
Scalable Genomics with R and Bioconductor 1

,,,,

Scalable Genomics with R and Bioconductor

Michael Lawrence and Martin Morgan

June 23, 2014

Contents

1 Technical setup 2

2 Introduction 3

3 Limiting resource consumption 4
3.1 Restricting queries . 4

3.1.1 Exercises . 6
3.2 Compressing genomic vectors . 6

3.2.1 Exercises . 8
3.3 Compressing lists . 9

3.3.1 Exercises . 11

4 Iterating 11
4.1 Splitting data . 11

4.1.1 Exercises . 13
4.2 Iterating in parallel . 14

4.2.1 Exercises . 15

5 Scaling Genomic Graphics 15
5.1 Managing graphical resources . 15
5.2 Displaying summaries efficiently . 16
5.3 Generating plots dynamically . 17

6 Conclusion 20

1 Technical setup

This lab depends on a subset of a real-world whole-genome sequencing dataset, originally downloaded from the
GATK resource bundle. These data amount to multiple gigabytes; thus, we will distribute the data on request
via USB thumb drive. Copy the data from the USB device to its own directory and upon starting R, set the
working directory to that path with setwd(). The code in this tutorial expects the files to be located in the
current working directory.

The code has been tested to run to completion on a commodity laptop with 8GB of RAM. It may work on
systems with lesser memory. Some steps will require some patience due to long running times.

2

Scalable Genomics with R and Bioconductor 3

2 Introduction

Big data is encountered in genomics for two reasons: the size of the genome and the heterogeneity of populations.
Complex organisms, such as plants and animals, have genomes on the order of billions of base pairs (the human
genome consists of over three billion base pairs). The diversity of populations, whether of organisms, tissues or
cells, means we need to sample deeply to detect low frequency events. To interrogate long and/or numerous
genomic sequences, many measurements are necessary. For example, a typical whole genome sequencing
experiment will consist of over one billion reads of perhaps 75bp each. The reads are aligned across billions of
positions, most of which have been annotated in some way. This experiment may be repeated for thousands of
samples. Such a dataset does not fit within the memory of a current commodity computer, and is not processed
in a timely and interactive manner. To successfully wrangle a large dataset, we need to intimately understand
its structure and carefully consider the questions posed of it.

The R language [?] is widely applied to problems in statistics and data analysis, including the analysis of
genomic data [?], as evidenced by the large number of available software packages providing features ranging
from data manipulation to machine learning. R provides high-level programming abstractions that make it
accessible to statisticians and bioinformatics professionals who are not software engineers per se. One aspect of
R that is particularly useful is its ‘copy on write’ memory semantics, which insulates the user from the details of
reference-based memory management. The fundamental R data structure is the atomic vector, which is both
convenient and efficient for moderately sized data. An atomic vector is homogeneous in data type and so easily
stored in one contiguous block of memory. Many vector operations are implemented in native (C) code, which
avoids invoking the R interpreter as it iterates over vector elements. In a typical multivariate dataset, there is
heterogeneity in data type across the columns, and homogeneity along a column, so vectors are naturally suited
for column-oriented data storage, as in the basic data.frame. Vectorized computations can usually be expressed
with simpler and more concise code compared to explicit iteration. The strengths of R are also its weaknesses:
the R API encourages users to store entire datasets in memory as vectors. These vectors are implictly and
silently copied to achieve copy-on-write semantics, contributing to high memory usage and poor performance.

There are general strategies for handling large genomic data that are well suited to R programs. Sometimes
the analyst is only interested in one aspect of the data, such as that overlapping a single gene. In such cases,
restricting the data to that subset is a valid and effective means of data reduction. However, once our interests
extend beyond a single region, or the region becomes too large, resource constraints dictate that we cannot
load the entire dataset into memory at once, and we need to iterate over the data to reduce them to a set of
interpretable summaries.

Iteration lends itself to parallelism, i.e., computing on multiple parts of the same problem simultaneously. Thus,
in addition to meeting memory contraints, iteration lets us leverage additional processing resources to reduce
overall computation time. Investing in additional hardware is often more economical than investment in software
optimization. This is particularly relevant in scientific computing, where we are faced with a diverse, rapidly
evolving set of unsolved problems, each requiring specialized software. The costs of investment in general
purpose hardware are amortized over each problem, rather than paid each time for software optimization. This
also relates to maintainability: optimization typically comes at a cost of increased code complexity. Many
types of summary and filter operations are cheap to implement in parallel, because the data partitions can be
processed independently. We call this type of operation embarrassingly parallel. For example, the counting of
reads overlapping a gene does not depend on the counting for a different gene.

Given the complexity and scope of the data, analysts often rely on visual tools that display summaries and
restricted views to communicate information at different scales and level of detail, from the whole genome
to single nucleotide resolution. Plot interactivity is always a useful feature when exploring data, and this is

Scalable Genomics with R and Bioconductor 4

particularly true with big data. The view is always restricted in terms of its region and detail level, so, in order
to gain a broader and deeper understanding of the data, the viewer will need to adjust the view, either by
panning to a different region, zooming to see more details or adjusting the parameters of the summary step.
The size of the genome and the range of scales make it infeasible to pre-render every possible view. Thus,
the views need to be generated dynamically, in lazy reaction to the user. Performance is an important factor
in interpretability: slow transitions distract the viewer and obfuscate relationships between views. Dynamic
generation requires fast underlying computations to load, filter and summarize the data, and fast rendering to
display the processed data on the screen.

This tutorial demonstrates strategies to surmount computational and visualization challenges in the analysis
of large genomic data, and how they have been implemented in the R programming language by a number
of packages from the Bioconductor project [?]. We will demonstrate their application to a real dataset: the
whole-genome sequencing of the HapMap cell line NA12878, the daughter in the CEU trio. The GATK project
genotyped the sample according to their best practices and included the calls in their resource bundle, along
with the alignments for chr20, one of the shortest chromosomes. Realistically, one would analyze the data for
the entire genome, but the chr20 subset is still too large to be processed on a commodity laptop and thus is
sufficient for our purposes.

