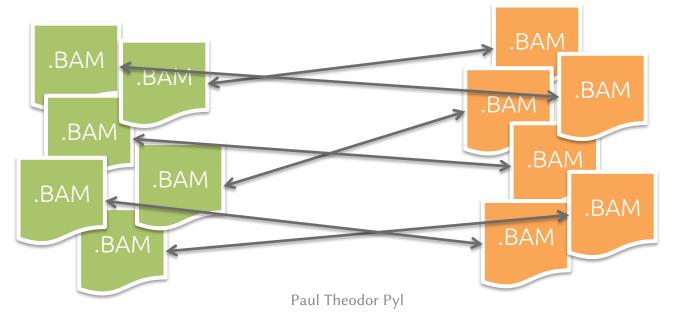

Variant visualisation and quality control You really should be making plots!

Classical Sequencing Example

A single sample sequencing run

Comparative Sequencing Example



A comparative genomics example

Scary Sequencing Example

What to do with 1000 .BAM files (~200GB each)

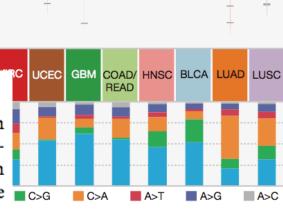
How are we dealing with this?

OPFN

doi:10.1038/nature12634

ARTICLE

Mutational landscape and significance across 12 major cancer types


Cyriac Kandoth¹*, Michael D. McLellan¹*, Fabio Vandin², Kai Ye^{1,3}, Beifang Niu¹, Charles Lu¹, Mingchao Xie¹, Qunyuan Zhang^{1,3}, Joshua F. McMichael¹, Matthew A. Wyczałkowski¹, Mark D. M. Leiserson², Christopher A. Miller¹, John S. Welch^{4,5}, Matthew J. Walter^{4,5}, Michael C. Wendl^{1,3,6}, Timothy J. Ley^{1,3,4,5}, Richard K. Wilson^{1,3,5}, Benjamin J. Raphael² & Li Ding^{1,3,4,5}

