Microbial genomics

Charlotte Soneson
University of Zurich
Brixen 2017

What is the "microbiome"?

TARA OCEANS

What is the "microbiome"?

- microbiota = the assemblage of microorganisms (e.g., bacteria, archaea, viruses, fungi)
- microbiome = the ecosystem comprising all microorganisms in an environment, as well as their genes and environmental interactions

The human microbiota

- "microorganisms that exist upon, within or in close proximity to the human body"
- widely varying composition between body sites and individuals
- important for health: building vitamins, breaking down food etc.
- ratio of microbial to human genes in the body is estimated between 1:1 and 100:1

Human skin

Actinobacteria

Corynebacterineae

- Propionibacterineae
- Micrococcineae

Other Actinobacteria

- Bacteroidetes
- Cyanobacteria

Firmicutes

- Other Firmicutes - Staphylococcaceae
- Proteobacteria
- Divisions contributing < 1%
Unclassified

How can we analyze the microbiome?

How can we analyze the microbiome?

- Whole-genome sequencing: characterize specific isolate

How can we analyze the microbiome?

- Metagenomic (shotgun) sequencing: sequence complete set of DNA in a sample

How can we analyze the microbiome?

- metatranscriptomics
- metaproteomics

How can we analyze the microbiome?

- [16S] rRNA amplicon/marker gene sequencing: infer microbial composition

Amplicon sequencing - basic idea

- Amplify (part of) the 16 S rRNA gene from all microbes - sequence amplified part
- Cluster sequences together in so called OTUs (operational taxonomic units = clusters of similar sequences ~ "species")
- Get the number of sequences in each cluster/OTU for each sample
- Generate an abundance table (OTUs x samples)

Amplicon sequencing - basic idea

Which part?
We need primers!

- Amplify (part of) the 16 S rRNA gene from all microbes - sequence amplified part

How to cluster?

- Cluster sequences together in so called OTUs (operational taxonomic units = clusters of similar sequences ~ "species")
- Get the number of sequences in each cluster/OTU for each sample

How to analyze?

- Generate an abundance table (OTUs x samples)

Why [16S] rRNA?

- rRNA is one of the few gene products present in all cells
- 16 r rRNA has 9 hypervariable regions allowing species identification, as well as conserved regions allowing primer construction
- conserved function
- sequence has been characterized for many species

$16 S$ is not perfect

- 16 doesn't capture all differences between the full DNA sequences
- Different species can have similar 16 sequences
- A single species can have paralogs that are not identical
- Results can depend on which variable region is considered, and which sequencer is used

There are still challenges to overcome

OTU generation

- "closed-reference clustering": compare sequences to a reference catalog, group together sequences that are similar to the same references.
- "distance-based/de novo clustering": cluster based on pairwise distances among sequences.
- "open-reference clustering": closed-reference clustering followed by de novo clustering of unclassified sequences

Which similarity threshold?

- Typical (but arbitrary) similarity threshold: 97\% (for species level)
- This means different things depending on the clustering method that was used!

Representation in R - phyloseq object

```
> library(phyloseq)
> data(GlobalPatterns)
> GlobalPatterns
phyloseq-class experiment-level object
otu_table() OTU Table: [ 19216 taxa and 26 samples ]
sample_data() Sample Data: [ 26 samples by 7 sample variables ]
tax_table() Taxonomy Table: [ 19216 taxa by 7 taxonomic ranks ]
phy_tree() Phylogenetic Tree: [ 19216 tips and }19215\mathrm{ internal nodes ]
> head(otu_table(GlobalPatterns))
OTU Table:
[6 taxa and 26 samples]
taxa are rows
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & L3 & CC1 & SV1 & M31Fcsw & M11Fcsw & M31Plm & M11Plmr & F21Plmr & M31Tong & M11Tong & LMEpi24M & SLEpi20M & AQC1cm & AQC4cm \\
\hline 549322 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 27 & 100 \\
\hline 522457 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 2 \\
\hline 951 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 244423 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 22 \\
\hline 586076 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 2 \\
\hline 246140 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
\hline
\end{tabular}
AQC7cm NP2 NP3 NP5 TRRsed1 TRRsed2 TRRsed3 TS28 TS29 Even1 Even2 Even3
\begin{tabular}{lrrrrllllllll}
549322 & 130 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
522457 & 6 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
951 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
244423 & 29 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
586076 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
246140 & 3 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{tabular}
```


