Proteomics

Laurent Gatto ${ }^{1}$
http://cpu.sysbiol.cam.ac.uk

CSAMA - 27 June 2014

Outline

Proteomics and MS data

Ranges infrastructure

Application: spatial proteomics

Mass-spectrometry (LC-MSMS)

MS1 and MS2 spectra

MS1 and MS2 spectra

Proteomics data

- raw data
- quantitation
- identification
- protein database

Proteomics data

- raw data
- quantitation
- identification
- protein database

	Status	package
Raw (mz*ML)	\checkmark	mzR
mzTab	\checkmark	MSnbase
mgf	\checkmark	MSnbase
mzldentML	\checkmark	mzID (mzR)
mzQuantML		$(? m z R)$

Example

```
library("MSnbase")
rx <- readMSData(f, centroided = TRUE)
rx <- addIdentificationData(rx, g)
rx <- rx[!is.na(fData(rx)$pepseq)]
plot(rx[[10]], reporters = TMT6, full=TRUE)
```


Example

Precursor M/Z 600.36

Example

```
library("MSnbase")
rx <- readMSData(f, centroided = TRUE)
rx <- addIdentificationData(rx, g)
rx <- rx[!is.na(fData(rx)$pepseq)]
plot(rx[[10]], reporters = TMT6, full=TRUE)
plot(rx[[4730]], rx[[4929]])
```


Example

Example

```
library("MSnbase")
rx <- readMSData(f, centroided = TRUE)
rx <- addIdentificationData(rx, g)
rx <- rx[!is.na(fData(rx)$pepseq)]
plot(rx[[10]], reporters = TMT6, full=TRUE)
plot(rx[[4730]], rx[[4929]])
qt <- quantify(rx, reporters = TMT6, method = "max")
## qt <- readMSnSet(f2)
nqt <- normalise(qt, method = "vsn")
boxplot(exprs(nqt))
```


Example

More
library("BiocInstaller")
biocLite("RforProteomics")

- raw data
- quantitation
- identification
- protein database

Ranges infrastructure

Pbase package

```
library("Pbase")
p <- Proteins(db)
p <- addIdentificationData(p, id)
aa(p) ## AAStringSet
pranges(p) ## IRangesList
i <- which(acols(p)[, "EntryName"] == "EF2_HUMAN")
plot(p[i])
plot(p[i], from = 155, to = 185)
```

(200

Spatial proteomics

- The cellular sub-division allows cells to establish a range of distinct microenvironments, each favouring different biochemical reactions and interactions and, therefore, allowing each compartment to fulfil a particular functional role.
- Localisation and sequestration of proteins within subcellular niches is a fundamental mechanism for the post-translational regulation of protein function.

Spatial proteomics is the systematic study of protein localisations.

Spatial proteomics

Disruption of the targeting/trafficking process alters proper sub-cellular localisation, which in turn perturb the cellular functions of the proteins.

- Abnormal protein localisation leading to the loss of functional effects in diseases (Laurila et al. 2009)
- Disruption of the nuclear/cytoplasmic transport (nuclear pores) have been detected in many types of carcinoma cells (Kau et al. 2004).

Figure: Immunofluorescence: ZFPL1, Golgi (left) and FHL2, mainly localized to actin filaments and focal adhesion sites. Also detected in the nucleus (right). (from the Human Protein Atlas)

Figure: Mass spectrometry-based approaches based on density gradient subcellular fractionation.

Cell membrane lysis

Mechanical or buffer-induced lysis of the plasma membrane with minimal disruption to intracellular organelles followed by subcellular fractionation.

Density gradient separation

Quantitation by LC-MSMS

Data

| | Fraction $_{1}$ | Fraction $_{2}$ | \ldots | Fraction |
| :--- | :--- | :--- | :--- | :--- | :--- |
| m | | | | | markers \quad.

Figure: From Gatto et al. (2010), data from Dunkley et al. (2006).

2009 vs 2013

Figure: pRoloc package. Semi-supervised approach Breckels et al. (2013). Data from Tan et al (2009).

Dynamic

Figure: pRolocGUI package.

Dual localisation

Figure: Proteins may be present simultaneously in several organelles (dual localisation, trafficking) vs. no man's land. (Gatto et al. 2014)

Acknowledgement

CPU

- Lisa Breckels
- Sebastien Gibb
- Thomas Naake
- Kathryn Lilley (CCP)

> Computational Proteomics Unit Cambridge Centre for Proteomics Cambridge System Biology Centre Department of Biochemistry University of Cambridge
> http://cpu.sysbiol.cam.ac.uk Qlgatt0

Software Sustainability Institute http://software.ac.uk

