor.org/packages/release/data/experiment/html/parathyroidSE.html
http://bioconductor.org/packages/release/data/experiment/html/parathyroidSE.html
http://bioconductor.org/packages/release/data/experiment/html/parathyroidSE.html
http://tophat.cbcb.umd.edu/
http://tophat.cbcb.umd.edu/igenomes.html
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extDataDir <- system.file("extdata", package = "parathyroidSE", mustWork = TRUE)

extDataDir

## [1] "/usr/local/Cellar/r/3.1.0/R.framework/Versions/3.1/Resources/library/parathyroidSE/extdata"

In this directory, we find the three BAM files (and some other files):

list.files( extDataDir )

## [1] "conversion.txt" "GSE37211_series_matrix.txt"

## [3] "SRR479052.bam" "SRR479053.bam"

## [5] "SRR479054.bam"

Typically, we have a table with experimental meta data for our samples. For these three files, it is as
follows:

sampleName fileName treatment time
Ctrl 24h 1 SRR479052.bam Control 24h
Ctrl 48h 1 SRR479053.bam Control 48h
DPN 24h 1 SRR479054.bam DPN 24h

To avoid mistakes, it is helpful to store such a sample table explicitly in a text file and load it.

Load it with:

sampleTable <- read.csv( "/path/to/your/sampleTable.csv", header=TRUE )

This is how the sample table should look like

sampleTable

## sampleName fileName treatment time

## 1 Ctrl_24h_1 SRR479052.bam Control 24h

## 2 Ctrl_48h_1 SRR479053.bam Control 48h

## 3 DPN_24h_1 SRR479054.bam DPN 24h

Using the fileName column in the table, we construct the full paths to the files we want to perform the
counting operation on:

bamFiles <- file.path( extDataDir, sampleTable$fileName )

We can peek into one of the BAM files to see the naming style of the sequences (chromosomes). Here
we use the BamFile function from the Rsamtools package.

library( "Rsamtools" )

seqinfo( BamFile( bamFiles[1] ) )

## Seqinfo of length 25

## seqnames seqlengths isCircular genome

## 1 249250621 <NA> <NA>

## 2 243199373 <NA> <NA>

## 3 198022430 <NA> <NA>

http://bioconductor.org/packages/release/bioc/html/Rsamtools.html
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## 4 191154276 <NA> <NA>

## 5 180915260 <NA> <NA>

## ... ... ... ...

## 21 48129895 <NA> <NA>

## 22 51304566 <NA> <NA>

## X 155270560 <NA> <NA>

## Y 59373566 <NA> <NA>

## MT 16569 <NA> <NA>

We want to make sure that these sequence names are the same style as that of the gene models we
will obtain in the next section.

1.4 Counting reads in genes

To count how many read map to each gene, we need transcript annotation. Download the current
GTF file with human gene annotation from Ensembl. (In case the network is too slow for that, use
the truncated version of this file, called Homo sapiens.GRCh37.75.subset.gtf.gz, which we have
placed on the course server.)

From this file, the function makeTranscriptDbFromGFF from the GenomicFeatures constructs a database
of all annotated transcripts.

library( "GenomicFeatures" )

hse <- makeTranscriptDbFromGFF( "/path/to/your/genemodel_file.GTF", format="gtf" )

exonsByGene <- exonsBy( hse, by="gene" )

## Warning: Infering Exon Rankings. If this is not what you expected, then please

be sure that you have provided a valid attribute for exonRankAttributeName

## Warning: None of the strings in your circ seqs argument match your seqnames.

In the last step, we have used the exonsBy function to bring the transcriptome data base into the shape
of a list of all genes,

exonsByGene

## GRangesList of length 100:

## $ENSG00000000003

## GRanges with 13 ranges and 2 metadata columns:

## seqnames ranges strand | exon_id exon_name

## <Rle> <IRanges> <Rle> | <integer> <character>

## [1] X [99883667, 99884983] - | 3038 <NA>

## [2] X [99885756, 99885863] - | 3039 <NA>

## [3] X [99887482, 99887565] - | 3040 <NA>

## [4] X [99887538, 99887565] - | 3041 <NA>

## [5] X [99888402, 99888536] - | 3042 <NA>

## ... ... ... ... ... ... ...

http://bioconductor.org/packages/release/bioc/html/GenomicFeatures.html
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## [9] X [99890555, 99890743] - | 3046 <NA>

## [10] X [99891188, 99891686] - | 3047 <NA>

## [11] X [99891605, 99891803] - | 3048 <NA>

## [12] X [99891790, 99892101] - | 3049 <NA>

## [13] X [99894942, 99894988] - | 3050 <NA>

##

## ...

## <99 more elements>

## ---

## seqlengths:

## 7 12 2 6 16 4 3 1 17 8 19 X 11 9 20

## NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA

Exercise 1. Note the warnings issued by makeTranscriptDbFromGFF. Can we safely ignore them?

Exercise 2. In exonsByGene, inspect the genomic intervals given for the exons of the first gene.
Note that they are not disjoint (they overlap). Why? Will this influence results in the following
step?

After these preparations, the actual counting is easy. The function summarizeOverlaps from the
GenomicAlignments package will do this.

library( "GenomicAlignments" )

se <- summarizeOverlaps( exonsByGene, BamFileList( bamFiles ), mode="Union",

singleEnd=FALSE, ignore.strand=TRUE, fragments=TRUE )

We use the counting mode "Union", which indicates that those reads which overlap any portion of
exactly one feature are counted. For more information on the different counting modes, see the help
page for summarizeOverlaps. As this experiment produced paired-end reads, we specify singleEnd =

FALSE. As protocol was not strand-specific, we specify ignore.strand = TRUE. fragments = TRUE

indicates that we also want to count reads with unmapped pairs. This last argument is only for use
with paired-end experiments.

Details on how to read from the BAM files can be specified using the BamFileList function. For
example, to control the memory, we could have specified that batches of 2000000 reads should be read
at a time:

BamFileList( bamFiles, yieldSize = 2000000 )

Remember that we have only used a small subset of reads from the original experiment: for 3 samples
and for 100 genes. Nevertheless, we can still investigate the resulting SummarizedExperiment by looking
at the counts in the assay slot, the phenotypic data about the samples in colData slot (in this case
an empty DataFrame), and the data about the genes in the rowData slot. Figure 1 explains the basic
structure of the SummarizedExperiment class.

http://bioconductor.org/packages/release/bioc/html/GenomicAlignments.html
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se

## class: SummarizedExperiment

## dim: 100 3

## exptData(0):

## assays(1): counts

## rownames(100): ENSG00000000003 ENSG00000000005 ... ENSG00000005469

## ENSG00000005471

## rowData metadata column names(0):

## colnames(3): SRR479052.bam SRR479053.bam SRR479054.bam

## colData names(0):

head( assay(se) )

## SRR479052.bam SRR479053.bam SRR479054.bam

## ENSG00000000003 0 0 1

## ENSG00000000005 0 0 0

## ENSG00000000419 0 0 0

## ENSG00000000457 0 1 1

## ENSG00000000460 0 0 0

## ENSG00000000938 0 0 0

colSums( assay(se) )

## SRR479052.bam SRR479053.bam SRR479054.bam

## 31 21 30

colData(se)

## DataFrame with 3 rows and 0 columns

rowData(se)

## GRangesList of length 100:

## $ENSG00000000003

## GRanges with 13 ranges and 2 metadata columns:

## seqnames ranges strand | exon_id exon_name

## <Rle> <IRanges> <Rle> | <integer> <character>

## [1] X [99883667, 99884983] - | 3038 <NA>

## [2] X [99885756, 99885863] - | 3039 <NA>

## [3] X [99887482, 99887565] - | 3040 <NA>

## [4] X [99887538, 99887565] - | 3041 <NA>

## [5] X [99888402, 99888536] - | 3042 <NA>

## ... ... ... ... ... ... ...

## [9] X [99890555, 99890743] - | 3046 <NA>

## [10] X [99891188, 99891686] - | 3047 <NA>

## [11] X [99891605, 99891803] - | 3048 <NA>

## [12] X [99891790, 99892101] - | 3049 <NA>

## [13] X [99894942, 99894988] - | 3050 <NA>
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##

## ...

## <99 more elements>

## ---

## seqlengths:

## 7 12 2 6 16 4 3 1 17 8 19 X 11 9 20

## NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA

Note that the rowData slot is a GRangesList, which contains all the information about the exons for
each gene, i.e., for each row of the count table.

