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X axis: genomic
coordinate on chr1

y axis: expression
smoothed over
windows of ~100
genes

OPC: oligodendrocyte
precursor cells

What approach to
measuring cell-cell
distance should be
used?

How would you go
about feature selection
for classifying cells?



Mastery:

e n. comprehensive knowledge or skill in a particular subiject or activity

e mastery of distances?
e From Holmes and Huber © -

MSMB: to which cluster
center is the red dot closest? ©

< —



http://web.stanford.edu/class/bios221/book/
http://web.stanford.edu/class/bios221/book/

Mathematics
of the 19th
century: e
minimize the
role of
geometric
intuition
(Dedekind,
Hilbert)

Is it reasonable
to make use of
spatial intuition
in biology?

An attempt to
visualize a 7-dim
hypercube

(27 = 128 corners)

http://yaroslavvb.blogspot.com/2006/05/curse-of-dimensionality-and-intuition.html



Road map

Case study: single-cell RNA-seq in glioblastoma
Distances and the curse of dimensionality
Dimension reduction and feature engineering
Options and figures of merit in cluster analysis
Concepts of supervised learning

Kipoi.org: an archive of trained models



Cell Reports,
2017

Single-Cell RNA-Seq Analysis of Infiltrating
Neoplastic Cells at the Migrating Front of Human
Glioblastoma

Graphical Abstract

Dissociate
tissue

| Single-cell
RNA-seq
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Effect of tumor
microenvdronment on
immune, other CNS cell types

+ macrophage / microgka distribution
4 ant-inflammatory immune response
4 pro-angioganic factors
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Molecular signature
of infiltrating
neoplastic cells

4 size regulation

4 inhibition of apoptosis

4 energy production

+ regulation of cefl-cell adhesion
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In Brief

Darmanis et al. perform single-cell
transcriptomic analyses of neoplastic and
stromal cells within and proximal to
primary glioblastomas. The authors
describe a population of neoplastic-
infiltrating glioblastoma cells as well as a
putative role of tumor-infiltrating immune
cells in supporting tumor growth.




Design summary

3500 cells from glioblastoma samples from four patients
(IDH1-negative)

Cells isolated from tumor core and periphery, immmunopanned to
increase diversity of cell types

Smart-seq2 scRNA-seq on all cells

O

©)
©)
©)

t-SNE+k-means used to identify 12 clusters

biological identity of clusters inferred via signature assessment
smoothing of expression profiles used to obtain CNV profiles
hierarchical clustering of CNV profiles exposes distinctions of
neoplastic and non-neoplastic cells

differential expression to obtain signature of infiltrating cells



Cell selection via immunopanning

Tumor core
cell suspension
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Setup for dimension reduction (Darmanis 2017 Figure 2)

To visualize the transcriptomic land-
scape across all sequenced single cells,
we used dimensional reduction to

generate a two-dimensional (2D) map of the 3,589 single cells
that passed quality control (QC) (Figure S1B; Table 1), performing
an analysis similar to that of Darmanis et al. (2015). In brief, we
selected genes with the highest over-dispersion (n = 500) and
used them to construct a cell-to-cell dissimilarity matrix. We
then performed t-distributed stochastic neighbor embedding
(tSNE) on the resulting distance matrix to create a 2D map of all
cells. Finally, we used k-means clustering on the 2D tSNE map,
resulting in the identification of 12 distinct cell types within sepa-
rate clusters (Figure 2A).

Feature selection via
PAGODA
pathway-oriented
overdispersion metric
dissimilarity metric is
d(x,y) = 1- cor(x,y)
where x and y are
vectors of expression
measures over all
samples

t-SNE perplexity set to
50



Figure 2 of Darmanis 2017; OPC = oIigodendrocyEprecursor cell
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Single-cell CNV profiling via single-cell RNA-seq [supplement]

CNV analysis

We constructed CNV vectors for ecach single cell based on gene expression data. Given the nature of
RNAseq data, CNV profiles cannot be calculated using the same approach as when genomic DNA data
arc available. Instead, one can use the gene expression information to infer over- or under- expression
of big genomic regions that might correspond to chromosomal amplification or deletion events. To
calculate CNV profiles for cach single cell we used a similar approach to (Patel et al., 2014) and
(Tirosh et al., 2016). Bricfly, we sorted all genes based on their genomic location and calculated a
CNV vector for every cell. The CNV vector is a moving average of gene expression using a window of
0.1*n genes per chromosome, where n is the total number of genes on that chromosome. The resulting

CNV vectors of each cell were centered by subtraction of their mean prior to any downstream analysis.



