The material in this course requires R version 3.2 and Bioconductor version 3.2
stopifnot(
    getRversion() >= '3.2' && getRversion() < '3.3',
    BiocInstaller::biocVersion() == "3.2"
)
Physically
Conceptually
Volume of data
Type of research question
Technological artifacts
Cisplatin-resistant non-small-cell lung cancer gene sets
Lessons
SummarizedExperimentUnderlying data is a matrix
assay() – e.g., matrix of counts of reads overlapping genesInclude information about rows
rowRanges() – gene identifiers, or genomic ranges describing the coordinates of each geneInclude information about columns
colData() – describing samples, experimental design, …library(airway)         # An 'ExperimentData' package...
data(airway)            # ...with a sample data set...
airway                  # ...that is a SummarizedExperiment
## class: RangedSummarizedExperiment 
## dim: 64102 8 
## metadata(1): ''
## assays(1): counts
## rownames(64102): ENSG00000000003 ENSG00000000005 ... LRG_98 LRG_99
## rowRanges metadata column names(0):
## colnames(8): SRR1039508 SRR1039509 ... SRR1039520 SRR1039521
## colData names(9): SampleName cell ... Sample BioSample
head(assay(airway))     # contains a matrix of counts
##                 SRR1039508 SRR1039509 SRR1039512 SRR1039513 SRR1039516 SRR1039517 SRR1039520
## ENSG00000000003        679        448        873        408       1138       1047        770
## ENSG00000000005          0          0          0          0          0          0          0
## ENSG00000000419        467        515        621        365        587        799        417
## ENSG00000000457        260        211        263        164        245        331        233
## ENSG00000000460         60         55         40         35         78         63         76
## ENSG00000000938          0          0          2          0          1          0          0
##                 SRR1039521
## ENSG00000000003        572
## ENSG00000000005          0
## ENSG00000000419        508
## ENSG00000000457        229
## ENSG00000000460         60
## ENSG00000000938          0
head(rowRanges(airway)) # information about the genes...
## GRangesList object of length 6:
## $ENSG00000000003 
## GRanges object with 17 ranges and 2 metadata columns:
##        seqnames               ranges strand   |   exon_id       exon_name
##           <Rle>            <IRanges>  <Rle>   | <integer>     <character>
##    [1]        X [99883667, 99884983]      -   |    667145 ENSE00001459322
##    [2]        X [99885756, 99885863]      -   |    667146 ENSE00000868868
##    [3]        X [99887482, 99887565]      -   |    667147 ENSE00000401072
##    [4]        X [99887538, 99887565]      -   |    667148 ENSE00001849132
##    [5]        X [99888402, 99888536]      -   |    667149 ENSE00003554016
##    ...      ...                  ...    ... ...       ...             ...
##   [13]        X [99890555, 99890743]      -   |    667156 ENSE00003512331
##   [14]        X [99891188, 99891686]      -   |    667158 ENSE00001886883
##   [15]        X [99891605, 99891803]      -   |    667159 ENSE00001855382
##   [16]        X [99891790, 99892101]      -   |    667160 ENSE00001863395
##   [17]        X [99894942, 99894988]      -   |    667161 ENSE00001828996
## 
## ...
## <5 more elements>
## -------
## seqinfo: 722 sequences (1 circular) from an unspecified genome
colData(airway)[, 1:3]  # ...and samples
## DataFrame with 8 rows and 3 columns
##            SampleName     cell      dex
##              <factor> <factor> <factor>
## SRR1039508 GSM1275862   N61311    untrt
## SRR1039509 GSM1275863   N61311      trt
## SRR1039512 GSM1275866  N052611    untrt
## SRR1039513 GSM1275867  N052611      trt
## SRR1039516 GSM1275870  N080611    untrt
## SRR1039517 GSM1275871  N080611      trt
## SRR1039520 GSM1275874  N061011    untrt
## SRR1039521 GSM1275875  N061011      trt
## coordinated subsetting
untrt <- airway[, airway$dex == 'untrt']
head(assay(untrt))
##                 SRR1039508 SRR1039512 SRR1039516 SRR1039520
## ENSG00000000003        679        873       1138        770
## ENSG00000000005          0          0          0          0
## ENSG00000000419        467        621        587        417
## ENSG00000000457        260        263        245        233
## ENSG00000000460         60         40         78         76
## ENSG00000000938          0          2          1          0
colData(untrt)[, 1:3]
## DataFrame with 4 rows and 3 columns
##            SampleName     cell      dex
##              <factor> <factor> <factor>
## SRR1039508 GSM1275862   N61311    untrt
## SRR1039512 GSM1275866  N052611    untrt
## SRR1039516 GSM1275870  N080611    untrt
## SRR1039520 GSM1275874  N061011    untrt
Packages!
