Introduction to MS-based proteomics and Bioconductor infrastructure

Laurent Gatto
lg390@cam.ac.uk-@lgatt0 http://cpu.sysbiol.cam.ac.uk

CSAMA - 17 June 2015

Outline

Proteomics and MS data

Bioconductor infrastructure

Examples

Ranges infrastructure

Application: spatial proteomics

Mass-spectrometry - LC-MS/MS

Chromatogram: total intensity over time

MS1 (and MS2) spectra

Mass-spectrometry - LC-MS/MS

Fragmentation

Credit abrg.org

```
cid <- calculateFragments("AEGKLRFK",
    type=c("b", "y"), z=2)
```

\#\# Modifications used: $\quad C=160.030649$
ht(cid, $n=3$)

\#\#		mz	ion	type	pos	z
\#\#	seq					
\#\#	1	36.52583	b1	101.04713	b2	b
\#\#	3	129.55786	b3	2	AE	
\#	b	3	2	AEG		

\#\# ...
\#\# mz ion type pos z seq
\#\# 31 357.7185 y6* y* 62 GKLRFK
\#\# 32 422.2398 y7* y* 72 EGKLRFK
\#\# 33 457.7583 y8* y* 82 AEGKLRFK

MS1 and MS2 spectra

MS1 and MS2 spectra

Proteomics data

- raw data:

MS1 and MS2 over retention time

- identification: MS2
- quantitation: MS1 or MS2

	Status	package
Raw (mz*ML)	\checkmark	mzR
mzTab	\checkmark	MSnbase
mgf	\checkmark	MSnbase
mzldentML	\checkmark	mzID, mzR
mzQuantML		$(? m z R)$

- protein database
(to match MS2 spectra against)

Bioconductor infrastructure

biocViews: Proteomics, MassSpectrometry

Learning from Bioconductor

\| genomics	\| proteomics	
\| eSet (past?)	\| *MSnSet (present)	
\| Ranges (present)	\| *Pbase et al. (future)	
1 l	1 PPI	
I	\| *localisation (present)	

MSnSet

Example

```
library("MSnbase")
rx <- readMSData("rawdata.mzML") ## raw data
rx <- addIdentificationData(rx, "identification.mzid")
rx <- rx[!is.na(fData(rx)$pepseq)]
plot(rx[[10]], reporters = TMT6, full=TRUE)
```


Example

Precursor M/Z 600.36

Example

```
library("MSnbase")
rx <- readMSData(f, centroided = TRUE)
rx <- addIdentificationData(rx, g)
rx <- rx[!is.na(fData(rx)$pepseq)]
plot(rx[[10]], reporters = TMT6, full=TRUE)
plot(rx[[4730]], rx[[4929]])
```


Example

Example

```
library("MSnbase")
rx <- readMSData(f, centroided = TRUE)
rx <- addIdentificationData(rx, g)
rx <- rx[!is.na(fData(rx)$pepseq)]
plot(rx[[10]], reporters = TMT6, full=TRUE)
plot(rx[[4730]], rx[[4929]])
qt <- quantify(rx, reporters = TMT6)
## qt <- readMSnSet("quantdata.csv", ecols = 5:11)
nqt <- normalise(qt, method = "vsn")
boxplot(exprs(nqt))
MAplot(nqt[, 1:2])
```


Example

More

- RforProteomics package
library ("RforProteomics")
RforProteomics()
RProtVis()
citation(package = "RforProteomics")
- Proteomics workflow on the Bioc site
- Lab on Friday
- protein database
- raw data
- quantitation
- identification

Ranges infrastructure

Pbase package

```
library("Pbase")
p <- Proteins("uniprot.fasta")
p <- addIdentificationData(p, "identification.mzid")
aa(p) ## peptides sequences as a AAStringSet
pranges(p) ## peptide ranges as IRangesList
i <- which(acols(p)[, "EntryName"] == "EF2_HUMAN")
plot(p[i])
plot(p[i], from = 155, to = 185)
```

Along protein coordinates

Along genome coordinates

... using transcript models as GRangesList and Gviz for plotting.

From the Pbase mapping vignette.

Along genome coordinates (with raw data)

From the Pbase maping vignette.

With RNA-Seq reads

From https://github.com/ComputationalProteomicsUnit/Intro-Integ-Omics-Prot

Spatial proteomics

- The cellular sub-division allows cells to establish a range of distinct microenvironments, each favouring different biochemical reactions and interactions and, therefore, allowing each compartment to fulfil a particular functional role.
- Localisation and sequestration of proteins within subcellular niches is a fundamental mechanism for the post-translational regulation of protein function.

Spatial proteomics is the systematic study of protein localisations.

Figure: Immunofluorescence: ZFPL1, Golgi (left) and FHL2, mainly localized to actin filaments and focal adhesion sites. Also detected in the nucleus (right). (from the Human Protein Atlas)

Figure: Mass spectrometry-based approaches based on density gradient subcellular fractionation.

Cell membrane lysis

Mechanical or buffer-induced lysis of the plasma membrane with minimal disruption to intracellular organelles followed by subcellular fractionation.

Density gradient separation

Quantitation by LC-MSMS

Data

	Fraction $_{1}$	Fraction $_{2}$	\ldots	Fraction $_{\mathrm{m}}$	markers
p_{1}	$\mathrm{q}_{1,1}$	$\mathrm{q}_{1,2}$	\ldots	$\mathrm{q}_{1, \mathrm{~m}}$	unknown
p_{2}	$\mathrm{q}_{2,1}$	$\mathrm{q}_{2,2}$	\ldots	$\mathrm{q}_{2, \mathrm{~m}}$	loc c_{1}
p_{3}	$\mathrm{q}_{3,1}$	$\mathrm{q}_{3,2}$	\ldots	$\mathrm{q}_{3, \mathrm{~m}}$	unknown
p_{4}	$\mathrm{q}_{4,1}$	$\mathrm{q}_{4,2}$	\ldots	$\mathrm{q}_{4, \mathrm{~m}}$	loc ${ }_{k}$
\vdots	\vdots	\vdots	\vdots	\vdots	\vdots
p_{n}	$\mathrm{q}_{\mathrm{n}, 1}$	$\mathrm{q}_{\mathrm{n}, 2}$	\ldots	$\mathrm{q}_{\mathrm{n}, \mathrm{m}}$	unknown

Data analysis
MSnbase for data manipulation, pRoloc for clustering, classification and plotting, and pRolocGUI for interactive exploration.

Figure : From Gatto et al. (2010), data from Dunkley et al. (2006).

2009 vs 2013

Figure : Semi-supervised approach Breckels et al. (2013). Data from Tan et al (2009).

From Betschinger et al. (2013)
Mouse ESC (E14TG2a) in serum LIF

Acknowledgement

- Lisa Breckels
- Sebastien Gibb
- Kathryn Lilley (CCP)