The colData slot, so far empty, should contain all the meta data. We hence assign our sample table
to it:

colData(se) <- DataFrame( sampleTable )

We can extract columns from the colData using the $ operator, and we can omit the colData to
avoid extra keystrokes.

colData(se)$treatment

## [1] Control Control DPN

## Levels: Control DPN

se$treatment

## [1] Control Control DPN

## Levels: Control DPN

We can also use the sampleName table to name the columns of our data matrix:

colnames(se) <- sampleTable$sampleName

head( assay(se) )

## Ctrl_24h_1 Ctrl_48h_1 DPN_24h_1

## ENSG00000000003 0 0 1

## ENSG00000000005 0 0 0

## ENSG00000000419 0 0 0

## ENSG00000000457 0 1 1

## ENSG00000000460 0 0 0

## ENSG00000000938 0 0 0

This SummarizedExperiment object se is then all we need to start our analysis.

1.5 The DESeqDataSet, column metadata, and the design formula

Bioconductor software packages often have a special class of data object, which contains special slots
and requirements. The data object class in DESeq2 is the DESeqDataSet, which is built on top of the

http://bioconductor.org/packages/release/bioc/html/DESeq2.html
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assay(s)

e.g. 'counts'

rowData

colData

Figure 1: Diagram of SummarizedExperiment The component parts of a SummarizedExperiment
object. The assay(s) (red block) contains the matrix (or matrices) of summarized values, the rowData
(blue block) contains information about the genomic ranges, and the colData (purple block) contains
information about the samples or experiments. The highlighted line in each block represents the first
row (note that the first row of colData lines up with the first column of the assay.

SummarizedExperiment class. One main differences is that the assay slot is instead accessed using the
count accessor, and the values in this matrix must be non-negative integers.

A second difference is that the DESeqDataSet has an associated “design formula”. The design is
specified at the beginning of the analysis, as it will inform many of the DESeq2 functions how to treat
the samples in the analysis (one exception is the size factor estimation, i. e., the adjustment for differing
library sizes, which does not depend on the design formula). The design formula tells which variables
in the column metadata table (colData) specify the experimental design and how these factors should
be used in the analysis.

The simplest design formula for differential expression would be ∼ condition, where condition is a
column in colData(dds) which specifies which of two (or more groups) the samples belong to. For
the parathyroid experiment, we will specify ∼ patient + treatment, which means that we want to
test for the effect of treatment (the last factor), controlling for the effect of patient (the first factor).

You can use R’s formula notation to express any experimental design that can be described within an
ANOVA-like framework. Note that DESeq2 uses the same formula notation as, for instance, the lm

function of base R. If the question of interest is whether a fold change due to treatment is different
across groups, for example across patients, “interaction terms” can be included using models such as

http://bioconductor.org/packages/release/bioc/html/DESeq2.html
http://bioconductor.org/packages/release/bioc/html/DESeq2.html
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∼ patient + treatment + patient:treatment. More complex designs such as these are covered
in the other DESeq2 vignette.

We now use R’s data command to load a prepared SummarizedExperiment that was generated from the
publicly available sequencing data files associated with the Haglund et al. paper, described on page 2.
The steps we used to produce this object were equivalent to those you worked through in Section 1.4,
except that we used the complete set of samples and all reads.

data( "parathyroidGenesSE" )

se <- parathyroidGenesSE

A bonus about the workflow we have shown above is that information about the gene models we used
is included without extra effort. The rowData for the parathyroid data was obtained with the function
makeTranscriptDbFromBiomart, and we can find out all the metadata information about the version
of the gene model. The str R function is used to compactly display the structure of the data in the
list.

str( metadata( rowData(se) ) )

## List of 1

## $ genomeInfo:List of 20

## ..$ Db type : chr "TranscriptDb"

## ..$ Supporting package : chr "GenomicFeatures"

## ..$ Data source : chr "BioMart"

## ..$ Organism : chr "Homo sapiens"

## ..$ Resource URL : chr "www.biomart.org:80"

## ..$ BioMart database : chr "ensembl"

## ..$ BioMart database version : chr "ENSEMBL GENES 72 (SANGER UK)"

## ..$ BioMart dataset : chr "hsapiens_gene_ensembl"

## ..$ BioMart dataset description : chr "Homo sapiens genes (GRCh37.p11)"

## ..$ BioMart dataset version : chr "GRCh37.p11"

## ..$ Full dataset : chr "yes"

## ..$ miRBase build ID : chr NA

## ..$ transcript_nrow : chr "213140"

## ..$ exon_nrow : chr "737783"

## ..$ cds_nrow : chr "531154"

## ..$ Db created by : chr "GenomicFeatures package from Bioconductor"

## ..$ Creation time : chr "2013-07-30 17:30:25 +0200 (Tue, 30 Jul 2013)"

## ..$ GenomicFeatures version at creation time: chr "1.13.21"

## ..$ RSQLite version at creation time : chr "0.11.4"

## ..$ DBSCHEMAVERSION : chr "1.0"

Supposing we have constructed a SummarizedExperiment using one of the methods described in the
previous section, we now need to make sure that the object contains all the necessary information about
the samples, i.e., a table with metadata on the count table’s columns stored in the colData slot:

colData(se)[1:5,1:4]

http://bioconductor.org/packages/release/bioc/html/DESeq2.html
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## DataFrame with 5 rows and 4 columns

## run experiment patient treatment

## <character> <factor> <factor> <factor>

## 1 SRR479052 SRX140503 1 Control

## 2 SRR479053 SRX140504 1 Control

## 3 SRR479054 SRX140505 1 DPN

## 4 SRR479055 SRX140506 1 DPN

## 5 SRR479056 SRX140507 1 OHT

Here we see that this object already contains an informative colData slot – because we have already
prepared it for you, as described in the parathyroidSE vignette. However, when you work with your
own data, you will have to add the pertinent sample / phenotypic information for the experiment at
this stage. We highly recommend keeping this information in a comma-separated value (CSV) or tab-
separated value (TSV) file, which can be exported from an Excel spreadsheet, and the assign this to
the colData slot, as shown in the previous section.

Make sure that the order of rows in your column data table matches the order of columns in the assay

data slot.

Once we have our fully annotated SummarizedExperiment object, we can construct a DESeqDataSet
object from it, which will then form the staring point of the actual DESeq2 package, described in the
following sections. Here, we use the SummarizedExperiment object we got from the parathyroidSE
package and augment it by specifying an appropriate design formula.

library( "DESeq2" )

ddsFull <- DESeqDataSet( se, design = ~ patient + treatment )

Note that there are two alternative functions, DESeqDataSetFromMatrix and DESeqDataSetFromHTSeq,
which allow you to get started in case you have your data not in the form of a SummarizedExperiment
object, but either as a simple matrix of count values or a s output files from the htseq-count script
from the HTSeq Python package.