0.01

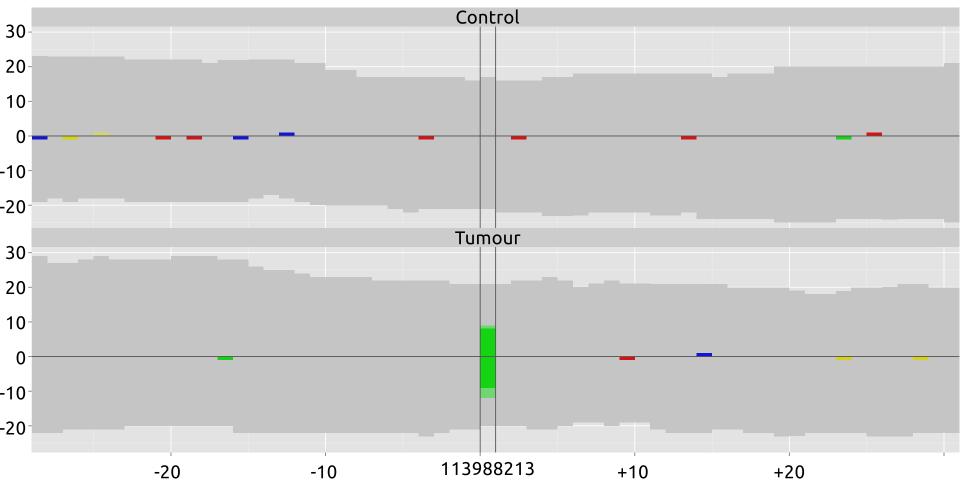
Number

METHODS SUMMARY

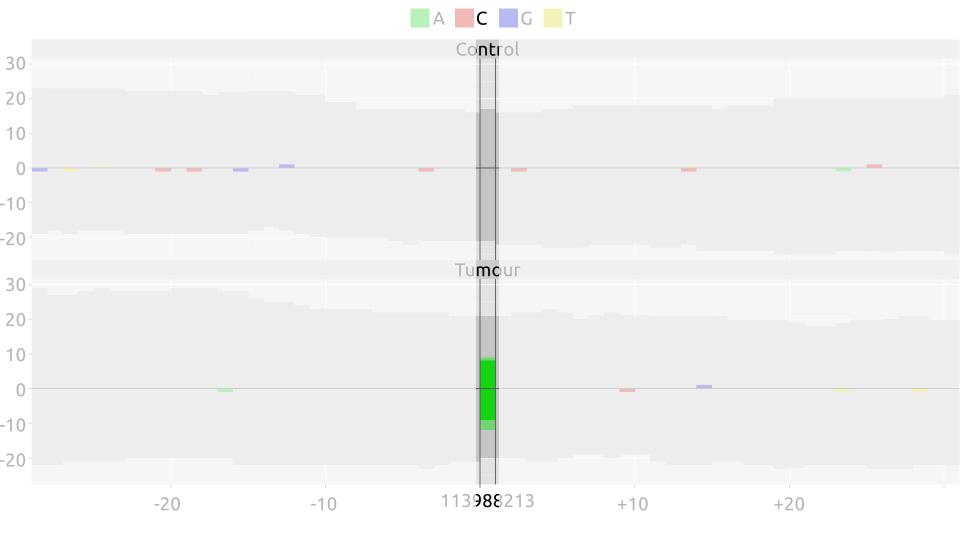
Mutation data were standardized for 12 cancer types and tracked on Synapse with documentation (http://dx.doi.org/10.7303/syn1729383.2). All mutation annotation format files were downloaded from the TCGA data coordinating centre, each being reprocessed to eliminate known, recurrent false positives and germline single nucleotide polymorphisms (SNP) present in the dbSNP database. All vari-

SNV Calling

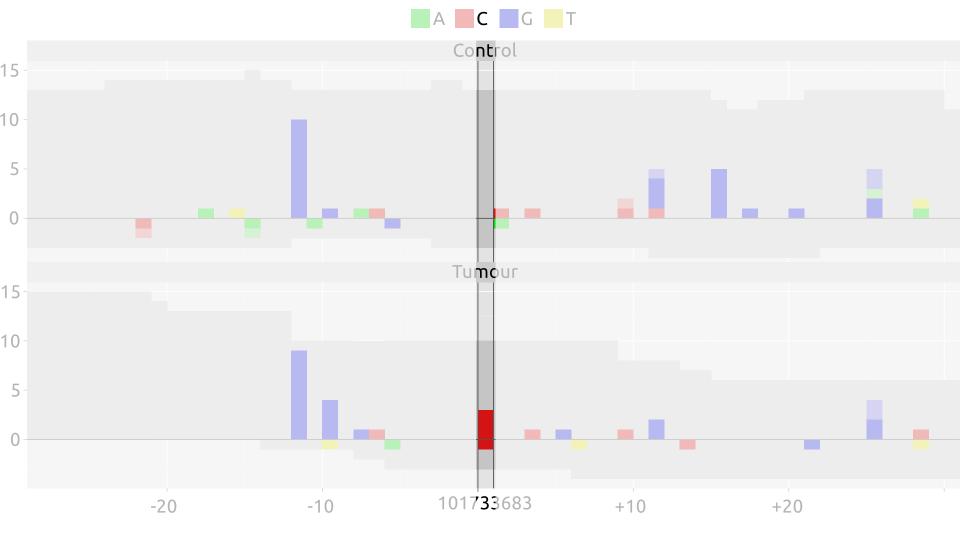
- Pretty well established for diploid monoclonal populations (i.e. non-cancer human sample); e.g. GATK; samtools
- Can be more problematic in interesting samples, e.g. cancer:
 - Math might make unreasonable assumptions (copy number, clonality, etc. ...)
- Specialised tools exists: e.g. MuTect

