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Objective

Is expression of genes in a gene set associated with experimental
condition?

I E.g., Are there unusually many up-regulated genes in the gene
set?

Many methods, a review is Kharti et al., 2012.

I Over-representation analysis (ORA) – are differentially
expressed (DE) genes in the set more common than expected?

I Functional class scoring (FCS) – summarize statistic of DE of
genes in a set, and compare to null

I Issues with sequence data?

I Issues with single-cell data?



What is a gene set?

Any a priori classification of ‘genes’ into biologically relevant
groups

I Members of same biochemical pathway

I Proteins expressed in identical cellular compartments

I Co-expressed under certain conditions

I Targets of the same regulatory elements

I On the same cytogenic band

I . . .

Sets do not need to be. . .

I exhaustive

I disjoint



Collections of gene sets

Gene Ontology (GO) Annotation (GOA)

I CC Cellular Components

I BP Biological Processes

I MF Molecular Function

Pathways

I MSigDb

I KEGG

I reactome

I PantherDB

I . . .

http://geneontology.org
http://www.broadinstitute.org/gsea/msigdb/
http://genome.jp/kegg
http://reactome.org
http://pantherdb.org


Collections of gene sets

E.g., MSigDb

I c1 Positional gene sets – chromosome & cytogenic band

I c2 Curated Gene Sets from online pathway databases,
publications in PubMed, and knowledge of domain experts.

I c3 motif gene sets based on conserved cis-regulatory motifs
from a comparative analysis of the human, mouse, rat, and
dog genomes.

I c4 computational gene sets defined by mining large collections
of cancer-oriented microarray data.

I c5 GO gene sets consist of genes annotated by the same GO
terms.

I c6 oncogenic signatures defined directly from microarray gene
expression data from cancer gene perturbations.

I c7 immunologic signatures defined directly from microarray
gene expression data from immunologic studies.

http://www.broadinstitute.org/gsea/msigdb/


Work flow

1. Experimental design

2. Sequencing, quality assessment, alignment

3. Differential expression

and then. . .

4. Perform gene set enrichment analysis

5. Adjust for multiple comparisons



Approach 1: hypergeometric tests

1. Classify each gene as
‘differentially expressed’ DE
or not, e.g., based on
p < 0.05

2. Are DE genes in the set
more common than DE
genes not in the set?

3. Fisher hypergeometric test.
GOstats; limma::goana()
. . .

I Conditional hypergeometric
to accommodate GO DAG,
GOstats

I But: artificial division into
two groups (DE vs. not DE)

In gene set?
Yes No

DE k K
Not DE n − k N − K

fisher.test()

http://bioconductor.org/packages/release/bioc/html/GOstats.html
http://bioconductor.org/packages/release/bioc/html/limma.html
http://bioconductor.org/packages/release/bioc/html/GOstats.html


Approach 2: enrichment score

Mootha et al., 2003; modified
Subramanian et al., 2005.

1. Sort genes by log fold
change

2. Calculate running sum:
incremented when gene in
set, decremented when not.

3. Maximum of the running
sum is enrichment score ES;
large ES means that genes
in set are toward top of list.

4. Permuting subject labels for
signficance

Subramanian et al., 2005, fig 1.



Approach 3: category t-test

E.g., Jiang & Gentleman, 2007;
Category

1. Summarize t (or other)
statistic across genes in each
set

2. Test for significance by
permuting the subject labels

3. Much more straight-forward
to implement Expression in NEG vs BCR/ABL

samples for genes in the ‘ribosome’

KEGG pathway; Category vignette.

http://bioconductor.org/packages/release/bioc/html/Category.html
http://bioconductor.org/packages/release/bioc/html/Category.html


Competitive versus self-contained null hypothesis

Goemann & Bühlmann, 2007

I Competitive null: The genes in the gene set do not have
stronger association with the subject condition than other
genes. Distinguishing more from less important sets.
(Approach 1, 2)

I Self-contained null: The genes in the gene set do not have
any association with the subject condition. Assessing
individual sets. (Approach 3)

I Probably, self-contained null is closer to actual question of
interest

I Permuting subjects (rather than genes) is appropriate



Approach 4: linear models

E.g., Hummel et al., 2008, GlobalAncova

I Colorectal tumors have good (‘stage II’) or bad (‘stage III’)
prognosis. Do genes in the p53 pathway (just one gene set!)
show different activity at the two stages?