DeltaCNV

(Pasent Neoplastc-Non-naoplastic)

e Four patients

e RNA-seq profile
for each cell is
smoothed

e For each patient,
average for
non-neoplastic
cells is subtracted
from average for
neoplastic cells

e The cell-specific
CNV profiles are
used to form a
measure of
structural (as
opposed to
transcriptomic)
distance between
cells, for
hierarchical
clustering
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"The resulting dendrogram
was composed of three
primary branches (Figure
3A): one (CNV 1)
consisted exclusively of
neoplastic cells, whereas
the remaining two
contained the majority of
non-neoplastic cells."
Details of hierarchical
clustering not discussed
Options include the form
of distance/dissimilarity,
method of agglomeration,
criterion of labeling
(cutting the tree)



Upon magnification, it
appears that there are
numerous
non-neoplastic cells
(green bars) in the
branch colored black
or brown

Authors report low
misclassification rates,
and there are other
approaches to
confirming the
plausibility of the CNV
profiling reported in the
paper



Core Genes Infiltrating

ATP1A2
FGFR3
LMe3
NCAN
FXYD1
PSD2
PRODH
HIF3A
HRSP12
KCNN3
PPM1K
KCNJ10
ADCYAP1R1
BMP7
KAT28
CNTN1
SAMDIL
SLC7A11
ECHDC2
FAM 1818
SALL2
SASH1

'

0.4

0.2

0 0 02
Fraction of expressing cells

0.4

0.6

0.8

Major result:
A set of genes characteristic of the
infiltrating cells (boundary of tumor)

DESeq2 declared 1000/250 genes
down/upregulated comparing
peripheral to core

This list involves genes expressed in
more than 50% of infiltrators but
fewer than 30% of core

Where do "50%" and "30%" come
from?



Summary

e {-SNE dimension reduction leads to groupings of cells that can be rationalized
in terms of brain and tumor anatomy

e k-means clustering was used in the 2-d space

e smoothing expression vectors over genomic coordinates leads to RNA-seq
based CNV profiles for each cell

e hierarchical clustering was used with these CNV profiles, and distinguished
groups of neoplastic and non-neoplastic cells

e cells on tumor periphery have a distinct expression signature that is
rationalized by GO categories, etc.



Questions

e [s areduction to two dimensions sufficient for what we want to do?

e Should we consider alternatives to the distance d(x,y) = (1-cor(x,y))
underlying the t-SNE rendering in the paper?

e Should we consider alternatives to t-SNE for dimension reduction? Is tuning
(e.g., setting of perplexity and "learning rate") worth exploring?

e |[s there a tuning aspect of the hierarchical clustering of cell-specific CNV
profiles worth exploring?

To start to address these questions, we will start to work with the Darmanis data in
a certain structure produced by Charlotte Soneson in the CONQUER [consistent
quantification for RNA-seq data] system



Comments

| don't know the exact set of 500 genes used by Darmanis, as they were
identified using PAGODA's overdispersion metric, so | select ~700 genes
ordered by overall s.d. across all samples (omitting some with very large s.d.s
that disrupt reasonable visualization strategies)

The result of Rtsne (code to be shown) with minimal tuning recapitulates
aspects of the Darmanis published display, and constitutes a sanity check for
the various tasks of deriving and analyzing the data separately from the
authors

| use the GEO-based labeling of cells -- | do not have the classes asserted in
the published figures

We can now explore sensitivity of the t-SNE procedure to tuning parameter
selection

We can now explore effects of choosing other dimension reduction
approaches for this analysis task



RNA-seq quantifications: | use "count-scale length-scaled TPM"

from conquer "about" tab:

Data summarisation

The abundances estimated by Salmon are summarised and provided to the user via conquer in the form of a MultiAssayExperiment object. This
object can be downloaded via the buttons in the MultiAssayExperiment column. To generate this object, we first use the tximport package to
read the Salmon output into R. This returns both count estimates and TPM estimates for each transcript. Next, we summarise the transcript-
level information to the gene level. The gene-level TPM is defined as the sum of the TPMs of the corresponding transcripts, and similarly for the
gene-level counts. We also provide “scaled TPMs” (see http://f1000research.com/articles/4-1521/ or the tximport vignette for a discussion), that
is, summarised TPMs scaled to a “count scale”. In the summarisation step, we make use of the transcript-to-gene lookup table generated above.

The provided MultiAssayExperiment object contains two “experiments”, corresponding to the gene-level and transcript-level values. The gene-

level experiment contains four “assays”:

TPM
count

count_Istpm (count-scale length-scaled TPMs)
avetxlength (the average transcript length, which can be used as offsets in count models based on the count assay, see

http://f1000research.com/articles/4-1521/).



A basic representation of the Darmanis 2017 data
after extraction from CONQUER

> locdarm

class: RangedSummarizedExperiment
dim: 65218 3584

metadata (0) :

assays(l) : count lstpm

rownames (65218) : ENSG00000000003.14 ENSG00000000005.5 ... ERCC-00170
ERCC-00171

rowData names (3) : gene genome symbol

colnames (3584) : GSM2243439 GSM2243440 ... GSM2247076 GSM2247077

colData names (59): title geo accession ... tsne.cluster.chl well.chl

Reduction to ~700 genes using s.d. over all samples is elementary ... rowSds and [



def.tsy
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Left: default Rtsne on the 'conquer' quantifications for 739 genes; GEO notations
Right: as published in Darmanis 2017

Layouts different but concordant in various ways (three groups of 'neoplastic'
[green], 'myeloid/immune’ is 'largest’ group, etc.)
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A dynamic graphic addressing this concern

try vjccc::spin_tsne()
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Back to 2D: Left: Rtsne default euclidean distance
Right: Use 1-cor distance and is_distance=TRUE
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Caveats