Visualization
Inter-operability between packages
Examples (details later)
SummarizedExperimentDNAStringSetGenomicRangesAnnotation
Case studies
Wet-lab preparation
High-throughput sequencing
Output: FASTQ files of reads and their quality scores
@ERR127302.1703 HWI-EAS350_0441:1:1:1460:19184#0/1
CCTGAGTGAAGCTGATCTTGATCTACGAAGAGAGATAGATCTTGATCGTCGAGGAGATGCTGACCTTGACCT
+
HHGHHGHHHHHHHHDGG<GDGGE@GDGGD<?B8??ADAD<BE@EE8EGDGA3CB85*,77@>>CE?=896=:
@ERR127302.1704 HWI-EAS350_0441:1:1:1460:16861#0/1
GCGGTATGCTGGAAGGTGCTCGAATGGAGAGCGCCAGCGCCCCGGCGCTGAGCCGCAGCCTCAGGTCCGCCC
+
DE?DD>ED4>EEE>DE8EEEDE8B?EB<@3;BA79?,881B?@73;1?########################Output: BAM files of aligned reads
ERR127306.7941162       403     chr14   19653689        3       72M             =       19652348        -1413  ...
ERR127306.22648137      145     chr14   19653692        1       72M             =       19650044        -3720  ...
... GAATTGATCAGTCTCATCTGAGAGTAACTTTGTACCCATCACTGATTCCTTCTGAGACTGCCTCCACTTCCC        *'%%%%%#&&%''#'&%%%)&&%%$%%'%%'&*****$))$)'')'%)))&)%%%%$'%%%%&"))'')%))
... TTGATCAGTCTCATCTGAGAGTAACTTTGTACCCATCACTGATTCCTTCTGAGACTGCCTCCACTTCCCCAG        '**)****)*'*&*********('&)****&***(**')))())%)))&)))*')&***********)****
... AS:i:0  XN:i:0  XM:i:0  XO:i:0  XG:i:0  NM:i:0  MD:Z:72 YT:Z:UU NH:i:2  CC:Z:chr22      CP:i:16189276   HI:i:0
... AS:i:0  XN:i:0  XM:i:0  XO:i:0  XG:i:0  NM:i:0  MD:Z:72 YT:Z:UU NH:i:3  CC:Z:=  CP:i:19921600   HI:i:0Statistical analysis
Comprehension
More detail later!
Example: ‘airway’ data set used in a later lab
Steps
One experimental factor with two levels: control, and treated with dexamethasone
library(airway)         # An 'ExperimentData' package...
data(airway)            # ...with a sample data set...
colData(airway)[, 1:3]  # ...represented as a SummarizedExperiment
## DataFrame with 8 rows and 3 columns
##            SampleName     cell      dex
##              <factor> <factor> <factor>
## SRR1039508 GSM1275862   N61311    untrt
## SRR1039509 GSM1275863   N61311      trt
## SRR1039512 GSM1275866  N052611    untrt
## SRR1039513 GSM1275867  N052611      trt
## SRR1039516 GSM1275870  N080611    untrt
## SRR1039517 GSM1275871  N080611      trt
## SRR1039520 GSM1275874  N061011    untrt
## SRR1039521 GSM1275875  N061011      trtWet-lab preparation
High-throughput sequencing
GenomicRanges::summarizeOverlaps()Output: matrix of the count of reads overlapping regions of interest. Each row is a gene. Each column is a sample.