3 Limiting resource consumption

Our ultimate goal is to process and summarize a large dataset in its entirety, and iteration enables this by
limiting the resource commitment at a given point in time. Limiting resource consumption generalizes beyond
iteration and is a fundamental technique for computing with big data. In many cases, it may render iteration
unnecessary. Two effective approaches for being frugal with data are restriction and compression. Restriction
means controlling which data are loaded and lets us avoid wasting resources on irrelevant or excessive data.
Compression helps by representing the same data with fewer resources.

3.1 Restricting queries

Restriction is appropriate when the question of interest requires only a fraction of the available data. It is
applicable in different ways to sequence vectors, range-based annotations and feature-by-sample matrices. We
can restrict data along two dimensions: row/record-wise and/or column/attribute-wise, with genomic overlap
being an important row filter. Sequences and genomic vectors are relatively simple structures that are often
restricted by range, i.e., extraction of a contiguous subsequence of per-position values. Row-wise restriction is
useful when working with large sets of experimentally-generated short sequences. The sequence aligner generates
alignments as annotations on a reference sequence, and these alignments have many attributes, such as genomic
position, score, gaps, sequence, and sequence quality. Restriction can exclude the irrelevant attributes. Analysts
often slice large matrices, such as those consisting of SNP calls, by both row (SNP) and column (individual).

A special mode of restriction is to randomly generate a selection of records. Down-sampling can address many
questions, especially during quality assessment and data exploration. For example, short reads are initially
summarized in FASTQ files containing a plain-text representation of base calls and corresponding quality scores.
Basic statistics of quality assessment such as the nucleotide count as a function of sequencing cycle or overall
GC content are very well characterized by random samples of a million reads, which might be 1% of the data.
This sample fits easily in memory. Computations on this size of data are very nimble, enabling interactive
exploration on commodity computers. An essential requirement is that the data represent a random sample.

Scalable Genomics with R and Bioconductor 5

The ShortRead package is designed for the QA and exploratory analysis of the output from high-througput
sequencing instruments. It defines the FastqSampler object, which draws random samples from FASTQ files.
The sequence reads in our dataset have been extracted into a FASTQ file from the publicly available alignments.
We wish to check a few quality statistics before proceeding. We begin by loading a random sample of one million
reads from the file:

library(CSAMA2014ScalableComputingLab)
fastq.sampler <- FastqSampler(NA12878.20.fastq, n = 1e6,

readerBlockSize = 1e6)
set.seed(1975)
fastq <- yield(fastq.sampler)
length(fastq)

1000000

With the sequences loaded, we can compute some QA statistics, like the overall base call tally:

qa.result <- qa(fastq, "NA12878")
qa.result[["baseCalls"]]

A C G T N
NA12878 28700201 21381458 21504601 28681010 732730

In a complete workflow, we would generate an HTML QA report via the report function.

An example of a situation where random sampling does not work is when prototyping a statistical method that
depends on a significant amount of data to achieve reasonable power. Variant calling is a specific example:
restricting the number of reads would lead to less coverage, less power and less meaningful results. Instead, we
need to restrict the analysis to a particular region and include all of the reads falling within it.

To optimize range-based queries, we often sort and index our data structures by genomic coordinates. We
should consider indexing an investment, because an index is generally expensive to generate but cheap to query.
The justification is that we will issue a sufficient number of queries to outweigh the initial generation cost.
Three primary file formats follow this pattern: BAM, Tabix and BigWig [?, ?]. Each format is best suited
for a particular type of data. The BAM format is specially designed for sequence alignments and stores the
complex alignment structure, as well as the aligned sequence. Tabix is meant for indexing general range-based
annotations stored in tabular text files, such as BED and GFF. Finally, BigWig is optimized for storing genome-
length vectors, such as the coverage from a sequencing experiment. BAM and Tabix compress the primary data
with block-wise gzip compression and save the index as a separate file. BigWig files are similarly compressed
but are self-contained.

The Rsamtools package is an interface between R and the samtools library, which implements access to BAM,
Tabix and other binary file formats. Rsamtools enables restriction of BAM queries through the ScanBamParam
object. This object can be used as an argument to all BAM input functions, and enables restriction to particular
fields of the BAM file, to specific genomic regions of interest, and to properties of the aligned reads (e.g.,
restricting input to paired-end alignments that form proper pairs).

One common scenario in high throughput sequencing is the calculation of statistics such as coverage (the
number of short sequence reads overlapping each nucleotide in the genome). The data required for this
calculation usually come from very large BAM files containing alignment coordinates (including the alignment
‘cigar’), sequences, and quality scores for tens of millions of short reads. Only the smallest element of these data,
the alignment coordinates, is required for calculation of coverage. By restricting input to alignment coordinates,

Scalable Genomics with R and Bioconductor 6

we transform the computational task from one of complicated memory management of large data to simple
vectorized operations on in-memory objects.

We can directly implement a coverage estimation by specifying a ScanBamParam object that restricts to the
alignment information. The underlying coverage calculation is implemented by the IRanges package, which
sits at the core of the Bioconductor infrastructure and provides fundamental algorithms and data structures for
manipulating and annotating ranges. It is extended by GenomicRanges to add conveniences for manipulating
ranges on the genome.

bam.file <- ScalableGenomics::NA12878.20.bam
param <- ScanBamParam(what=c("pos", "qwidth"),

flag=scanBamFlag(isUnmappedQuery=FALSE))
bam <- scanBam(bam.file, param=param)[[1]]
aln.ranges <- IRanges(bam$pos, width=bam$qwidth)
cov <- coverage(aln.ranges)

This is only an estimate, however, because we have ignored the complex structure of the alignments, e.g., the
insertions and deletions. Rsamtools provides a convenience function for the more accurate calculation:

cov <- coverage(bam.file, param=param)

3.1.1 Exercises

1. See ?FastQSampler and load a sample of 100000 reads, instead of one million. Recompute the ShortRead
QA object and extract the base call counts, as before. How do the results compare with those of the
sample of million reads?