I Linear model incorporates covariates – sex of patient, location
of tumor

limma

I Majewski et al., 2010 romer() and Wu & Smythe 2012
camera() for enrichment (competitive null) linear models

I Wu et al., 2010: roast(), mroast(), (and fry() – efficient)
for self-contained null linear models

http://bioconductor.org/packages/release/bioc/html/GlobalAncova.html
http://bioconductor.org/packages/release/bioc/html/limma.html


Approach 5: issues with sequence data?

I All else being equal, long
genes receive more reads
than short genes

I Per-gene P values
proportional to gene size

E.g., Young et al., 2010, goseq

I Hypergeometric, weighted
by gene size

I Substantial differences

I Better: read depth??
DE genes vs. transcript length.

Points: bins of 300 genes. Line:

fitted probability weighting function.

http://bioconductor.org/packages/release/bioc/html/goseq.html


Approach 6: de novo discovery

I So far: analogous to supervised machine learning, where
pathways are known in advance

I What about unsupervised discovery?

Example: Langfelder & Hovarth, WGCNA

I Weighted correlation network analysis

I Described in Langfelder & Horvath, 2008



Issues with single-cell data?

I E.g., assigning function to clusters.

I Often, projections into reduced dimensions.

I Not genes per se, but weights.

I Opportunities for new / disciplined methods!



Representing gene sets in R

I Named list(), where names of the list are sets, and each
element of the list is a vector of genes in the set.

I data.frame() of set name / gene name pairs

I GSEABase – input from standard file formats, representation
as formal classes.

http://bioconductor.org/packages/release/bioc/html/GSEABase.html


Benchmarks

A recent tweet from Levi Waldron provides a nice summary.

I GSEABenchmarkR for running benchmarks

I Self-contained tests often call random gene sets significant

I Hypergeometric test performs relatively well!

https://twitter.com/LeviWaldron1/status/1142092301403115521
http://bioconductor.org/packages/release/bioc/html/GSEABenchmarkR.html


Conclusions

Gene set enrichment classifications

I Kharti et al: Over-representation analysis; functional class
scoring; pathway topology

I Goemann & Bühlmann: Competitive vs. self-contained null

Selected Bioconductor packages (see biocViews)

Approach Packages

Hypergeometric GOstats, topGO, limma::goana()
Enrichment limma::romer()
Category t-test Category
Linear model GlobalAncova, GSEAlm, limma::fry()
Pathway topology SPIA
Sequence-specific goseq
Visualization pathview

http://bioconductor.org/packages/release/BiocViews.html#___GeneSetEnrichment
http://bioconductor.org/packages/release/bioc/html/GOstats.html
http://bioconductor.org/packages/release/bioc/html/topGO.html
http://bioconductor.org/packages/release/bioc/html/limma.html
http://bioconductor.org/packages/release/bioc/html/limma.html
http://bioconductor.org/packages/release/bioc/html/Category.html
http://bioconductor.org/packages/release/bioc/html/GlobalAncova.html
http://bioconductor.org/packages/release/bioc/html/GSEAlm.html
http://bioconductor.org/packages/release/bioc/html/limma.html
http://bioconductor.org/packages/release/bioc/html/SPIA.html
http://bioconductor.org/packages/release/bioc/html/goseq.html
http://bioconductor.org/packages/release/bioc/html/pathview.html
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Partly based on a presentation by Simon Anders, CSAMA 20101.

1http://marray.economia.unimi.it/2009/material/lectures/L8_

Gene_Set_Testing.pdf
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