head(assay(airway))
##                 SRR1039508 SRR1039509 SRR1039512 SRR1039513 SRR1039516 SRR1039517 SRR1039520
## ENSG00000000003        679        448        873        408       1138       1047        770
## ENSG00000000005          0          0          0          0          0          0          0
## ENSG00000000419        467        515        621        365        587        799        417
## ENSG00000000457        260        211        263        164        245        331        233
## ENSG00000000460         60         55         40         35         78         63         76
## ENSG00000000938          0          0          2          0          1          0          0
##                 SRR1039521
## ENSG00000000003        572
## ENSG00000000005          0
## ENSG00000000419        508
## ENSG00000000457        229
## ENSG00000000460         60
## ENSG00000000938          0Output: top table of differentially expressed genes. For each gene: ‘log fold change’ describing how large a change occurred, and a test statistic (e.g., adjusted p-value) summarizing statistical evidence for the change
library(DESeq2)     # package implementing statistical methods
dds <-              # data and experimental design
    DESeqDataSet(airway, design = ~ cell + dex)
dds <- DESeq(dds)   # initial analysis
## estimating size factors
## estimating dispersions
## gene-wise dispersion estimates
## mean-dispersion relationship
## final dispersion estimates
## fitting model and testing
res <- results(dds) # summary results
ridx <-             # order from largest to smallest absolute log fold change
    order(abs(res$log2FoldChange), decreasing=TRUE)
res <- res[ridx,]
head(res)           # top-table
## log2 fold change (MAP): dex untrt vs trt 
## Wald test p-value: dex untrt vs trt 
## DataFrame with 6 rows and 6 columns
##                  baseMean log2FoldChange     lfcSE      stat        pvalue          padj
##                 <numeric>      <numeric> <numeric> <numeric>     <numeric>     <numeric>
## ENSG00000179593  67.24305      -4.884729 0.3312024 -14.74847  3.147170e-49  1.031585e-46
## ENSG00000109906 385.07103      -4.865899 0.3324555 -14.63624  1.649293e-48  5.126459e-46
## ENSG00000152583 997.43977      -4.316100 0.1724125 -25.03357 2.636198e-138 4.752538e-134
## ENSG00000250978  56.31819      -4.093661 0.3291518 -12.43700  1.645709e-35  2.798948e-33
## ENSG00000163884 561.10717      -4.079127 0.2103817 -19.38917  9.525449e-84  1.073280e-80
## ENSG00000168309 159.52692      -3.992793 0.2549089 -15.66361  2.682234e-55  1.239880e-52Visualization
library(ggplot2)
ggplot(as.data.frame(res), 
       aes(x=log2FoldChange, y=-10 * log10(pvalue))) +
    geom_point()
## Warning: Removed 30633 rows containing missing values (geom_point).
From Ensembl gene identifiers to gene symbols, pathways, …
library(org.Hs.eg.db)
ensid <- head(rownames(res))
select(org.Hs.eg.db, ensid, c("SYMBOL", "GENENAME"), "ENSEMBL")
## 'select()' returned 1:1 mapping between keys and columns
##           ENSEMBL  SYMBOL                                      GENENAME
## 1 ENSG00000179593 ALOX15B          arachidonate 15-lipoxygenase, type B
## 2 ENSG00000109906  ZBTB16      zinc finger and BTB domain containing 16
## 3 ENSG00000152583 SPARCL1                          SPARC-like 1 (hevin)
## 4 ENSG00000250978    <NA>                                          <NA>
## 5 ENSG00000163884   KLF15                        Kruppel-like factor 15
## 6 ENSG00000168309 FAM107A family with sequence similarity 107, member ABAMSpector – display gene models and underlying support across BAM (aligned read) files
app <- system.file(package="BiocUruguay2015", "BAMSpector")
shiny::runApp(app)
MAPlotExplorer – summarize two-group differential expression, including drill-down of individual genes. Based on CSAMA 2015 lab by Andrzej Oles.
app <- system.file(package="BiocUruguay2015", "MAPlotExplorer")
shiny::runApp(app)
Some uses illustrated by these applications
Acknowledgements
Core (Seattle): Sonali Arora, Marc Carlson, Nate Hayden, Jim Hester, Valerie Obenchain, Hervé Pagès, Paul Shannon, Dan Tenenbaum.