2. To represent the alignment position and structure from a BAM file, the GenomicAlignments package
defines the GAlignments class. To generate a GAlignments object, the readGAlignments() function
performs a restricted query of the BAM file. Use readGAlignments() to load the alignments covering
the first megabase of chr20. This represents a dual restriction by column and range. Calculate the
coverage.

3. For the same subregion of chr20, use scanBam() to create a DataFrame with the rname, strand, pos,
cigar as columns. How does this compare to the GAlignments object loaded in the preceeding exercise?

4. Sometimes, we need a bit more information than the alignments; for example, we may want the read
sequences. Use readGAlignments to load the same GAlignments object as in Exercise 2, except with the
read sequence as an extra column in the mcols().

3.2 Compressing genomic vectors

Some vectors, in particular the coverage, have long stretches of repeated values, often zeroes. An efficient
compression scheme for such cases is run-length encoding. Each run of repeated values is reduced to two
values: the length of the run and the repeated value. This scheme saves space and also reduces computation
time by reducing computation size. For example, the vector 0, 0, 0, 1, 1, 5, 5, 5 would have run-values 0, 1, 5 and
run-lengths 3, 2, 3. The data have been reduced from a size of 8 to a size of 6 (3 values plus 3 lengths). The
IRanges Rle class is a run-length encoded vector that supports the full R vector API on top of the compressed
representation. Operations on an Rle gain efficiency by taking advantage of the compression. For example, the
sum method computes a sum of the run values, using the run lengths as weights. Thus, the time complexity is
on the order of the number of runs, rather than the length of the vector.

Scalable Genomics with R and Bioconductor 7

The cov object we generated in the previous section is a list of Rle objects, one per chromosome.

cov[[20]]

integer-Rle of length 63025520 with 38630545 runs
Lengths: 59990 1 1 7 ... 1 1 60008
Values : 0 1 2 3 ... 6 5 0

compression <- length(cov) / (length(runValue(cov))*2)
compression

[1] 0.8157472

For this whole-genome sequencing, the data are quite dense and complex, so the compression actually decreases
efficiency. However, in the course of analysis we often end up with sparser data and thus better compression
ratios. In this analysis, we are concerned about regions with extremely high coverage: these are often due to
alignment artifacts.

cov.cutoff <- 150L
high.cov <- cov > cov.cutoff
length(high.cov) / (length(runValue(high.cov))*2)

[1] 4829.542

Calculating the sum is then more efficient than with conventional vectors:

high.cov.vector <- as.vector(high.cov)
microbenchmark(sum(high.cov), sum(high.cov.vector))
summary(bm)[,c("expr", "median")]

expr median
1 sum(high.cov) 140.3165
2 sum(high.cov.vector) 82464.1300

Sometimes we are interested in the values of a genomic vector that fall within a set of genomic features.
Examples include the coverage values within a set of called ChIP-seq peaks, or the conservation scores for a
set of motif hits. We could extract the subvectors of interest into a list. However, large lists bring undesirable
overhead, and the data would no longer be easily indexed by genomic position. Instead, we combine the original
vector with the ranges of interest. In IRanges, this is called a Views object. There is an RleViews object for
defining views on top of an Rle.

To demonstrate, we slice our original coverage vector by our high coverage cutoff to yield the regions of high
coverage, overlaid on the coverage itself, as an RleViews object:

high.cov.views <- slice(cov[[20]], cov.cutoff)
head(high.cov.views)

Views on a 63025520-length Rle subject

views:
start end width

[1] 106368 106371 4 [151 152 152 152]
[2] 113559 113559 1 [150]
[3] 113689 113690 2 [151 151]
[4] 113692 113708 17 [150 152 154 155 156 154 152 ...]

Scalable Genomics with R and Bioconductor 8

[5] 113718 113718 1 [150]
[6] 113746 113749 4 [151 150 151 153]

This lets us efficiently calculate the average coverage in each region:

mean.high.cov <- viewMeans(high.cov.views)
head(mean.high.cov)

[1] 151.7500 150.0000 151.0000 151.9412 150.0000 151.2500

The Biostrings package [?] provides XStringViews for views on top of DNA, RNA and amino acid sequences.
XString is a reference, rather than a value as is typical in R, so we can create multiple XStringViews objects
without copying the underlying data. This is an application of the fly-weight design pattern: multiple objects
decorate the same primary data structure, which is stored only once in memory.

We can apply XStringViews for tabulating the nucleotides underlying the high coverage regions. First, we need
to load the sequence for chr20, via the BSgenome package and the addon package for human.

genome <- BSgenome.Hsapiens.UCSC.hg19::BSgenome.Hsapiens.UCSC.hg19
object.size(genome)

26768 bytes

While the human genome consists of billions of bases, our genome object is tiny. This is an example of lazy
loading: chromosomes are loaded, and cached, as requested. In our case, we restrict to chr20 and form the
XStringViews.

chr20.views <- Views(genome$chr20, ranges(high.cov.views))

We verify that the cached sequence occupies the same memory as the subject of the views:

unmasked(genome$chr20)@shared
subject(chr20.views)@shared

SharedRaw of length 63025520 (data starting at 0x7f04d44d9038)
SharedRaw of length 63025520 (data starting at 0x7f04d44d9038)

Finally, we calculate and compare the nucleotide frequencies:

high.cov.freq <- alphabetFrequency(chr20.views, as.prob=TRUE, collapse=TRUE)
chr20.freq <- alphabetFrequency(genome$chr20, as.prob=TRUE)
rbind(high.cov.freq, chr20.freq)[,DNA_BASES]

A C G T
high.cov.freq 0.3134585 0.1817672 0.1792119 0.3255625
chr20.freq 0.2776726 0.2202792 0.2209780 0.2810702

We notice that the high coverage regions are A/T-rich, which is characteristic of low complexity regions.