1.6 Collapsing technical replicates

There are a number of samples which were sequenced in multiple runs. For example, sample SRS308873
was sequenced twice. To see, we list the respective columns of the colData. (The use of as.data.frame
forces R to show us the full list, not just the beginning and the end as before.)

as.data.frame( colData( ddsFull )[ ,c("sample","patient","treatment","time") ] )

## sample patient treatment time

## 1 SRS308865 1 Control 24h

## 2 SRS308866 1 Control 48h

## 3 SRS308867 1 DPN 24h

## 4 SRS308868 1 DPN 48h

## 5 SRS308869 1 OHT 24h

http://bioconductor.org/packages/release/data/experiment/html/parathyroidSE.html
http://bioconductor.org/packages/release/bioc/html/DESeq2.html
http://bioconductor.org/packages/release/data/experiment/html/parathyroidSE.html
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## 6 SRS308870 1 OHT 48h

## 7 SRS308871 2 Control 24h

## 8 SRS308872 2 Control 48h

## 9 SRS308873 2 DPN 24h

## 10 SRS308873 2 DPN 24h

## 11 SRS308874 2 DPN 48h

## 12 SRS308875 2 OHT 24h

## 13 SRS308875 2 OHT 24h

## 14 SRS308876 2 OHT 48h

## 15 SRS308877 3 Control 24h

## 16 SRS308878 3 Control 48h

## 17 SRS308879 3 DPN 24h

## 18 SRS308880 3 DPN 48h

## 19 SRS308881 3 OHT 24h

## 20 SRS308882 3 OHT 48h

## 21 SRS308883 4 Control 48h

## 22 SRS308884 4 DPN 24h

## 23 SRS308885 4 DPN 48h

## 24 SRS308885 4 DPN 48h

## 25 SRS308886 4 OHT 24h

## 26 SRS308887 4 OHT 48h

## 27 SRS308887 4 OHT 48h

We recommend to first add together technical replicates (i.e., libraries derived from the same samples),
such that we have one column per sample. We have implemented a convenience function for this,
which can take am object, either SummarizedExperiment or DESeqDataSet, and a grouping factor, in
this case the sample name, and return the object with the counts summed up for each unique sample.
This will also rename the columns of the object, such that they match the unique names which were
used in the grouping factor. Optionally, we can provide a third argument, run, which can be used
to paste together the names of the runs which were collapsed to create the new object. Note that
dds$variable is equivalent to colData(dds)$variable.

ddsCollapsed <- collapseReplicates( ddsFull,

groupby = ddsFull$sample,

run = ddsFull$run )

head( as.data.frame( colData(ddsCollapsed)[ ,c("sample","runsCollapsed") ] ), 12 )

## sample runsCollapsed

## SRS308865 SRS308865 SRR479052

## SRS308866 SRS308866 SRR479053

## SRS308867 SRS308867 SRR479054

## SRS308868 SRS308868 SRR479055

## SRS308869 SRS308869 SRR479056

## SRS308870 SRS308870 SRR479057

## SRS308871 SRS308871 SRR479058

## SRS308872 SRS308872 SRR479059
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## SRS308873 SRS308873 SRR479060,SRR479061

## SRS308874 SRS308874 SRR479062

## SRS308875 SRS308875 SRR479063,SRR479064

## SRS308876 SRS308876 SRR479065

We can confirm that the counts for the new object are equal to the summed up counts of the columns
that had the same value for the grouping factor:

original <- rowSums( counts(ddsFull)[ , ddsFull$sample == "SRS308873" ] )

all( original == counts(ddsCollapsed)[ ,"SRS308873" ] )

## [1] TRUE

2 Running the DESeq2 pipeline

Here we will analyze a subset of the samples, namely those taken after 48 hours, with either control,
DPN or OHT treatment, taking into account the multifactor design.

2.1 Preparing the data object for the analysis of interest

First we subset the relevant columns from the full dataset:

dds <- ddsCollapsed[ , ddsCollapsed$time == "48h" ]

Sometimes it is necessary to drop levels of the factors, in case that all the samples for one or more
levels of a factor in the design have been removed. If time were included in the design formula, the
following code could be used to take care of dropped levels in this column.

dds$time <- droplevels( dds$time )

It will be convenient to make sure that Control is the first level in the treatment factor, so that the
default log2 fold changes are calculated as treatment over control and not the other way around. The
function relevel achieves this:

dds$treatment <- relevel( dds$treatment, "Control" )

A quick check whether we now have the right samples:

as.data.frame( colData(dds) )

## run experiment patient treatment time submission study

## SRS308866 SRR479053 SRX140504 1 Control 48h SRA051611 SRP012167

## SRS308868 SRR479055 SRX140506 1 DPN 48h SRA051611 SRP012167

## SRS308870 SRR479057 SRX140508 1 OHT 48h SRA051611 SRP012167

## SRS308872 SRR479059 SRX140510 2 Control 48h SRA051611 SRP012167

## SRS308874 SRR479062 SRX140512 2 DPN 48h SRA051611 SRP012167
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## SRS308876 SRR479065 SRX140514 2 OHT 48h SRA051611 SRP012167

## SRS308878 SRR479067 SRX140516 3 Control 48h SRA051611 SRP012167

## SRS308880 SRR479069 SRX140518 3 DPN 48h SRA051611 SRP012167

## SRS308882 SRR479071 SRX140520 3 OHT 48h SRA051611 SRP012167

## SRS308883 SRR479072 SRX140521 4 Control 48h SRA051611 SRP012167

## SRS308885 SRR479074 SRX140523 4 DPN 48h SRA051611 SRP012167

## SRS308887 SRR479077 SRX140525 4 OHT 48h SRA051611 SRP012167

## sample runsCollapsed

## SRS308866 SRS308866 SRR479053

## SRS308868 SRS308868 SRR479055

## SRS308870 SRS308870 SRR479057

## SRS308872 SRS308872 SRR479059

## SRS308874 SRS308874 SRR479062

## SRS308876 SRS308876 SRR479065

## SRS308878 SRS308878 SRR479067

## SRS308880 SRS308880 SRR479069

## SRS308882 SRS308882 SRR479071

## SRS308883 SRS308883 SRR479072

## SRS308885 SRS308885 SRR479074,SRR479075

## SRS308887 SRS308887 SRR479077,SRR479078

In order to speed up some annotation steps below, it makes sense to remove genes which have zero
counts for all samples. This can be done by simply indexing the dds object:

dds <- dds[ rowSums( counts(dds) ) > 0 , ]

2.2 Running the pipeline

Finally, we are ready to run the differential expression pipeline. Let’s recall what design we have specified:

design(dds)

## ~patient + treatment

The DESeq2 analysis modeling counts with patient and treatment effects can now be run with a single
call to the function DESeq:

dds <- DESeq(dds)

This function will print out a message for the various steps it performs. These are described in more
detail in the manual page for DESeq, which can be accessed by typing ?DESeq. Briefly these are: the
estimation of size factors (which control for differences in the library size of the sequencing experiments),
the estimation of dispersion for each gene, and fitting a generalized linear model.

A DESeqDataSet is returned which contains all the fitted information within it, and the following section
describes how to extract out results tables of interest from this object.

http://bioconductor.org/packages/release/bioc/html/DESeq2.html
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2.3 Inspecting the results table

Calling results without any arguments will extract the estimated log2 fold changes and p values for
the last variable in the design formula. If there are more than 2 levels for this variable – as is the case
in this analysis – results will extract the results table for a comparison of the last level over the first
level. The following section describes how to extract other comparisons.

res <- results( dds )

res

## log2 fold change (MAP): treatment OHT vs Control

## Wald test p-value: treatment OHT vs Control

## DataFrame with 32082 rows and 6 columns

## baseMean log2FoldChange lfcSE stat pvalue

## <numeric> <numeric> <numeric> <numeric> <numeric>

## ENSG00000000003 613.82 -0.04480 0.0879 -0.5098 0.61017

## ENSG00000000005 0.55 -0.56833 1.0875 -0.5226 0.60127

## ENSG00000000419 304.05 0.11612 0.0962 1.2067 0.22755

## ENSG00000000457 183.52 0.00744 0.1231 0.0604 0.95182

## ENSG00000000460 207.43 0.47084 0.1449 3.2487 0.00116

## ... ... ... ... ... ...

## ENSG00000271699 0.1712 -1.0975 0.910 -1.2065 0.2276

## ENSG00000271704 0.1023 -0.0141 0.716 -0.0198 0.9842

## ENSG00000271707 9.2111 -0.8445 0.483 -1.7477 0.0805

## ENSG00000271709 0.0826 -0.0111 0.678 -0.0163 0.9870

## ENSG00000271711 0.7483 -0.9519 1.066 -0.8934 0.3717

## padj

## <numeric>

## ENSG00000000003 0.984

## ENSG00000000005 NA

## ENSG00000000419 NA

## ENSG00000000457 NA

## ENSG00000000460 NA

## ... ...

## ENSG00000271699 NA

## ENSG00000271704 NA

## ENSG00000271707 NA

## ENSG00000271709 NA

## ENSG00000271711 NA

As res is a DataFrame object, it carries metadata with information on the meaning of the columns:

mcols(res, use.names=TRUE)

## DataFrame with 6 rows and 2 columns

## type description

## <character> <character>
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## baseMean intermediate the base mean over all rows

## log2FoldChange results log2 fold change (MAP): treatment OHT vs Control

## lfcSE results standard error: treatment OHT vs Control

## stat results Wald statistic: treatment OHT vs Control

## pvalue results Wald test p-value: treatment OHT vs Control

## padj results BH adjusted p-values

The first column, baseMean, is a just the average of the normalized count values, dividing by size
factors, taken over all samples. The remaining four columns refer to a specific contrast, namely the
comparison of the levels DPN versus Control of the factor variable treatment. See the help page for
results (by typing ?results) for information on how to obtain other contrasts.