The research reported in this presentation was supported by the National Cancer Institute and the National Human Genome Research Institute of the National Institutes of Health under Award numbers U24CA180996 and U41HG004059, and the National Science Foundation under Award number 1247813. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health or the National Science Foundation.
sessionInfo()sessionInfo()
## R version 3.2.2 (2015-08-14)
## Platform: x86_64-pc-linux-gnu (64-bit)
## Running under: Debian GNU/Linux stretch/sid
## 
## locale:
##  [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C               LC_TIME=en_US.UTF-8       
##  [4] LC_COLLATE=en_US.UTF-8     LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
##  [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                  LC_ADDRESS=C              
## [10] LC_TELEPHONE=C             LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       
## 
## attached base packages:
## [1] stats4    parallel  stats     graphics  grDevices utils     datasets  methods   base     
## 
## other attached packages:
##  [1] org.Hs.eg.db_3.2.3                      RSQLite_1.0.0                          
##  [3] DBI_0.3.1                               ggplot2_1.0.1                          
##  [5] airway_0.103.1                          limma_3.25.18                          
##  [7] DESeq2_1.9.51                           RcppArmadillo_0.6.100.0.0              
##  [9] Rcpp_0.12.1                             BSgenome.Hsapiens.UCSC.hg19_1.4.0      
## [11] BSgenome_1.37.6                         rtracklayer_1.29.28                    
## [13] TxDb.Hsapiens.UCSC.hg19.knownGene_3.2.2 GenomicFeatures_1.21.33                
## [15] AnnotationDbi_1.31.19                   SummarizedExperiment_0.3.11            
## [17] Biobase_2.29.1                          GenomicRanges_1.21.32                  
## [19] GenomeInfoDb_1.5.16                     microbenchmark_1.4-2                   
## [21] Biostrings_2.37.8                       XVector_0.9.4                          
## [23] IRanges_2.3.26                          S4Vectors_0.7.23                       
## [25] BiocGenerics_0.15.11                    BiocStyle_1.7.9                        
## 
## loaded via a namespace (and not attached):
##  [1] splines_3.2.2            Formula_1.2-1            latticeExtra_0.6-26     
##  [4] Rsamtools_1.21.21        yaml_2.1.13              lattice_0.20-33         
##  [7] digest_0.6.8             RColorBrewer_1.1-2       colorspace_1.2-6        
## [10] sandwich_2.3-4           htmltools_0.2.6          plyr_1.8.3              
## [13] XML_3.98-1.3             biomaRt_2.25.3           genefilter_1.51.1       
## [16] zlibbioc_1.15.0          xtable_1.7-4             mvtnorm_1.0-3           
## [19] scales_0.3.0             BiocParallel_1.3.54      annotate_1.47.4         
## [22] TH.data_1.0-6            nnet_7.3-11              proto_0.3-10            
## [25] survival_2.38-3          magrittr_1.5             evaluate_0.8            
## [28] MASS_7.3-44              foreign_0.8-66           BiocInstaller_1.19.14   
## [31] tools_3.2.2              formatR_1.2.1            multcomp_1.4-1          
## [34] stringr_1.0.0            munsell_0.4.2            locfit_1.5-9.1          
## [37] cluster_2.0.3            lambda.r_1.1.7           futile.logger_1.4.1     
## [40] grid_3.2.2               RCurl_1.95-4.7           labeling_0.3            
## [43] bitops_1.0-6             rmarkdown_0.8.1          gtable_0.1.2            
## [46] codetools_0.2-14         reshape2_1.4.1           GenomicAlignments_1.5.18
## [49] gridExtra_2.0.0          zoo_1.7-12               knitr_1.11              
## [52] Hmisc_3.17-0             futile.options_1.0.0     stringi_0.5-5           
## [55] geneplotter_1.47.0       rpart_4.1-10             acepack_1.3-3.3