3.2.1 Exercises

To simplify things, we make this assignment:

cov20 <- cov[[20]]

Scalable Genomics with R and Bioconductor 9

1. We can improve the compression of our cov20 object by setting every value below some threshold (say,
40) to zero or some other constant value. Implement this by treating Rle like any other vector.

2. Implement the first exercise using slice() and the ranges() of the views as the index in the sub-
assignment. How does this compare in performance to the first approach? What some possible reasons
for the difference in performance?

3. Implement the same operation by manipulating the runValue() directly and compare the performance
to the first two approaches. What might explain the difference?

4. Implement an S3 or S4 cut method for Rle and use it to divide the coverage into low, normal and high
coverage, using cutoffs of your choosing.

3.3 Compressing lists

The high coverage regions in our data may be associated with the presence of repetitive elements that confuse
the aligner. We obtain the repeat annotations from the UCSC genome browser with the rtracklayer package,
which, in addition to a browser interface, handles input and output for various annotation file formats, including
BigWig. Our query for the repeats is restricted to chr20, which saves download time. We subset to the simple
and low complexity repeats, which are the most likely to be problematic. NOTE: internet access is required for
this to work.

session <- browserSession()
chr20.range <- GRangesForUCSCGenome("hg19", "chr20")
repeats.table <- getTable(session, "rmsk", chr20.range)
simple.classes <- c("Simple_repeat", "Low_complexity")
repeats.simple <- subset(repeats.table, repClass %in% simple.classes)
repeats <- with(repeats.simple, IRanges(genoStart, genoEnd))

Our goal is to calculate the percent of each high coverage region covered by a repeat. First, we split the repeats
according to overlap with a high coverage region:

hits <- findOverlaps(repeats, high.cov.views)
f <- factor(subjectHits(hits), seq_len(subjectLength(hits)))
repeats.olap <- pintersect(repeats[queryHits(hits)],

ranges(high.cov.views)[subjectHits(hits)])
repeats.split <- split(repeats.olap, f)
class(repeats.split)

[1] "CompressedIRangesList"

The repeats.split object is not an ordinary list.

Long lists are expensive to construct, store and process. Creating a new vector for each group requires time,
and there is storage overhead for each vector. Furthermore, data compression is less efficient when the data
are split across objects. Depending on the implementation of the list elements, these costs can be significant.
This is particularly true of the S4 object system in R [?]. Another detriment to R lists is that list elements
can be of mixed type. Thus, there are are few native routines for computing on lists. For example, the R sum
function efficiently sums the elements of a homogeneous numeric vector, but there is no support for calling sum
to calculate the sum of each numeric vector in a list. Even if such routines did exist for native data types, there
are custom data types, such as ranges, and we aim to facilitate grouping of any data that we can model as a
vector.

Scalable Genomics with R and Bioconductor 10

Vector grouped by color

Split into basic list

Virtual split via partitioning

3 2 4

Figure 1: Grouping via partitioning vs. splitting into multiple objects. Top: the input vector, with elements
belonging to three different groups: red, blue and yellow. Middle: typical splitting of vector into three vectors,
one per group. This brings the overhead of multiple objects. Bottom: the data are virtually split by a partitioning,
encoded by the number of elements in each group (the vector is assumed to be sorted by group).

While the R sum function is incapable of computing group sums, there is an oddly named function called
rowsum that will efficiently compute them, given a numeric vector and a grouping factor. This hints that a
more efficient approach to grouping may be to store the original vector along with a partitioning. The IRanges
R package includes a CompressedList framework that follows this strategy. A CompressedList consists of the
data vector, sorted by group, and a vector of indexes where each group ends in the data vector (see Figure
1). IRanges provides CompressedList implementations for native atomic vectors and other data types in the
IRanges infrastructure, and the framework is extensible to new data types. A CompressedList is homogeneous,
so it is natural to define methods on subclasses to perform operations particular to a type of data. For example,
there is a sum method for the NumericList class that delegates internally to rowsum. This approach bears
similarity to storing data by columns: we improve storage efficiency by storing fewer objects, and we maintain
the data in its most readily computable form. It is also an application of lazy computing, where we delay the
partitioning of the data until a computation requires it. We are then in position to optimize the partitioning
according to the specific requirements of the operation.

Since repeats.list is a CompressedList, we can take advantage of these optimizations.

repeat.cov <- sum(width(repeats.split))
length(repeat.cov)

[1] 3478

sum(repeat.cov) / sum(width(high.cov.views))

[1] 0.01503967

This value can be compared to the percent of chr20 covered:

sum(width(reduce(repeats))) / width(chr20.range)

[1] 0.01490236

Scalable Genomics with R and Bioconductor 11

Instead of a CompressedList, we could have solved this problem using coverage and RleViews (see Exercises).

The downside of compression is that there is overhead to explicit iteration, because we need to extract a new
vector with each step. The Biostrings package has explored a solution. We can convert our XStringViews
object chr20.views to a DNAStringSet that contains one DNAString for each view window. The data for
each DNAString has never been copied from the original chr20 sequence, and any operations on a DNAString
operate directly on the shared data. While this solution may seem obvious, it relies heavily on native code and
is far from the typical behavior of R data structures.

chr20.set <- as(chr20.views, "DNAStringSet")
first.seq <- chr20.set[[1]]
first.seq@shared
unmasked(genome$chr20)@shared

SharedRaw of length 63025520 (data starting at 0x7f04d44d9038)
SharedRaw of length 63025520 (data starting at 0x7f04d44d9038)

The nascent XVector package aims to do the same for other R data types, such as integer, double and logical
values.