The column log2FoldChange is the effect size estimate. It tells us how much the gene’s expression
seems to have changed due to treatment with DPN in comparison to control. This value is reported on
a logarithmic scale to base 2: for example, a log2 fold change of 1.5 means that the gene’s expression
is increased by a multiplicative factor of 21.5 ≈ 2.82.

Of course, this estimate has an uncertainty associated with it, which is available in the column lfcSE,
the standard error estimate for the log2 fold change estimate. We can also express the uncertainty of
a particular effect size estimate as the result of a statistical test. The purpose of a test for differential
expression is to test whether the data provides sufficient evidence to conclude that this value is really
different from zero. DESeq2 performs for each gene a hypothesis test to see whether evidence is
sufficient to decide against the null hypothesis that there is no effect of the treatment on the gene
and that the observed difference between treatment and control was merely caused by experimental
variability (i. e., the type of variability that you can just as well expect between different samples in the
same treatment group). As usual in statistics, the result of this test is reported as a p value, and it is
found in the column pvalue. (Remember that a p value indicates the probability that a fold change as
strong as the observed one, or even stronger, would be seen under the situation described by the null
hypothesis.)

We note that a subset of the p values in res are NA (“not available”). This is DESeq’s way of reporting
that all counts for this gene were zero, and hence not test was applied. In addition, p values can be
assigned NA if the gene was excluded from analysis because it contained an extreme count outlier. For
more information, see the outlier detection section of the advanced vignette.

We can examine the counts and normalized counts for the gene with the smallest p value:

idx <- which.min(res$pvalue)

counts(dds)[ idx, ]

## SRS308866 SRS308868 SRS308870 SRS308872 SRS308874 SRS308876 SRS308878 SRS308880

## 95 62 30 24 13 21 276 357

## SRS308882 SRS308883 SRS308885 SRS308887

## 112 388 404 296

counts(dds, normalized=TRUE)[ idx, ]

## SRS308866 SRS308868 SRS308870 SRS308872 SRS308874 SRS308876 SRS308878 SRS308880

http://bioconductor.org/packages/release/bioc/html/DESeq2.html
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## 86.8 61.4 37.4 35.3 16.0 25.9 315.0 201.9

## SRS308882 SRS308883 SRS308885 SRS308887

## 136.9 461.5 269.1 172.0

Exercise 3. Use plot to examine the normalized counts for the gene with the smallest p-value, i.e.,
which.min(res$pvalue), over the treatment. Try using as.integer on the treatment column
to show points instead of boxplots. Try using as.integer on the patient column and changing the
plotting character (pch) or the color (col) of the points. Try log="y" in order to see the differences
more clearly. Now turn this into a function which can take any row index as an argument. (Plotting
the counts is a useful diagnostic, as such, a helper function plotCounts has been added to the
next DESeq2 release in October 2014.)

2.4 Other comparisons

In general, the results for a comparison of any two levels of a variable can be extracted using the
contrast argument to results. The user should specify three values: the name of the variable, the
name of the level in the numerator, and the name of the level in the denominator.

First we save the previous results table:

resOHT <- res

Here we extract results for the log2 of the fold change of DPN / Control.

res <- results( dds, contrast = c("treatment", "DPN", "Control") )

res

## log2 fold change (MAP): treatment DPN vs Control

## Wald test p-value: treatment DPN vs Control

## DataFrame with 32082 rows and 6 columns

## baseMean log2FoldChange lfcSE stat pvalue

## <numeric> <numeric> <numeric> <numeric> <numeric>

## ENSG00000000003 613.82 -0.0172 0.0867 -0.1987 0.8425

## ENSG00000000005 0.55 -0.1034 1.0936 -0.0946 0.9246

## ENSG00000000419 304.05 -0.0169 0.0952 -0.1781 0.8587

## ENSG00000000457 183.52 -0.0965 0.1214 -0.7953 0.4264

## ENSG00000000460 207.43 0.3500 0.1438 2.4350 0.0149

## ... ... ... ... ... ...

## ENSG00000271699 0.1712 -1.139 0.925 -1.231 0.218

## ENSG00000271704 0.1023 0.592 0.755 0.785 0.432

## ENSG00000271707 9.2111 -0.510 0.458 -1.114 0.265

## ENSG00000271709 0.0826 0.516 0.711 0.725 0.468

## ENSG00000271711 0.7483 -0.665 1.051 -0.633 0.527

## padj

## <numeric>

http://bioconductor.org/packages/release/bioc/html/DESeq2.html
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## ENSG00000000003 0.977

## ENSG00000000005 NA

## ENSG00000000419 0.981

## ENSG00000000457 0.894

## ENSG00000000460 0.276

## ... ...

## ENSG00000271699 NA

## ENSG00000271704 NA

## ENSG00000271707 NA

## ENSG00000271709 NA

## ENSG00000271711 NA

If results for an interaction term are desired, the name argument of results should be used. Please
see the more advanced vignette for more details.

2.5 Adding gene names

Our result table only uses Ensembl gene IDs, but gene names may be more informative. Bioconductor’s
annotation packages help with mapping various ID schemes to each other.

We load the annotation package org.Hs.eg.db:

library( "org.Hs.eg.db" )

This is the organism annotation package (“org”) for Homo sapiens (“Hs”), organized as an Annota-
tionDbi package (“db”), using Entrez Gene IDs (“eg”) as primary key.

To get a list of all available key types, use

columns(org.Hs.eg.db)

## [1] "ENTREZID" "PFAM" "IPI" "PROSITE" "ACCNUM"

## [6] "ALIAS" "CHR" "CHRLOC" "CHRLOCEND" "ENZYME"

## [11] "MAP" "PATH" "PMID" "REFSEQ" "SYMBOL"

## [16] "UNIGENE" "ENSEMBL" "ENSEMBLPROT" "ENSEMBLTRANS" "GENENAME"

## [21] "UNIPROT" "GO" "EVIDENCE" "ONTOLOGY" "GOALL"

## [26] "EVIDENCEALL" "ONTOLOGYALL" "OMIM" "UCSCKG"

Converting IDs with the native functions from the AnnotationDbi package is currently a bit cumbersome,
so we provide the following convenience function (without explaining how exactly it works):

convertIDs <- function( ids, fromKey, toKey, db, ifMultiple=c( "putNA", "useFirst" ) ) {
stopifnot( inherits( db, "AnnotationDb" ) )

ifMultiple <- match.arg( ifMultiple )

suppressWarnings( selRes <- AnnotationDbi::select(

db, keys=ids, keytype=fromKey, columns=c(fromKey,toKey) ) )

if( ifMultiple == "putNA" ) {
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duplicatedIds <- selRes[ duplicated( selRes[,1] ), 1 ]

selRes <- selRes[ ! selRes[,1] %in% duplicatedIds, ] }
return( selRes[ match( ids, selRes[,1] ), 2 ] )

}

This function takes a list of IDs as first argument and their key type as the second argument. The third
argument is the key type we want to convert to, the fourth is the AnnotationDb object to use. Finally,
the last argument specifies what to do if one source ID maps to several target IDs: should the function
return an NA or simply the first of the multiple IDs?