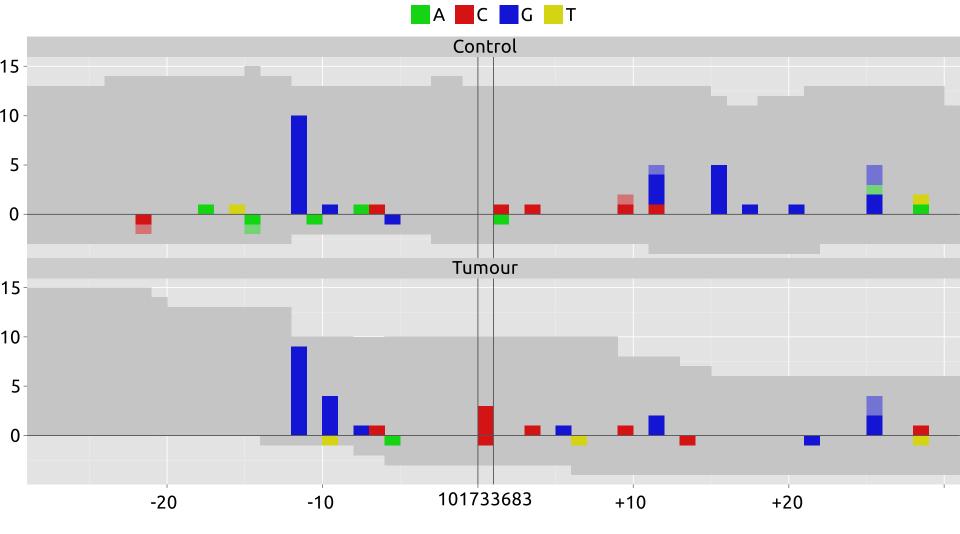

Example VCF

#CHROM	POS	ID	REF	ALT	QUAL	FILTER	INFO	Format	Control	Tumour
1	113988213	rs	С	Α	65	PASS	GMAF=0.02	AD:DP:GT	0:42:0/0	24:38:0/1
2	101733683	-	G	С	60	PASS	GMAF=0.3	AD:DP:GT	0:18:0/0	5:14:0/1