3.3.1 Exercises

1. Instead of using a List, summarize repeats.olap by computing its coverage(), forming a Views for the
high coverage regions, and calling viewMeans(), as described in the previous section.

2. Use lapply() and sort() with repeats.split to find the widest repeat in each high coverage region.
Then see ?phead and develop an algorithm that does not rely on lapply. See the code output by
selectMethod(phead, "CompressedList") and figure out how it uses partitionings to avoid calling
lapply() on the list.

4 Iterating

4.1 Splitting data

Iterative summarization of data may be modeled as three separate steps: split, apply and combine [?]. The split
step is typically the only one that depends on the size of the input data. The apply step operates on data of
restricted size, and it should reduce the data to a scale that facilitates combination. Thus, the most challenging
step is the first: splitting the data into chunks small enough to meet resource constraints.

Two modes of splitting are particularly applicable to genomic data: sequential chunking and genomic partitioning.
Sequential chunking is a popular and general technique that simply loads records in fixed-count chunks, according
to the order in which they are stored. Genomic partitioning iterates over a disjoint set of ranges that cover the
genome. Typical partitioning schemes include one range per chromosome and sub-chromosomal ranges of some
uniform size. Efficient range-based iteration, whether over a partitioning or list of interesting regions, depends
on data structures, file formats and algorithms that are optimized for range-based queries.

Under the assumption that repeat regions are leading to anomalous alignments, we aim to filter from our BAM
file any alignments overlapping a repeat. As we will be performing many overlap queries against the repeat
dataset, it is worth indexing it for faster queries. The algorithms for accessing BAM, Tabix and BigWig files

Scalable Genomics with R and Bioconductor 12

are designed for genome browsers and have not been optimized for processing multiple queries in batch. Each
query results in a new search. This is unnecessarily wasteful, at least when the query ranges are sorted, as
is often the case. We could improve the algorithm by detecting whether the next range is in the same bin
and, if so, continuing the search from the current position. The IRanges package identifies interval trees [?]
as an appropriate and well-understood data structure for range-based queries, and implements these using a
combination of existing C libraries [?] and new C source code. The query is sorted, and every new search begins
at the current node, rather than at the root. We build a GIntervalTree for the repeats:

repeats.tree <- GIntervalTree(GRanges("20", repeats))

To configure streaming, we specify a yieldSize when constructing the object representing our BAM file. We
will filter at the individual read level, but it should be noted that for paired-end data Rsamtools supports
streaming by read pair, such that members of the same pair are guaranteed to be in the same chunk. Since
BAM files are typically sorted by position, not pair, this is a significant benefit.

bam.stream <- BamFile(path(bam.file), yieldSize = 1e6)

To filter the BAM, we first need to define a filter rule that excludes reads that overlap a repeat. The low-level
Rsamtools interface provides the read data as a DataFrame, which we convert into a GAlignments object
from the GenomicAlignments package, which provides data structures and utilities for analyzing read align-
ments.

maskRule <- function(reads) {
strand <- Rle(strand("*"), nrow(reads))
ga <- with(reads, GAlignments(rname, pos, cigar, strand))
ga %outside% repeats.tree

}
rules <- FilterRules(list(mask = maskRule))

This is an example of filtering a data stream.

To demonstrate reduction, we will calculate the coverage in iterative fashion, which ends up identical to our
original calculation.

bam.stream <- BamFile(path(filtered.bam), yieldSize = 1e6)
cov2 <- RleList(lapply(seqlengths(bam.stream), Rle, values=0L),

compress=FALSE)
open(bam.stream)
while(isIncomplete(bam.stream)) {
reads <- readGAlignments(bam.stream)
cov2 <- cov2 + coverage(reads)

}
close(bam.stream)

Choosing an appropriate yield size for each iteration is important. There is overhead to each iteration, mostly
due to I/O and memory allocation, as well as the R evaluator. Thus, one strategy is to increase the size of each
iteration (and reduce the number of iterations) until the data fit comfortably in memory. It is relatively easy to
estimate a workable yield size from the consumption of processing a single chunk. The gc function exposes the
maximum amount of memory consumed by R between resets.

sum(gc(reset=TRUE)[,6])

496.6

Scalable Genomics with R and Bioconductor 13

bam.stream <- Rsamtools::BamFile(path(filtered.bam), yieldSize = 1e6)
coverage(GenomicAlignments::readGAlignments(bam.stream))
sum(gc()[,6])

1230.5

The memory usage started at about 500 MB and peaked at about 1200 MB, so the iteration consumed up to
700 MB. With 8GB of ram, we might be able to process up to 10 million reads at once, assuming linear scaling.

As an alternative to streaming over chunks, we can iterate over a partitioning of the genome, or other domain.
Genomic partitioning can be preferable to streaming when we are only interested in certain regions. The
tileGenome function is a convenience for generating a set of ranges that partition a genome. We rely on it to
reimplement the coverage iterative calculation with a partitioning:

tiles <- tileGenome(seqinfo(filtered.bam)["20"], tilewidth=1e6)
cov3 <- Reduce(‘+‘, lapply(tiles, function(tile) {
param <- ScanBamParam(which=tile)
reads <- readGAlignments(filtered.bam, param=param)
intersection <- restrict(unlist(grglist(reads)), start(tile), end(tile))
coverage(intersection)

}))

identical(cov2, cov3)

[1] TRUE

A caveat with partitioning is that since many query algorithms return ranges with any overlap of the query, care
must be taken to intersect the results with each partition, so that reads are not double-counted, for example.