To convert the Ensembl IDs in the rownames of res to gene symbols and add them as a new column,
we use:

res$hgnc_symbol <- convertIDs( row.names(res), "ENSEMBL", "SYMBOL", org.Hs.eg.db )

res$entrezid <- convertIDs( row.names(res), "ENSEMBL", "ENTREZID", org.Hs.eg.db )

Now the results have the desired external gene ids:

head(res, 4)

## log2 fold change (MAP): treatment DPN vs Control

## Wald test p-value: treatment DPN vs Control

## DataFrame with 4 rows and 8 columns

## baseMean log2FoldChange lfcSE stat pvalue

## <numeric> <numeric> <numeric> <numeric> <numeric>

## ENSG00000000003 613.82 -0.0172 0.0867 -0.1987 0.843

## ENSG00000000005 0.55 -0.1034 1.0936 -0.0946 0.925

## ENSG00000000419 304.05 -0.0169 0.0952 -0.1781 0.859

## ENSG00000000457 183.52 -0.0965 0.1214 -0.7953 0.426

## padj hgnc_symbol entrezid

## <numeric> <character> <character>

## ENSG00000000003 0.977 TSPAN6 7105

## ENSG00000000005 NA TNMD 64102

## ENSG00000000419 0.981 DPM1 8813

## ENSG00000000457 0.894 SCYL3 57147

Exercise 4. Go to the Ensembl web site, select the BioMart tab, and redo our BioMart query by
manually inputting an Ensembl ID and finding the HGNC names and Entrez ids (specifying Filters,
Attributes, and then click Results). What other data is available from this mart? Can you modify
the code chunk above to add a column chrom to the res object that tells us for each gene which
chromosome it resides on?

3 Further points
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3.1 Multiple testing

Novices in high-throughput biology often assume that thresholding these p values at a low value, say
0.01, as is often done in other settings, would be appropriate – but it is not. We briefly explain why:

There are 495 genes with a p value below 0.01 among the 32082 genes, for which the test succeeded
in reporting a p value:

sum( res$pvalue < 0.01, na.rm=TRUE )

## [1] 495

table( is.na(res$pvalue) )

##

## FALSE

## 32082

Now, assume for a moment that the null hypothesis is true for all genes, i.e., no gene is affected by
the treatment with DPN. Then, by the definition of p value, we expect up to 1% of the genes to
have a p value below 0.01. This amounts to 321 genes. If we just considered the list of genes with a
p value below 0.01 as differentially expressed, this list should therefore be expected to contain up to
321/495 = 65% false positives!

DESeq2 uses the so-called Benjamini-Hochberg (BH) adjustment; in brief, this method calculates for
each gene an adjusted p value which answers the following question: if one called significant all genes
with a p value less than or equal to this gene’s p value threshold, what would be the fraction of false
positives (the false discovery rate, FDR) among them (in the sense of the calculation outlined above)?
These values, called the BH-adjusted p values, are given in the column padj of the results object.

Hence, if we consider a fraction of 10% false positives acceptable, we can consider all genes with an
adjusted p value below 10%=0.1 as significant. How many such genes are there?

sum( res$padj < 0.1, na.rm=TRUE )

## [1] 249

We subset the results table to these genes and then sort it by the log2 fold change estimate to get the
significant genes with the strongest down-regulation

resSig <- subset(res, res$padj < 0.1 )

head( resSig[ order( resSig$log2FoldChange ), ], 4)

## log2 fold change (MAP): treatment DPN vs Control

## Wald test p-value: treatment DPN vs Control

## DataFrame with 4 rows and 8 columns

## baseMean log2FoldChange lfcSE stat pvalue

## <numeric> <numeric> <numeric> <numeric> <numeric>

## ENSG00000163631 233 -0.931 0.284 -3.27 1.06e-03

## ENSG00000119946 152 -0.690 0.157 -4.41 1.04e-05

## ENSG00000041982 1377 -0.686 0.185 -3.72 2.02e-04

http://bioconductor.org/packages/release/bioc/html/DESeq2.html


BioC2014: RNA-Seq workflow for differential gene expression 21

## ENSG00000155111 531 -0.676 0.211 -3.20 1.36e-03

## padj hgnc_symbol entrezid

## <numeric> <character> <character>

## ENSG00000163631 0.05817 ALB 213

## ENSG00000119946 0.00246 CNNM1 26507

## ENSG00000041982 0.02045 TNC 3371

## ENSG00000155111 0.06850 CDK19 23097

and with the strongest upregulation

head( resSig[ order( -resSig$log2FoldChange ), ], 4)

## log2 fold change (MAP): treatment DPN vs Control

## Wald test p-value: treatment DPN vs Control

## DataFrame with 4 rows and 8 columns

## baseMean log2FoldChange lfcSE stat pvalue

## <numeric> <numeric> <numeric> <numeric> <numeric>

## ENSG00000092621 559 0.900 0.126 7.16 8.19e-13

## ENSG00000101255 255 0.886 0.169 5.23 1.71e-07

## ENSG00000103257 168 0.826 0.164 5.02 5.06e-07

## ENSG00000156414 143 0.758 0.166 4.56 5.02e-06

## padj hgnc_symbol entrezid

## <numeric> <character> <character>

## ENSG00000092621 2.63e-09 PHGDH 26227

## ENSG00000101255 2.35e-04 TRIB3 57761

## ENSG00000103257 3.25e-04 SLC7A5 8140

## ENSG00000156414 1.55e-03 TDRD9 122402

3.2 Diagnostic plots

A so-called MA plot provides a useful overview for an experiment with a two-group comparison:

plotMA( res, ylim = c(-3, 3) )

The plot (Fig. 2) represents each gene with a dot. The x axis is the average expression over all samples,
the y axis the log2 fold change between treatment and control. Genes with an adjusted p value below
a threshold (here 0.1, the default) are shown in red.

Exercise 5. Use the identify function to pick out the results for a single gene in the MA plot. The
first argument should be res$baseMean and the second argument should be res$log2FoldChange.
Press Esc to finish. R will print out the row number of the gene you selected. Use this to index
the res object.

This plot demonstrates that only genes with a large average normalized count contain sufficient infor-
mation to yield a significant call.
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Figure 2: MA-plot The MA-plot shows the log2 fold changes from the treatment over the mean
of normalized counts, i.e. the average of counts normalized by size factor. The DESeq2 package
incorporates a prior on log2 fold changes, resulting in moderated estimates from genes with low counts
and highly variable counts, as can be seen by the narrowing of spread of points on the left side of the
plot.

Also note DESeq2 ’s shrinkage estimation of log fold changes (LFCs): When count values are too low to
allow an accurate estimate of the LFC, the value is “shrunken” towards zero to avoid that these values,
which otherwise would frequently be unrealistically large, dominate the top-ranked log fold changes.

Whether a gene is called significant depends not only on its LFC but also on its within-group variability,
which DESeq2 quantifies as the dispersion. For strongly expressed genes, the dispersion can be under-
stood as a squared coefficient of variation: a dispersion value of 0.01 means that the gene’s expression
tends to differ by typically

√
0.01 = 10% between samples of the same treatment group. For weak

genes, the Poisson noise is an additional source of noise, which is added to the dispersion.

The function plotDispEsts visualizes DESeq2 ’s dispersion estimates:

plotDispEsts( dds, ylim = c(1e-6, 1e1) )

The black points are the dispersion estimates for each gene as obtained by considering the information
from each gene separately. Unless one has many samples, these values fluctuate strongly around their
true values. Therefore, we fit the red trend line, which shows the dispersions’ dependence on the mean,
and then shrink each gene’s estimate towards the red line to obtain the final estimates (blue points) that
are then used in the hypothesis test. The blue circles above the main “cloud” of points are genes which

http://bioconductor.org/packages/release/bioc/html/DESeq2.html
http://bioconductor.org/packages/release/bioc/html/DESeq2.html
http://bioconductor.org/packages/release/bioc/html/DESeq2.html
http://bioconductor.org/packages/release/bioc/html/DESeq2.html
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Figure 3: Plot of dispersion estimates See text for details

have high gene-wise dispersion estimates which are labelled as dispersion outliers. These estimates are
therefore not shrunk toward the fitted trend line.

Another useful diagnostic plot is the histogram of the p values (Fig. 4).

hist( res$pvalue, breaks=20, col="grey" )

Exercise 6. The p value histogram has some spikes, and one large spike at 1. What happens if
you plot the histogram for only those genes with res$baseMean greater than 10?