Representation in R - phyloseq object

Richness and alpha diversity

- richness = number of species observed in a sample
- alpha diversity ~ diversity ("unevenness") of species abundances within a sample

Richness and alpha diversity

Richness and alpha diversity

> phx
OTU Table: [3 taxa and 2 samples] taxa are rows


```
sample1 sample2
* OTU1 4 10
# OTU2 4 1
OOTU3 4
>
> estimate_richness(phx, measures = "Observed")
Observed
```

sample1 3
sample2 3

Richness and alpha diversity

Richness and alpha diversity - HMP data

Normalization

- Library sizes vary greatly between samples

Normalization

- Library sizes vary greatly between samples
- OTU abundances are often normalized by rarefying (subsampling to equal sequencing depth across samples) or by representing them as relative abundances.
- Recent studies have suggested using scaling normalization (similar to RNA-seq).

Scaling normalization - challenges

- Lots of zero counts!
- Assumption that "most things don't change" across samples may not be valid.
- RNA-seq normalization methods require (e.g.) at least one OTU which is observed in all samples.

Similarity to single-cell RNA-seq

Normalization of sparse count data

- metagenomeSeq (CSS)
- scran
- SCnorm
- Wrench

Differential abundance testing

- What do we want to test?
- Difference between mean abundance
- Difference in fraction of zeros
- Difference between mean abundance conditioning on being present
- Overall difference in OTU composition

References

- Paulson et al.: Differential abundance analysis for microbial marker-gene surveys. Nature Methods 10(12):1200-1203 (2013) - metagenomeSeq
- Mandal et al.: Analysis of composition of microbiomes: a novel method for studying microbial composition. Microbial Ecology in Health and Disease 26:27663 (2015) - ANCOM
- McMurdie \& Holmes: Waste not, want not: why rarefying microbiome data is inadmissible. PLoS Computational Biology 10(4):e1003531 (2014)
- Lun et al.: Pooling across cells to normalize single-cell RNA sequencing data with many zero counts. Genome Biology 17:75 (2016) - scran
- Bacher et al.: SCnorm: robust normalization of single-cell RNA-seq data. Nature Methods 14:584-586 (2017) - SCnorm
- Senthil Kumar et al.: Analysis and correction of compositional bias in sparse sequencing count data. bioRxiv doi: 10.1101/142851 (2017) - Wrench
- Weiss et al.: Effects of library size variance, sparsity, and compositionality on the analysis of microbiome data. PeerJ Preprints (2015)
- The Human Microbiome Project Consortium: Structure, function and diversity of the healthy human microbiome. Nature 486:207-214 (2012) - Human Microbiome Project
- Lovell et al.: Proportionality: a valid alternative to correlation for relative data. PLoS Computational Biology 11(3):e1004075 (2015) - log-ratio analysis
- Gloor et al.: It's all relative: analyzing microbiome data as compositions. Annals of Epidemiology (2016) - log-ratio analysis
- Westcott \& Schloss: De novo clustering methods outperform reference-based methods for assigning 16S rRNA gene sequences to operational taxonomic units. PeerJ 3:e1487 (2015) - OTU clustering
- Schmidt et al.: Limits to robustness and reproducibility in the demarcation of operational taxonomic units. Enviromental Microbiology 17(5):1689-1706 (2015) - OTU clustering
- Cox et al.: Sequencing the human microbiome in healthy and disease. Human Molecular Genetics 22:R88-R94 (2013)
- Yarza et al.: Uniting the classification of cultured and uncultured bacteria and archaea using 16S rRNA gene sequences. Nature Reviews Microbiology 12:635-645 (2014)
- Bodilis et al.: Variable copy number, intra-genomic heterogeneities and lateral transfers of the 16S rRNA gene in Pseudomonas. PLoS One 7(4):e35647 (2012)
- Janda \& Abbott: 16S rRNA gene sequencing for bacterial identification in the diagnostic laboratory: pluses, perils and pitfalls. Journal of Clinical Microbiology 45(9):2761-2764 (2007)
- Fouhy et al.: 16S rRNA gene sequencing of mock microbial populations - impact of DNA extraction method, primer choice and sequencing platform. BMC Microbiology 16:123 (2016)