By computing the coverage, we have summarized the data. Computing summaries is often time consuming,
but since the summaries are smaller than the original data, it is feasible to store them for later use. Caching
the results of computations is an optimization technique known as memoization. An analysis rarely follows a
linear path. By caching the data at each stage of the analysis, as we proceed from the raw data to a feature-
level summary, with often multiple rounds of feature annotation, we can avoid redundant computation when
we inevitably backtrack and form branches. This is an application of incremental computing. We export our
coverage as a BigWig file, for later use.

export(cov3, "NA12878.20.coverage.bw")

4.1.1 Exercises

1. Adapt the usage of findOverlaps in the previous section (association between the repeats and the high
coverage regions) to use repeats.tree instead of repeats. The interval tree index is only consulted if
repeats.tree is the subject, i.e., the second argument to findOverlaps. The overlap computation is
symmetric, but the usage of queryHits and subjectHits needs to be adjusted.

2. As an alternative to using filterBam to filter out reads overlapping repeats, we could have iterated over
the gaps() in the repeats, performing a separate range-restricted query in each iteration. Note that when
we query the BAM for a range, it consults an index (the BAI file) and obtains a pointer to a chunk of
the BAM file. It then streams over the chunk, which could be relatively large, to find the reads within
the query range. Given that the simple repeats tend to be short, why might this not be the most efficient
strategy?

Scalable Genomics with R and Bioconductor 14

3. When computing the coverage using a yieldSize, we added the coverage vector (an Rle) to that from
the previous iteration. Recall that for this WGS experiment, the Rle compression was actually less efficient
than representing the data as an ordinary vector. The overhead of performing Rle arithmetic can be severe
in such cases. Why might this be? Hint: what sort type of object is returned when two Rle objects are
added?

4. How might the coverage addition be optimized (do we really want to use Rle here)?
5. See the cache() function in the Biobase package. How might it help optimize an incremental data

analysis?
6. Reimplement the tile-based interative coverage calculation using the reduceByFile function from the

GenomicFiles package. The API of reduceByFile formalizes the map/reduce notions inherent in the
iteration examples demonstrated here.

4.2 Iterating in parallel

There are two basic modes of parallelism: data-level and task-level. Embarrassingly parallel problems illustrate
data parallelism. Work flows might less frequently involve task parallelism, where different tasks are applied to
the same data chunk. These are generally more challenging to implement, especially with R, which does not
offer any special support for concurrency. The Streamer package has explored this direction.

Multicore and cluster computing are similar in that they are modular, and scaling algorithms to use multiple
cores or multiple nodes can involve conceptually similar steps, but there are some critical differences. Multiple
cores in the same system share the same memory, as well as other resources. Shared memory configurations
offer fast inter-thread data transfer and communication. However, the shared resources can quickly become
exhausted and present a bottleneck. Computing on a cluster involves significant additional expertise to access
and manage cluster resources that are shared between multiple users and governed by a scheduler. Interacting
with a scheduler introduces an extra step into a workflow. We place jobs in a queue, and the jobs are executed
asynchronously. Another complication is that we need to share the data between every computer. A naive but
often sufficient method is to store the data in a central location on a network file system and to distribute the
data via the network. The network overhead implied by this approach may penalize performance.

When the ratio of communication to computation time is large, communication dominates the overall calculation.
The main strategies for addressing this are to (a) ensure each task represents a significant amount of work and
(b) identify points where data sizes of inputs (e.g., file names) and outputs (e.g., vector of counts across regions
of interest) are small. Data partitioning is usually conveyed to workers indirectly, e.g., via specification of the
range of data to be processed, rather than inputting and explicitly partitioning data. This approach reduces the
communication costs between the serial and parallel portions of the computation and avoids loading the entire
dataset into memory.

The R packages foreach [?], parallel (distributed with R [?]), pbdR [?] and BatchJobs [?] provide abstractions
and implementations for executing tasks in parallel and support both the shared memory and cluster configura-
tions. BatchJobs and pbdR are primarily designed for asynchronous execution, where jobs are submitted to a
scheduling system, and the user issues commands to query for job status and collect results upon completion.
The other two, foreach and parallel, follow a synchronous model conducive to interactive use.

Different use cases and hardware configurations benefit from different parallelization strategies. An analyst might
apply multiple strategies in the course of an analysis. This has motivated the development of an abstraction
oriented towards genomics workflows. The BiocParallel package defines this abstraction and implements it on
top of BatchJobs, parallel and foreach to support the most common configurations. An important feature of
BiocParallel is that it encapsulates the parallelization strategy in a parameter object that can be passed down

Scalable Genomics with R and Bioconductor 15

the stack to infrastructure routines that implement the iteration. Thus, for common use cases the user can
take advantage of parallelism by solely indicating the appropriate implementation. Iteration is carried out in a
functional manner, so the API mirrors the *apply functions in base R: bplapply, bpmapply, etc.

To illustrate use of parallel iteration, we diagnose the GATK genotype calls introduced earlier. One approach
is to generate our own set of nucleotide tallies, perform some simple filtering to yield a set of variant calls, and
compare our findings to those from GATK. The set of nucleotide tallies is a more detailed form of the coverage
that consists of the count of each nucleotide at each position, as well as some other per-position statistics.
Tallies are useful for detecting genetic variants through comparison to a reference sequence.

The VariantTools package (Note: only available on Linux and OS X Mavericks) provides a facility for sum-
marizing the nucleotide counts from a BAM file over a given range. We can iterate over the tiling in parallel
using the bplapply function. The BPPARAM argument specifies the parallel implementation. MulticoreParam
is appropriate for a multicore workstation, whereas we might use BatchJobsParam for scheduling each iteration
as a job on a cluster.

pileup.bams <- BamFileList(NA12878 = filtered.bam)
bpparam <- MulticoreParam(workers=2)
library(VariantTools) # will not work on Windows or older Macs
pileup <- do.call(c, bplapply(tiles, function(tile) {
pileupVariants(pileup.bams, genome, PileupParam(which=tile))

}, BPPARAM=bpparam))

This is an example of an embarrassingly parallel solution: each iteration is a simple counting exercise and is
independent of the others. An example of a non-embarrassingly parallel algorithm is our demonstration of BAM
filtering: each iteration has the side-effect of writing to the same file on disk. The increased complexity of
coordinating the I/O across jobs undermines the value of parallelism in that case.