3.3 Independent filtering

The MA plot (Figure 2) highlights an important property of RNA-Seq data. For weakly expressed genes,
we have no chance of seeing differential expression, because the low read counts suffer from so high
Poisson noise that any biological effect is drowned in the uncertainties from the read counting. We can
also show this by examining the ratio of small p values (say, less than, 0.01) for genes binned by mean
normalized count:

# create bins using the quantile function

qs <- c( 0, quantile( res$baseMean[res$baseMean > 0], 0:7/7 ) )

# "cut" the genes into the bins

bins <- cut( res$baseMean, qs )
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Figure 4: Histogram of the p values returned by the test for differential expression

# rename the levels of the bins using the middle point

levels(bins) <- paste0("~",round(.5*qs[-1] + .5*qs[-length(qs)]))

# calculate the ratio of p values less than .01 for each bin

ratios <- tapply( res$pvalue, bins, function(p) mean( p < .01, na.rm=TRUE ) )

# plot these ratios

barplot(ratios, xlab="mean normalized count", ylab="ratio of small p values")

At first sight, there may seem to be little benefit in filtering out these genes. After all, the test found
them to be non-significant anyway. However, these genes have an influence on the multiple testing
adjustment, whose performance improves if such genes are removed. By removing the weakly-expressed
genes from the input to the FDR procedure, we can find more genes to be significant among those
which we keep, and so improved the power of our test. This approach is known as independent filtering.

The DESeq2 software automatically performs independent filtering which maximizes the number of
genes which will have adjusted p value less than a critical value (by default, alpha is set to 0.1). This
automatic independent filtering is performed by, and can be controlled by, the results function. We
can observe how the number of rejections changes for various cutoffs based on mean normalized count.
The following optimal threshold and table of possible values is stored as an attribute of the results
object.

attr(res,"filterThreshold")

## 70%

http://bioconductor.org/packages/release/bioc/html/DESeq2.html
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Figure 5: Ratio of small p values for groups of genes binned by mean normalized count

## 127

plot(attr(res,"filterNumRej"),type="b",

xlab="quantiles of 'baseMean'",

ylab="number of rejections")

The term independent highlights an important caveat. Such filtering is permissible only if the filter
criterion is independent of the actual test statistic [3]. Otherwise, the filtering would invalidate the test
and consequently the assumptions of the BH procedure. This is why we filtered on the average over all
samples: this filter is blind to the assignment of samples to the treatment and control group and hence
independent.

3.4 Exporting results

Finally, we note that you can easily save the results table in a CSV file, which you can then load with
a spreadsheet program such as Excel:

write.csv( as.data.frame(res), file="results.csv" )

3.5 Gene-set enrichment analysis

Do the genes with a strong up- or down-regulation have something in common? We perform next a
gene-set enrichment analysis (GSEA) to examine this question.



BioC2014: RNA-Seq workflow for differential gene expression 26

● ● ●
●

● ●

●

●

●

●

●

●

●
●

●
●

● ●

●

●

0.0 0.2 0.4 0.6 0.8

14
0

18
0

22
0

quantiles of 'baseMean'

nu
m

be
r 

of
 r

ej
ec

tio
ns

Figure 6: Independent filtering. DESeq2 automatically determines a threshold, filtering on mean
normalized count, which maximizes the number of genes which will have an adjusted p value less than
a critical value.

As noted in the lecture, gene-set enrichment analysis with RNA-Seq data entails some subtleties. Briefly,
a number of different approaches have been proposed that each imply slightly different null hypotheses
that are being tested against, and their biologically interpretation differs. This is a topic of ongoing
research. We here present a relatively simplistic approach, to demonstrate the basic ideas, but note
that a more careful treatment will be needed for more definitive results.

We use the gene sets in the Reactome database

library( "reactome.db" )

This database works with Entrez IDs, so we will need the entrezid column that we added earlier to
the res object.

First, we subset the results table, res, to only those genes for which the Reactome database has data
(i.e, whose Entrez ID we find in the respective key column of reactome.db) and for which the DESeq2
test gave an adjusted p value that was not NA.

res2 <- res[ res$entrezid %in% keys( reactome.db, "ENTREZID" ) &

!is.na( res$padj ) , ]

head(res2)

## log2 fold change (MAP): treatment DPN vs Control

## Wald test p-value: treatment DPN vs Control

http://bioconductor.org/packages/release/bioc/html/DESeq2.html
http://bioconductor.org/packages/release/bioc/html/DESeq2.html
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## DataFrame with 6 rows and 8 columns

## baseMean log2FoldChange lfcSE stat pvalue

## <numeric> <numeric> <numeric> <numeric> <numeric>

## ENSG00000000419 304 -0.01695 0.0952 -0.178 0.859

## ENSG00000001084 312 0.03981 0.1023 0.389 0.697

## ENSG00000001167 399 -0.05600 0.0971 -0.577 0.564

## ENSG00000001630 464 0.07000 0.0968 0.723 0.469

## ENSG00000002822 170 -0.00193 0.1378 -0.014 0.989

## ENSG00000003056 996 0.00772 0.0678 0.114 0.909

## padj hgnc_symbol entrezid

## <numeric> <character> <character>

## ENSG00000000419 0.981 DPM1 8813

## ENSG00000001084 0.954 GCLC 2729

## ENSG00000001167 0.936 NFYA 4800

## ENSG00000001630 0.912 CYP51A1 1595

## ENSG00000002822 0.998 MAD1L1 8379

## ENSG00000003056 0.986 M6PR 4074

Using select, a function from AnnotationDbi for querying database objects, we get a table with the
mapping from Entrez IDs to Reactome Path IDs

reactomeTable <- AnnotationDbi::select( reactome.db,

keys=as.character(res2$entrezid), keytype="ENTREZID",

columns=c("ENTREZID","REACTOMEID") )

## Warning: ’select’ and duplicate query keys resulted in 1:many mapping between

## keys and return rows

head(reactomeTable)

## ENTREZID REACTOMEID

## 1 8813 162699

## 2 8813 163125

## 3 8813 392499

## 4 8813 446193

## 5 8813 446203

## 6 8813 446219

The next code chunk transforms this table into an incidence matrix. This is a Boolean matrix with one
row for each Reactome Path and one column for each unique gene in res2, which tells us which genes
are members of which Reactome Paths. (If you want to understand how this chunk exactly works, read
up about the tapply function.)

incm <- do.call( rbind, with(reactomeTable, tapply(

ENTREZID, factor(REACTOMEID), function(x) res2$entrezid %in% x ) ))

colnames(incm) <- res2$entrez

str(incm)
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## logi [1:1458, 1:3400] FALSE FALSE FALSE FALSE FALSE FALSE ...

## - attr(*, "dimnames")=List of 2

## ..$ : chr [1:1458] "1059683" "109581" "109582" "109606" ...

## ..$ : chr [1:3400] "8813" "2729" "4800" "1595" ...

We remove all rows corresponding to Reactome Paths with less than 20 or more than 80 assigned genes.

within <- function(x, lower, upper) (x>=lower & x<=upper)

incm <- incm[ within(rowSums(incm), lower=20, upper=80), ]

To test whether the genes in a Reactome Path behave in a special way in our experiment, we calculate
a number of statistics, including a t-statistic to see whether the average of the genes’ log2 fold change
values in the gene set is different from zero. To facilitate the computations, we define a little helper
function:

testCategory <- function( reactomeID ) {
isMember <- incm[ reactomeID, ]

data.frame(

reactomeID = reactomeID,

numGenes = sum( isMember ),

avgLFC = mean( res2$log2FoldChange[isMember] ),

sdLFC = sd( res2$log2FoldChange[isMember] ),

zValue = mean( res2$log2FoldChange[isMember] ) /

sd( res2$log2FoldChange[isMember] ),

strength = sum( res2$log2FoldChange[isMember] ) / sqrt(sum(isMember)),

pvalue = t.test( res2$log2FoldChange[ isMember ] )$p.value,

reactomeName = reactomePATHID2NAME[[reactomeID]],

stringsAsFactors = FALSE ) }

The function can be called with a Reactome Path ID:

testCategory("109606")

## reactomeID numGenes avgLFC sdLFC zValue strength pvalue

## 1 109606 31 -0.0222 0.0777 -0.285 -0.123 0.123

## reactomeName

## 1 Homo sapiens: Intrinsic Pathway for Apoptosis

As you can see the function not only performs the t test and returns the p value but also lists other useful
information such as the number of genes in the category, the average log fold change, a “strength”
measure (see below) and the name with which Reactome describes the Path.