•••

Visualisation is Key

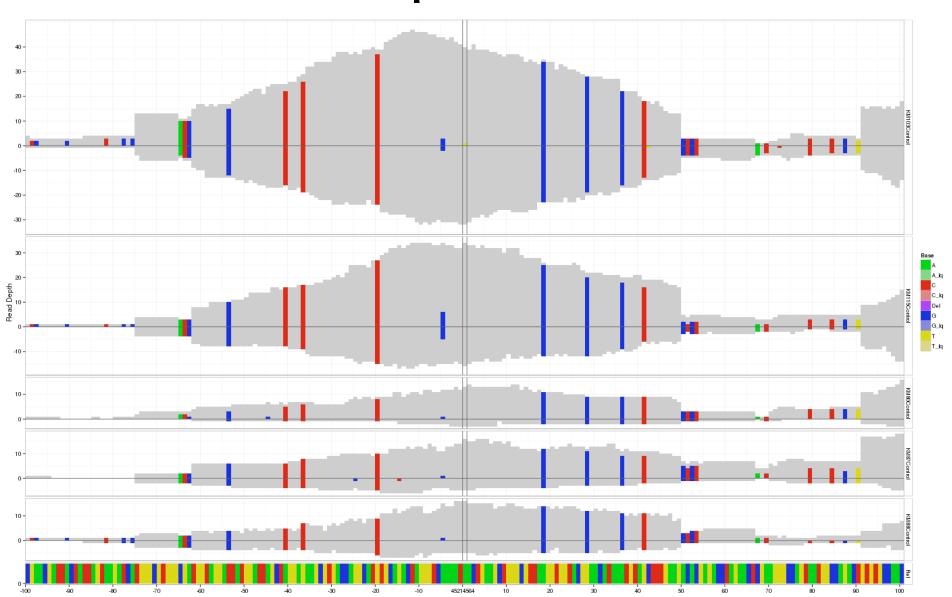



What the VCF file will tell you

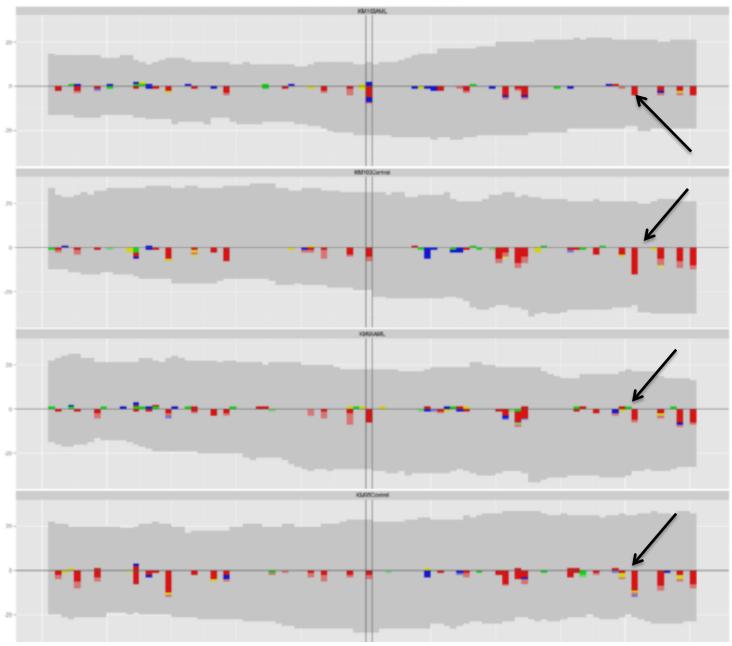
What the VCF file won't tell you

What the VCF file won't tell you

Example VCF revisited


#CHROM 1 2	POS 113988213 101733683	REF C G	ALT A C	QUAL 65 60	FILTER PASS PASS	INFO GMAF=0.02 GMAF=0.3	Control 0:42:0/0 0:18:0/0	Tumour 24:38:0/1 5:14:0/1	nti
									ma
									mc
									733 988

С


nt

С

Example: CDC27

Base 🔤 A. ja 🔜 C. ja 🔜 Q. ja 🔜 T. ja 🔜 A 🜉 C 🔜 O 📒 T

Half-time Summary

- Visualisation gives context
- A list of positons (i.e. VCF file) is likely to miss out on some of that
- Good to know:
 - Regions that are always hard (e.g. CDC27)
 - Regions that show specific artifacts from library prep / sequencer (if the samples are all processed the same)

Important post-processing Steps (Alignments)

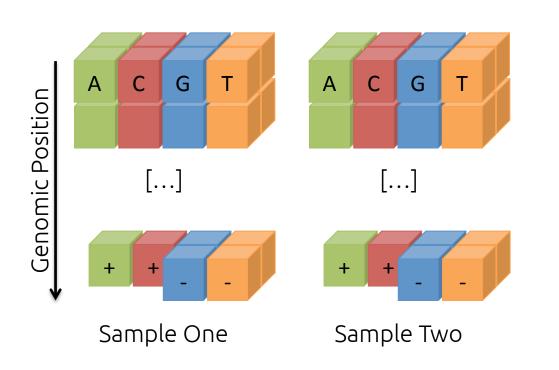
- After alignment:
 - Remove duplicates
 - InDel realignment (GATK)

ATTAC - - ACAC TTAC - - ACAC GATTACTTACAC

ATTAC--ACAC TTACACAC GATTACTTACAC

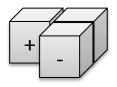
ATTACACAC TTACACAC GATTACTTACAC

Important post-processing Steps (Variants)

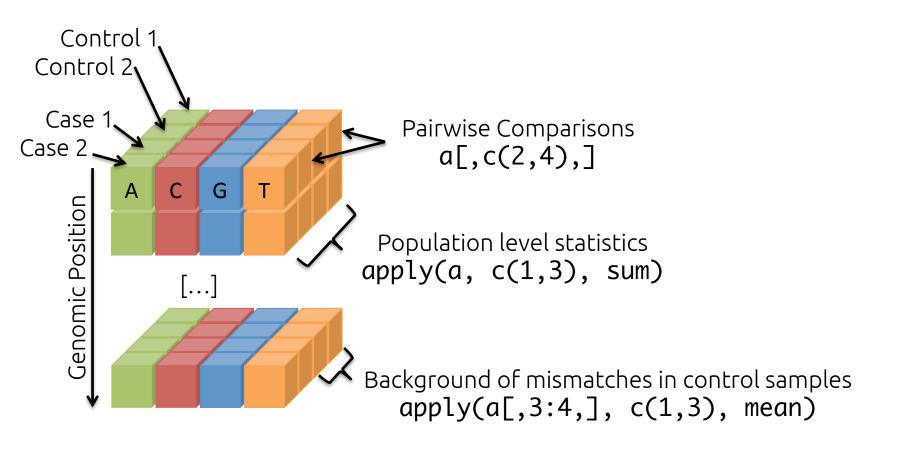

- Ensembl Variant Effect Predictor
 - R package: ensemblVEP (or use command line tool)
 - Location / overlapping genes etc.
 - GMAF (1000genomes or HapMap)
 - SIFT / PolyPhen Scores
- Annotate with available data
 - e.g. mismatch rates in other samples of the same cohort
 - Local mismatch rate within a sample (e.g. genomic distance to the next 10 mismatches)

Visualisation Tools

- Genome Browser, e.g. IGV
 Programmatic access? (IGV can be scripted)
- h5vc R/Bioconductor package
 - Processing BAM files into nucleotide tallies
 - Analysing and visualising on those
 - Shamelessly advertising my own software 😊


Nucleotide Tallies

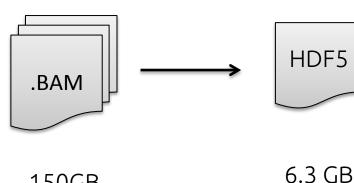
• Table of (mis)matches, coverages, deletions, insertions, softclips, ...