4.2.1 Exercises

1. Adapt the tile-wise coverage calculation in the previous section to use bplapply(). Why would it be
much more difficult to adapt the iteration based on yieldSize?

2. Wrap the code in a function that accepts a BPPARAM argument to allow the client to specify the parallel
implementation.

5 Scaling Genomic Graphics

5.1 Managing graphical resources

Graphics software is special in that it performs two roles: distilling information from the data, and visually
communicating that information to the user. The first role is similar to any data processing pipeline; the unique
aspect is the communication. The communication bandwidth of a plot is limited by the size and resolution of
the display device and the perceptive capabilities of the user. These limitations become particularly acute in
genomics, where it would be virtually impossible to communicate the details of a billion alignments along a
genome of 3 billion nucleotides.

When considering how best to manage graphical resources, we recall the general technique of restriction.
Restriction has obvious applicability to genomic graphics: we can balance the size of the view and the level of

Scalable Genomics with R and Bioconductor 16

detail. As we increase the size of the view, we must decrease the level of detail, and vice versa. This means
only so much information can be communicated in a single plot, so the user needs to view many plots in order
to comprehend the data. It would be infeasible to iteratively generate every possible plot, so we need to lazily
generate plots in response to user interaction. For example, the typical genome browser supports panning and
zooming about the genome, displaying data at different levels of detail, depending on the size of the genomic
region.

5.2 Displaying summaries efficiently

When plotting data along a restricted range, graphics software can rely on the support for range-based queries
presented previously. Controlling the level of detail is more challenging, because it relies on summaries. As
the viewed region can be as large as the genome, generating summaries is often computationally intensive and
introduces undesirable latency to plot updates. One solution to this problem is caching summaries at different
levels of detail. Global summaries will be regularly accessed and expensive to compute, and thus are worth
caching, whereas the detailed data exposed upon drill-down can be computed lazily. This strategy is supported
by the BigWig format. In addition to storing a full genomic vector, BigWig files also contain summary vectors,
computed over a range of resolutions, according to the following statistics: mean, min, max, and standard
deviation. Plotting the aggregate coverage is a shortcut that avoids pointless rendering of data that is beyond
the display resolution and the perceptive abilities of the viewer.

bi
gw

ig

0

100

200

300

co
ve

ra
ge

es
tim

at
e

0e+00

1e+07

2e+07

co
ve

ra
ge

0e+00 2e+07 4e+07 6e+07

Figure 2: The results of two coverage calculations over chr20. Top: the calculation based on cached values in
the BigWig file. Bottom: the estimated coverage from the BAM index file.

cov800 <- summary(BigWigFile("NA12878.20.coverage.bw"), size = 3846)
bigwig.track <- ggplot() + geom_bar(cov800[[20]]) + ylab("coverage")
filtered.bam <- BamFile("masked-NA12878.HiSeq.WGS.bwa.cleaned.recal.b37.20.bam")
cov.estimate <- biovizBase::estimateCoverage(filtered.bam)
cov.estimate <- keepSeqlevels(cov.estimate, "20")
estimate.track <- ggplot() + geom_bar(cov.estimate) + ylab("coverage")
p <- tracks(bigwig = bigwig.track, estimate = estimate.track)

Scalable Genomics with R and Bioconductor 17

A good summary will guide the user to the most interesting parts of the data. Genomic data are typically
sparsely distributed along the genome, due to the non-uniform distribution of genes and experimental protocols
that enrich for regions of interest. Coverage is a particularly useful summary, as it helps guide the viewer to the
regions with the most data. The following gets the average coverage for 800 windows (perhaps appropriate for
an 800 pixel plot). The result is shown in the top panel of Figure 2.

cov800 <- summary(BigWigFile("NA12878.20.coverage.bw"), size = 800)

In cases where a BigWig file or other cached summary is unavailable, we can rely on a heuristic that estimates
the coverage from the index of a BAM or Tabix file. The index stores offsets into the BAM for efficient range-
based queries. Instead of accessing the index to resolve queries, we calculate the difference in the file offsets for
each range and derive a relative coverage estimate at a coarse level of resolution. In practice, this reduces the
required time to compute the coverage from many minutes to a few seconds. When the plot resolution exceeds
the resolution of the index, we again rely on the index to query the BAM file for the reads that fall within the
relatively small region and compute the coverage directly. A heuristic seems acceptable in this case, because
improved accuracy is immediately accessible by zooming. This is in contrast to pure statistical computations,
where crude estimates are less appreciated, even in the exploratory context, since resolution is not so readily
forthcoming.

The estimateCoverage function from the biovizBase package [?] estimates the coverage from the BAM index
file. The bottom panel of Figure 2 shows the output of estimateCoverage for the example dataset and allows
for comparison with the more exact calculation derived from the BigWig file. The two results are quite similar
and both required only a few seconds to compute on a commodity laptop.

5.3 Generating plots dynamically

The design of interactive graphics software typically follows the model-view-controller pattern (see Figure 3).
The view renders data retrieved from the data model, and the controller is the interface through which the
user manipulates the view and data model. The data model abstracts the underlying data source, which
might be memory, disk, or a dynamic computation. The abstraction supports the implementation of complex
optimizations without exposing any of the complexity to client code. Data is communicated to the user through
the view, and user input is received through the controller. A complex application will consist of multiple
interactive views, linked through a common data model, itself composed of multiple modules, chained together
as stages in a pipeline. The viewer, plots, and pipeline stages are interlinked to form a network.