We call the function for all Paths in our incidence matrix and collect the results in a data frame:

reactomeResult <- do.call( rbind, lapply( rownames(incm), testCategory ) )

As we performed many tests, we should again use a multiple testing adjustment.
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reactomeResult$padjust <- p.adjust( reactomeResult$pvalue, "BH" )

This is a list of Reactome Paths which are significantly differentially expressed in our comparison of
DPN treatment with control, sorted according to sign and strength of the signal:

reactomeResultSignif <- reactomeResult[ reactomeResult$padjust < 0.05, ]

head( reactomeResultSignif[ order(-reactomeResultSignif$strength), ] )

## reactomeID numGenes avgLFC sdLFC zValue strength pvalue

## 174 191273 21 0.1081 0.0989 1.092 0.495 6.79e-05

## 308 381070 41 0.0706 0.1390 0.508 0.452 2.34e-03

## 60 1638091 30 0.0688 0.1074 0.640 0.377 1.50e-03

## 150 1799339 75 0.0408 0.0779 0.524 0.354 2.15e-05

## 405 72689 64 0.0291 0.0728 0.399 0.232 2.21e-03

## 23 1169091 53 -0.0258 0.0620 -0.416 -0.188 3.80e-03

## reactomeName

## 174 Homo sapiens: Cholesterol biosynthesis

## 308 Homo sapiens: IRE1alpha activates chaperones

## 60 Homo sapiens: Heparan sulfate/heparin (HS-GAG) metabolism

## 150 Homo sapiens: SRP-dependent cotranslational protein targeting to membrane

## 405 Homo sapiens: Formation of a pool of free 40S subunits

## 23 Homo sapiens: Activation of NF-kappaB in B cells

## padjust

## 174 0.00784

## 308 0.04160

## 60 0.03297

## 150 0.00332

## 405 0.04113

## 23 0.04887

However, as discussed in the lecture, it is highly questionable that a t test is appropriate here. After all,
genes in a set are typically correlated, and this violates the assumption of independence that is at the
core of a t test. Hence, should we really look at p values from t tests? A p value obtained by sample
permutation would solve this issue as sample permutation preserves and so accounts for gene-gene
correlation. However, with only four subjects, we do not have enough samples for this.

Hence, it may be more prudent to disregard these questionable p values altogether and instead look at a
more primitive statistic, such as simply the average LFC within a path, perhaps divided by the standard
deviation. We have stored this above as zValue.

head( reactomeResult[ order(-reactomeResult$zValue), ] )

## reactomeID numGenes avgLFC sdLFC zValue strength pvalue

## 174 191273 21 0.1081 0.0989 1.092 0.495 6.79e-05

## 60 1638091 30 0.0688 0.1074 0.640 0.377 1.50e-03

## 229 2426168 26 0.0629 0.1163 0.541 0.321 1.07e-02

## 150 1799339 75 0.0408 0.0779 0.524 0.354 2.15e-05

## 308 381070 41 0.0706 0.1390 0.508 0.452 2.34e-03

## 57 163125 20 0.0356 0.0703 0.507 0.159 3.52e-02
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## reactomeName

## 174 Homo sapiens: Cholesterol biosynthesis

## 60 Homo sapiens: Heparan sulfate/heparin (HS-GAG) metabolism

## 229 Homo sapiens: Activation of gene expression by SREBF (SREBP)

## 150 Homo sapiens: SRP-dependent cotranslational protein targeting to membrane

## 308 Homo sapiens: IRE1alpha activates chaperones

## 57 Homo sapiens: Post-translational modification: synthesis of GPI-anchored proteins

## padjust

## 174 0.00784

## 60 0.03297

## 229 0.08417

## 150 0.00332

## 308 0.04160

## 57 0.12619

If such an analysis is only considered exploratory, we may inspect various such tables and see whether the
ranking of Paths helps us make sense of the data. Nevertheless, there is certainly room for improvement
here.

4 Exploratory data analysis

4.1 The rlog transform

Many common statistical methods for exploratory analysis of multidimensional data, especially methods
for clustering and ordination (e. g., principal-component analysis and the like), work best for (at least
approximately) homoskedastic data; this means that the variance of an observable quantity (i.e., here,
the expression strength of a gene) does not depend on the mean. In RNA-Seq data, however, variance
grows with the mean. For example, if one performs PCA directly on a matrix of normalized read counts,
the result typically depends only on the few most strongly expressed genes because they show the largest
absolute differences between samples. A simple and often used strategy to avoid this is to take the
logarithm of the normalized count values plus a small pseudocount; however, now the genes with low
counts tend to dominate the results because, due to the strong Poisson noise inherent to small count
values, they show the strongest relative differences between samples.

As a solution, DESeq2 offers the regularized-logarithm transformation, or rlog for short. For genes
with high counts, the rlog transformation differs not much from an ordinary log2 transformation. For
genes with lower counts, however, the values are shrunken towards the genes’ averages across all
samples. Using an empirical Bayesian prior in the form of a ridge penalty, this is done such that the
rlog-transformed data are approximately homoskedastic.

Note that the rlog transformation is provided for applications other than differential testing. For dif-
ferential testing we recommend the DESeq function applied to raw counts, as described earlier in this
vignette, which also takes into account the dependence of the variance of counts on the mean value
during the dispersion estimation step.

http://bioconductor.org/packages/release/bioc/html/DESeq2.html
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Figure 7: Scatter plot of sample 2 vs sample 1. Left: using an ordinary log2 transformation.
Right: Using the rlog transformation.

The function rlog returns a SummarizedExperiment object which contains the rlog-transformed values
in its assay slot:

rld <- rlog( dds )

assay(rld)[ 1:3, 1:3]

## SRS308866 SRS308868 SRS308870

## ENSG00000000003 9.761 9.728 9.865

## ENSG00000000005 -0.981 -0.741 -0.945

## ENSG00000000419 8.065 8.077 8.119

To show the effect of the transformation, we plot the first sample against the second, first simply using
the log2 function (after adding 1, to avoid taking the log of zero), and then using the rlog-transformed
values.

par( mfrow = c( 1, 2 ) )

plot( log2( 1+counts(dds, normalized=TRUE)[, 1:2] ), col="#00000020", pch=20, cex=0.3 )

plot( assay(rld)[, 1:2], col="#00000020", pch=20, cex=0.3 )

Note that, in order to make it easier to see where several points are plotted on top of each other, we
set the plotting color to a semi-transparent black (encoded as #00000020) and changed the points to
solid disks (pch=20) with reduced size (cex=0.3)4.

In Figure 7, we can see how genes with low counts seem to be excessively variable on the ordinary
logarithmic scale, while the rlog transform compresses differences for genes for which the data cannot
provide good information anyway.

4The function heatscatter from the package LSD offers a colorful alternative.

http://cran.fhcrc.org/web/packages/LSD/index.html
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Figure 8: Heatmap of Euclidean sample distances after rlog transformation.

4.2 Sample distances

A useful first step in an RNA-Seq analysis is often to assess overall similarity between samples: Which
samples are similar to each other, which are different? Does this fit to the expectation from the
experiment’s design?

We use the R function dist to calculate the Euclidean distance between samples. To avoid that the
distance measure is dominated by a few highly variable genes, and have a roughly equal contribution
from all genes, we use it on the rlog-transformed data:

sampleDists <- dist( t( assay(rld) ) )

as.matrix( sampleDists )[ 1:3, 1:3 ]

## SRS308866 SRS308868 SRS308870

## SRS308866 0.0 32.9 31.2

## SRS308868 32.9 0.0 33.7

## SRS308870 31.2 33.7 0.0

Note the use of the function t to transpose the data matrix. We need this because dist calculates
distances between data rows and our samples constitute the columns.

We visualize the distances in a heatmap, using the function heatmap.2 from the gplots package.

sampleDistMatrix <- as.matrix( sampleDists )

rownames(sampleDistMatrix) <- paste( rld$treatment,

http://cran.fhcrc.org/web/packages/gplots/index.html


BioC2014: RNA-Seq workflow for differential gene expression 33

1 : Control
1 : DPN
1 : OHT
2 : Control
2 : DPN
2 : OHT
3 : Control
3 : DPN
3 : OHT
4 : Control
4 : DPN
4 : OHT

PC1

P
C

2

−20

−10

0

10

20

−20 0 20 40

●●●

●●●

●●●

●●●

Figure 9: Principal components analysis (PCA) of samples after rlog transformation.

rld$patient, sep="-" )

colnames(sampleDistMatrix) <- NULL

library( "gplots" )

library( "RColorBrewer" )

colours = colorRampPalette( rev(brewer.pal(9, "Blues")) )(255)

heatmap.2( sampleDistMatrix, trace="none", col=colours)

Note that we have changed the row names of the distance matrix to contain treatment type and patient
number instead of sample ID, so that we have all this information in view when looking at the heatmap
(Fig. 8).