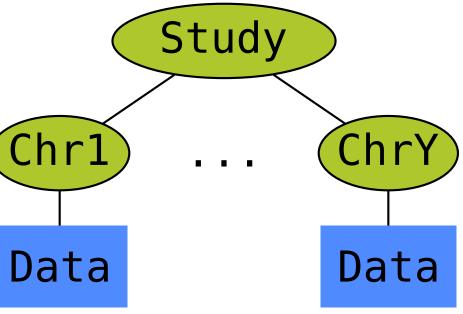


Coverage

Genomics Analyses on Tallies

- Having the data as a matrix:
 - Easy subsetting (e.g. selecting all controls)
 - Easy building of summary statistics
 - applying functions to the matrix
 - E.g. summarise control samples
- Many Analyses, especially variant calling and visualisation, can be performed on tallies (we don't need the BAM's for it)


Genomics Analyses on Tallies



What is HDF5

- Hierarchical Data Format Efficient storage of numerical data
- Two kinds of objects – Groups – Folders

 - Datasets Files

150GB

HDF5 – A brief overview

- Introduced in 1987

 National Center for Supercomputing
- Maintained by the HDFGroup
- Production Use
 - NASA
 - Imaging
 - The Lord of the Rings

What to store in our HDF5 file

- 4 data-sets per Chromosome
- Counts
 - 4D : [bases x samples x strands x positions]
- Coverages

 3D : [samples x strands x positions]
- Deletions
 - 3D : [samples x strands x positions]
- Reference
 - 1D : [positions]

The 'h5vc' package

- Available in R/Bioconductor
- Functionality:

- creating / interacting with HDF5 tally files
- Variant calling
- Data exploration
- Plotting

Bioinformatics Advance Access published February 5, 2014

ATICS APPLICATIONS NOTE doi:10.1093/bioinformatics/btu026

Genome analysis

Advance Access publication January 21, 2014

h5vc: scalable nucleotide tallies with HDF5

Paul Theodor Pyl^{*}, Julian Gehring, Bernd Fischer and Wolfgang Huber^{*} EMBL Heidelberg, Genome Biology Unit, Meyerhofstr. 1, 69117 Heidelberg, Germany Associate Editor: John Hancock

Applying Functions Block-wise

```
variantCalls <- h5dapply(</pre>
    filename = "example.tally.hfs5",
                                                              Α
                                                                  С
                                                                      G
                                                                           Т
                                            Block #
                                                                                Genomic Position
    group = "/ExampleStudy/16",
    blocksize = 100000,
    names = c("Counts", "Coverages"),
                                                                   |...|
    dims = c(4, 3),
    range = c(29000000, 30000000),
                                            Block #r
    FUN = callVariants,
    sampledata = sampleData
)
                                                               Sample One
```

Tutorial Tomorrow

- Example Workflow
 - Creating Tally Files
 - Variant Calling
 - Visualisation and Quality Control
 - Creating Reports

. . .

My Current Workflow

- Alignment (e.g. gsnap)
- Postprocessing (GATK)

 Remove PCR duplicates
 InDel realignment
- Tallying (h5vc)
- Variant Calling (e.g. h5vc)
- Ensembl VEP
- ReportingTools (Interactive HTML tables)

Final Summary

- (comparative) variant calling is not completely solved yet
 ➤ We need to do some quality control
- Plotting variants can be helpful

 Tables of variants risk missing important context
- We should try to formalise the intuitions we use for visual inspection (we're working on it)
- HDF5-based nucleotide tallies allow for analysis and visualisation of SNVs in context

Acknowledgement

- EMBL and the Huber Lab
 - Wolfgang
 - Bernd Fischer
 - Simon Anders
 - Julian Gehring

Tutorial this afternoon

- <u>http://192.168.0.9/materials/4_Thursday/</u> <u>labs/</u>
 - ExampleData.zip
 - Tutorial.Rmd
 - Tutorial.R
 - Tutorial.pdf
- Get newest version of h5vc:

source("http://192.168.0.9/biocLite.R") biocLite("h5vc")