A simple data model abstracts access to the primary data, such as an in-memory GRanges object of transcript
annotations, or a BAM file on disk. We can extend the simple model to one that dynamically computes on data
as they are requested by the application. This is an example of lazy computing. Each operation is encapsulated
into a data model that proxies an underlying model. The proxy models form a chain, leading from the raw data
to the processed data that are ready for plotting [?]. Dynamic computation avoids unnecessarily processing
the entire genome when the user is only interested in a few small regions, especially when the parameters of
the transformations frequently change during the session. The data may be cached as they are computed,
and the pipeline might also anticipate future requests; for example, it might prepare the data on either side
of the currently viewed region, in anticipation of scrolling. Caching and prediction are examples of complex
optimizations that are hidden by the data model. The plumbr R package [?] provides a proxy model framework
for implementing these types of ideas behind the data frame API.

We have been experimenting with extending these approaches to genomic data. The biovizBase package
implements a graphics-friendly API for restricted queries to Bioconductor-supported data sources. The ggbio

Scalable Genomics with R and Bioconductor 18

Alignments
(BAM)

Precomputed

Coverage
(BigWig)

Low resolution
summaries

Transcripts

Quality
Filter

Compatible
Filter

Novel
Filter

C
on

tro
lle

r

Model View

Figure 3: An application of the model-view-controller pattern and pre-computed summaries to genomic visu-
alization. Coverage is displayed at two levels of resolution (whole chromosome and the current zoom) after
efficient extraction from the multi-resolution BigWig file. The BAM file holding the read alignments is ab-
stracted by a multi-stage data model, consisting of the BAM source, a dynamic read quality filter, and two
filters that effectively split the alignments according to compatibility with the known transcript annotations.
The view contains several coordinately-zoomed plots, as well as an ideogram and coverage overview. Each plot
obtains its data from one of the data model components. The controller might adjust the data model filter
settings and the current zoom in response to user commands.

package builds on biovizBase to support genomic plot objects that are regenerated as the user adjusts the
viewport.

To diagnose the GATK genotype calls, we combine the reference sequence, nucleotide pileup, and the genotype
calls. The result is shown in Figure 4. The ggbio package produced the plot by relying on restricted query
support in biovizBase. We have already introduced the extraction of genomic sequence and the calculation of
nucleotide pileups. The genotypes were drawn by the VariantAnnotation package from a Variant Call Format
(VCF, [?]) file with a range-based index provided by Tabix.

To generate the plot, we first select the region of interest:

high.cov.gr <- GRanges("20", ranges(high.cov.views))
genome(high.cov.gr) <- "hg19"
high.cov.gr <- high.cov.gr[width(high.cov.gr) > 50L]
roi <- high.cov.gr[200] * 2L

Next, we construct the plot object and render it:

reference.track <- autoplot(genome, which = roi)
tally.track <- autoplot(filtered.bam, stat = "mismatch",

Scalable Genomics with R and Bioconductor 19

ta
lly

0

50

100

150

200

C
ou

nt
s

read

A

C

G

T

va
ria

nt

A C

re
fe

re
nc

e

TTAGTGGATTTTTTTCCTATATTTCTGATGATAACTTTGCCTTGATTATATATTTAAACA

25880640 25880660 25880680

Figure 4: Example plot for diagnosing genotype calls, consisting of the nucleotide tallies, genotype calls and
reference sequence, from top to bottom. The plot is dynamically generated for the selected region of interest,
without processing the entire genome. The viewer might check to see if the tallies support the called genotypes.
In this case, the data are consistent.

bsgenome = genome, which = roi, geom = "bar")
vcf <- ScalableGenomics::NA12878.20.vcf
variant.track <- autoplot(vcf, type = "fixed", ref.show = FALSE,

which = roi)
p <- tracks(tally = tally.track,

variant = variant.track, reference = reference.track,
heights = c(4, 1, 1)) + theme_bw()

Since the plot object is a logical representation of the plot, i.e., it references the original data, we can adjust
various aspects of it and generate a new rendering. In particular, we can change the currently viewed region,
and the data for the new region are processed dynamically to generate the new plot. In this example, we zoom
out to a larger region around the first region.

p + xlim(roi + 10)

Current work is focused on the MutableRanges package, which generalizes and formalizes the designs in
biovizBase. It defines dynamic versions of the GenomicRanges data structures; for example, there is a Dy-
namicGRanges that implements the GRanges API on top of a BAM file. Only the requested regions are loaded,
and they are optionally cached for future queries. A ProxyGRanges performs dynamic computations based on
another GRanges. This will enable a new generation of interactive genomic visualization tools in R. An early
adopter is epivizr, the R interface to the web-based epiviz, a web-based genome browser with support for general
interactive graphics, including scatterplots and histograms.

Scalable Genomics with R and Bioconductor 20

6 Conclusion

We have introduced software and techniques for analyzing and plotting big genomic data. The Bioconductor
project distributes the software as a number of different R packages, including Rsamtools, IRanges, Genomi-
cRanges, GenomicAlignments, Biostrings, rtracklayer, biovizBase and BiocParallel. The software enables the
analyst to conserve computational resources, iteratively generate summaries and visualize data at arbitrary levels
of detail. These advances have helped to ensure that R and Bioconductor remain relevant in the age of high-
throughput sequencing. We plan to continue in this direction by designing and implementing abstractions that
enable user code to be agnostic to the mode of data storage, whether it be memory, files or databases. This
will bring much needed agility to resource allocation and will enable the user to be more resourceful, without
the burden of increased complexity.

	Technical setup
	Introduction
	Limiting resource consumption
	Restricting queries
	Exercises

	Compressing genomic vectors
	Exercises

	Compressing lists
	Exercises

	Iterating
	Splitting data
	Exercises

	Iterating in parallel
	Exercises

	Scaling Genomic Graphics
	Managing graphical resources
	Displaying summaries efficiently
	Generating plots dynamically

	Conclusion