Another way to visualize sample-to-sample distances is a principal-components analysis (PCA). In this
ordination method, the data points (i.e., here, the samples) are projected onto the 2D plane such that
they spread out optimally (Fig. 9).

colours <- c(rgb(1:3/4,0,0),rgb(0,1:3/4,0),rgb(0,0,1:3/4),rgb(1:3/4,0,1:3/4))

plotPCA( rld, intgroup = c("patient","treatment"), col=colours )
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Figure 10: Heatmap with gene clustering.

Here, we have used the function plotPCA which comes with DESeq2 . The two terms specified as
intgroup are column names from our sample data; they tell the function to use them to choose
colours.

From both visualizations, we see that the differences between patients is much larger than the difference
between treatment and control samples of the same patient. This shows why it was important to account
for this paired design (“paired”, because each treated sample is paired with one control sample from the
same patient). We did so by using the design formula ∼ patient + treatment when setting up the
data object in the beginning. Had we used an un-paired analysis, by specifying only ∼ treatment, we
would not have found many hits, because then, the patient-to-patient differences would have drowned
out any treatment effects.

Here, we have performed this sample distance analysis towards the end of our analysis. In practice,
however, this is a step suitable to give a first overview on the data. Hence, one will typically carry
out this analysis as one of the first steps in an analysis. To this end, you may also find the function
arrayQualityMetrics, from the package of the same name, useful.

4.3 Gene clustering

In the heatmap of Fig. 8, the dendrogram at the side shows us a hierarchical clustering of the samples.
Such a clustering can also be performed for the genes.

Since the clustering is only relevant for genes that actually carry signal, one usually carries it out only
for a subset of most highly variable genes. Here, for demonstration, let us select the 35 genes with the
highest variance across samples:

http://bioconductor.org/packages/release/bioc/html/DESeq2.html
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library( "genefilter" )

topVarGenes <- head( order( rowVars( assay(rld) ), decreasing=TRUE ), 35 )

The heatmap becomes more interesting if we do not look at absolute expression strength but rather at
the amount by which each gene deviates in a specific sample from the gene’s average across all samples.
Hence, we center and scale each genes’ values across samples, and plot a heatmap.

heatmap.2( assay(rld)[ topVarGenes, ], scale="row",

trace="none", dendrogram="column",

col = colorRampPalette( rev(brewer.pal(9, "RdBu")) )(255),

ColSideColors = c( Control="gray", DPN="darkgreen", OHT="orange" )[

colData(rld)$treatment ] )

We can now see (Fig. 10) blocks of genes which covary across patients. Often, such a heatmap is
insightful, even though here, seeing these variations across patients is of limited value because we are
rather interested in the effects between the treatments from each patient.

Exercise 7. This heatmap shows genes that vary strongest between patients. In our differential
expression analysis, we found a list of genes that varied significantly between treatment and control.
Display these genes (or maybe only those showing up-regulation upon treatment) in a similar
heatmap. Can you confirm the test result from visual inspection of the heatmap?

Exercise 8. In the abstract of the publication for this dataset, 5 parathyroid-related genes are
mentioned as differentially expressed due to OHT or DPN treatment in the 48 hour samples com-
pared to control: c("CASR","VDR","JUN","CALR","ORAI2"). Using the results table for OHT vs
Control and the results table for DPN vs Control, find the rank of these genes in terms of smallest
p values using the match function.
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5 Going further

Exercise 9. Analyze more datasets: use the function defined in the following code chunk to
download a processed count matrix from the ReCount websitea.

Suggested datasets:

• hammer – spinal nerve ligation of rats at 2 time points (note a misspelling in one of the time
points in colData). Perform differential expression and describe the most significant gene
sets. Do these have something to do with spinal nerve ligation?
• wang – human tissue comparison. Make a PCA plot of the samples
• bottomly – 2 inbred mouse strains. Make a PCA plot of the samples

Note that the annotation libraries for rat and mouse are org.Rn.eg.db and org.Mm.eg.db.

ahttp://bowtie-bio.sourceforge.net/recount/

The following function takes a name of the dataset from the ReCount website, e.g. "hammer", and
returns a SummarizedExperiment object.

recount2SE <- function(name) {
filename <- paste0(name,"_eset.RData")

if (!file.exists(filename)) download.file(paste0(

"http://bowtie-bio.sourceforge.net/recount/ExpressionSets/",

filename),filename)

load(filename)

e <- get(paste0(name,".eset"))

se <- SummarizedExperiment(SimpleList(counts=exprs(e)),

colData=DataFrame(pData(e)))

se

}

http://bioconductor.org/packages/release/data/annotation/html/org.Rn.eg.db.html
http://bioconductor.org/packages/release/data/annotation/html/org.Mm.eg.db.html
http://bowtie-bio.sourceforge.net/recount/
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6 See also

• DEXSeq for differential exon usage. See the accompanying vignette, Analyzing RNA-seq data for
differential exon usage with the DEXSeq package, which is similar to the style of this tutorial.
• Other Bioconductor packages for RNA-Seq differential expression: edgeR , limma, DSS , BitSeq

(transcript level), EBSeq, cummeRbund (for importing and visualizing Cufflinks results), monocle
(single-cell analysis). More at http://bioconductor.org/packages/release/BiocViews.

html#___RNASeq

• Methods for gene set testing: romer and roast in limma, permutation based: safe
• Packages for normalizing for covariates (e.g., GC content): cqn, EDASeq
• Packages for detecting batches: sva, RUVSeq
• Generating HTML results tables with links to outside resources (gene descriptions): Reporting-

Tools
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7 Session Info

As last part of this document, we call the function sessionInfo, which reports the version numbers
of R and all the packages used in this session. It is good practice to always keep such a record as it will
help to trace down what has happened in case that an R script ceases to work because a package has
been changed in a newer version. The session information should also always be included in any emails
to the Bioconductor mailing list.
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• Other packages: AnnotationDbi 1.26.0, Biobase 2.24.0, BiocGenerics 0.10.0,
BiocInstaller 1.14.2, Biostrings 2.32.1, BSgenome 1.32.0, DBI 0.2-7, DESeq2 1.4.5,
devtools 1.5, genefilter 1.46.1, GenomeInfoDb 1.0.2, GenomicAlignments 1.0.3,
GenomicFeatures 1.16.2, GenomicRanges 1.16.3, gplots 2.14.1, IRanges 1.22.9, knitr 1.6,
org.Hs.eg.db 2.14.0, parathyroidSE 1.2.0, RColorBrewer 1.0-5, Rcpp 0.11.2,
RcppArmadillo 0.4.320.0, reactome.db 1.48.0, Rsamtools 1.16.1, RSQLite 0.11.4, slidify 0.4.5,
XVector 0.4.0
• Loaded via a namespace (and not attached): annotate 1.42.1, BatchJobs 1.3, BBmisc 1.7,

BiocParallel 0.6.1, BiocStyle 1.2.0, biomaRt 2.20.0, bitops 1.0-6, brew 1.0-6, caTools 1.17,
checkmate 1.1, codetools 0.2-8, digest 0.6.4, evaluate 0.5.5, fail 1.2, foreach 1.4.2,
formatR 0.10, gdata 2.13.3, geneplotter 1.42.0, grid 3.1.0, gtools 3.4.1, highr 0.3, httr 0.3,
iterators 1.0.7, KernSmooth 2.23-12, lattice 0.20-29, locfit 1.5-9.1, markdown 0.7,
memoise 0.2.1, RCurl 1.95-4.1, rtracklayer 1.24.2, sendmailR 1.1-2, splines 3.1.0, stats4 3.1.0,
stringr 0.6.2, survival 2.37-7, tools 3.1.0, whisker 0.3-2, XML 3.98-1.1, xtable 1.7-3,
yaml 2.1.13, zlibbioc 1.10.0
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