Proteomics

Laurent Gatto¹ http://cpu.sysbiol.cam.ac.uk

CSAMA - 27 June 2014

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

¹lg390@cam.ac.uk

Outline

Proteomics and MS data

Ranges infrastructure

Application: spatial proteomics

<□▶ <□▶ < □▶ < □▶ < □▶ < □ > ○ < ○

Mass-spectrometry (LC-MSMS)

MS1 and MS2 spectra

MS1 scan @ 21:3 min

MS2 scan, precursor m/z 460.79

・ロト ・個ト ・モト ・モト

MS1 and MS2 spectra

◆□ > ◆□ > ◆臣 > ◆臣 > ○ = ○ ○ ○ ○

Proteomics data

- ► raw data
 - quantitation
 - identification

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ 臣 - のへで

▶ protein database

Proteomics data

► raw data

- quantitation
- ▶ identification
- ▶ protein database

	Status	package	
Raw (mz*ML)	\checkmark	mzR	
mzTab	\checkmark	MSnbase	
mgf	\checkmark	MSnbase	
mzldentML	\checkmark	mzID (mzR)	
mzQuantML		(?mzR)	

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

```
library("MSnbase")
rx <- readMSData(f, centroided = TRUE)
rx <- addIdentificationData(rx, g)
rx <- rx[!is.na(fData(rx)$pepseq)]
plot(rx[[10]], reporters = TMT6, full=TRUE)</pre>
```

ション ふゆ く 山 マ チャット しょうくしゃ

 $\mathcal{O} \mathcal{O} \mathcal{O}$

```
library("MSnbase")
rx <- readMSData(f, centroided = TRUE)
rx <- addIdentificationData(rx, g)
rx <- rx[!is.na(fData(rx)$pepseq)]
plot(rx[[10]], reporters = TMT6, full=TRUE)
plot(rx[[4730]], rx[[4929]])</pre>
```

ション ふゆ く 山 マ チャット しょうくしゃ

・ロト ・個ト ・モト ・モト

æ

```
library("MSnbase")
rx <- readMSData(f, centroided = TRUE)
rx <- addIdentificationData(rx, g)
rx <- rx[!is.na(fData(rx)$pepseq)]
plot(rx[[10]], reporters = TMT6, full=TRUE)
plot(rx[[4730]], rx[[4929]])
qt <- quantify(rx, reporters = TMT6, method = "max")
## qt <- readMSnSet(f2)
nqt <- normalise(qt, method = "vsn")
boxplot(exprs(nqt))</pre>
```

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@


```
library("BiocInstaller")
biocLite("RforProteomics")
```


► raw data

- quantitation
- identification

<□▶ <□▶ < □▶ < □▶ < □▶ < □ > ○ < ○

▶ protein database

Ranges infrastructure

Pbase package

```
library("Pbase")
p <- Proteins(db)
p <- addIdentificationData(p, id)
aa(p) ## AAStringSet
pranges(p) ## IRangesList
i <- which(acols(p)[, "EntryName"] == "EF2_HUMAN")
plot(p[i])
plot(p[i], from = 155, to = 185)</pre>
```

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Spatial proteomics

- The cellular sub-division allows cells to establish a range of distinct microenvironments, each favouring different biochemical reactions and interactions and, therefore, allowing each compartment to fulfil a particular functional role.
- Localisation and sequestration of proteins within subcellular niches is a fundamental mechanism for the post-translational regulation of protein function.

Spatial proteomics is the systematic study of protein localisations.

Spatial proteomics

Disruption of the targeting/trafficking process alters proper sub-cellular localisation, which in turn perturb the cellular functions of the proteins.

- Abnormal protein localisation leading to the loss of functional effects in diseases (Laurila et al. 2009)
- Disruption of the nuclear/cytoplasmic transport (nuclear pores) have been detected in many types of carcinoma cells (Kau et al. 2004).

- 日本 - 4 日本 - 4 日本 - 日本

Figure: Immunofluorescence: ZFPL1, Golgi (left) and FHL2, mainly localized to actin filaments and focal adhesion sites. Also detected in the nucleus (right). (from the Human Protein Atlas)

Figure: Mass spectrometry-based approaches based on density gradient subcellular fractionation.

Cell membrane lysis

Mechanical or buffer-induced lysis of the plasma membrane with minimal disruption to intracellular organelles followed by subcellular fractionation.

(日) (四) (日) (日)

Density gradient separation

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Quantitation by LC-MSMS

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへで

Data

	$Fraction_1$	$Fraction_2$		$Fraction_{m}$	markers
p ₁	q _{1,1}	q _{1,2}		q _{1, m}	unknown
p ₂	q _{2,1}	q _{2,2}		q 2, m	loc1
p ₃	q _{3,1}	q _{3,2}		Q3, m	unknown
p4	q _{4,1}	q _{4,2}		q 4, m	loc _k
		:	÷		
pn	q _{n,1}	q _{n,2}		q _{n, m}	unknown

Figure: From Gatto et al. (2010), data from Dunkley et al. (2006).

596

・ロト ・ 日 ・ ・ ヨ ・ ・

ъ

æ

2009 vs 2013

Figure: pRoloc package. Semi-supervised approach Breckels et al. (2013). Data from Tan et al (2009).

・ロト ・ 一下・ ・ ヨト

PC1 (50.05%)

Dynamic

Figure: pRolocGUI package.

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

Dual localisation

Figure: Proteins may be present simultaneously in several organelles (dual localisation, trafficking) vs. *no man's land*. (Gatto et al. 2014)

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへで

Acknowledgement

CPU

- Lisa Breckels
- Sebastien Gibb
- Thomas Naake
- Kathryn Lilley (CCP)

Computational Proteomics Unit Cambridge Centre for Proteomics Cambridge System Biology Centre Department of Biochemistry University of Cambridge http://cpu.sysbiol.cam.ac.uk @lgatt0

Software Sustainability Institute http://software.ac.uk

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@