A trio of researchers from Google wrote a 'distill' paper
https://distill.pub/2016/misread-tsne/

Let's scroll quickly through it

An issue for sensitivity analysis -- exploring various parameter settings -- is
that the algorithm can take time to converge, you don't know when it has
converged, and the hyperparameter space is potentially large



https://distill.pub/2016/misread-tsne/

Can t-SNE have any value at all in complex biological
systems?

e Depends on the objective
e "Proof of concept":
o Winner of Merck Viz challenge 2011 (kaggle docs taken down?)
o MNIST -- "digit separation”
o flow cytometry identifications recapitulated with RNA-seq
e Essential assumption
o a low dimensional structure exists and can be found with the iterative
computation of 'similarities' leading to a minimum in the t-SNE objective
function -- global minimum need not exist
o the tuning parameters are properly selected



from the original paper by van der Maaten and Hinton:

2) Curse of intrinsic dimensionality. t-SNE reduces the dimensionality of data mainly based on
local properties of the data, which makes t-SNE sensitive to the curse of the intrinsic dimensional-
ity of the data (Bengio, 2007). In data sets with a high intrinsic dimensionality and an underlying
manifold that is highly varying, the local linearity assumption on the manifold that t-SNE implicitly
makes (by employing Euclidean distances between near neighbors) may be violated. As a result,
t-SNE might be less successful if it 1s applied on data sets with a very high intrinsic dimensional-
ity (for instance, a recent study by Meytlis and Sirovich (2007) estimates the space of images of
faces to be constituted of approximately 100 dimensions). Manifold learners such as Isomap and
LLE suffer from exactly the same problems (see, e.g., Bengio, 2007; van der Maaten et al., 2008).
A possible way to (partially) address this issue is by performing t-SNE on a data representation
obtained from a model that represents the highly varying data manifold efficiently in a number of
nonlinear layers such as an autoencoder (Hinton and Salakhutdinov, 2006). Such deep-layer archi-
tectures can represent complex nonlinear functions in a much simpler way, and as a result, require
fewer datapoints to learn an appropriate solution (as 1s 1llustrated for a d-bits parity task by Bengio
2007). Performing t-SNE on a data representation produced by, for example, an autoencoder 1s



How does PCA
reduce
dimensionality?

pcal =
prcomp (t (assay (se)))

Here se is the 739 gene
subset of Darmanis
CONQUER

pairs(pca1$x[,1:3], ...) [color is
declared cell type]
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biplots are useful but
manual intervention
often needed

Here | used elements of
pcal$rotation to identify genes
with relatively large 'loadings'
and recomputed PCA with this
subset to get a simpler biplot
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In what sense is PCA "feature engineering"?

For column-centered data matrix X, we can derive PCs using the singular
value decomposition

X, = UDV!

n

in which columns of U are the PCs and columns of (orthonormal) V are
loadings; D is diagonal with elements measuring variances of the
corresponding PCs. Elements of columns of U are new features formed
by linear combination of columns of X: XVD'=U ... and we use
magnitudes of elements of D to determine how many PCs are "needed" to
approximate variation in X



Comparing approaches to dimension reduction
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Structure-preserving visualisation
-of high dimensional single-cell
_datasets

Benjamin Szubert!, Jennifer E. Cole?, Claudia Monaco("? & Ignat Drozdov?*

: Single-cell technologies offer an unprecedented opportunity to effectively characterize cellular

. heterogeneity in health and disease. Nevertheless, visualisation and interpretation of these multi-

: dimensional datasets remains a challenge. We present a novel framework, ivis, for dimensionality

. reduction of single-cell expression data. ivis utilizes a siamese neural network architecture that is trained
. using a novel triplet loss function. Results on simulated and real datasets demonstrate that ivis preserves
. global data structures in a low-dimensional space, adds new data points to existing embeddings using a

: parametric mapping function, and scales linearly to hundreds of thousands of cells. ivis is made publicly
available through Python and R interfaces on https://github.com/beringresearch/ivis.



ivis compared to t-SNE: correlating distances between asserted cluster
centers and centers given by manually gating in cyTOF
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Figure 6. Random forest classifier performance on ivis embeddings inferred from independent subsets of
healthy human BMMC data. (A) Scatterplot depicting accuracy of a random forest classifier when trained on

embedded subsets of varying size. The experiments for each subset size were repeated ten times. (B) Confusion
matrix for a sinole random farest classifier trained on a subset of 10.000 embedded data-noints and validated on



basic ivis run with 739 genes on 3584 cells

If ivis is actually superior to

t-SNE at accurately exhibiting - - . .
lower-dimensional structures |
from high-dimensional data, - .
then it might be concluded from  § O
this display that the tumor cells ~ © T - | . . 3
acquired in the Darmanis study C¥ N
divide into only two 5 7
transcriptomically-defined - s fRE -
groups Neoplastic
ol |% olgedsers
However tuning and selection ' S ore

of target dimensionality
demand additional attention




Use and figures of merit for cluster analysis

Basic
measure of
cluster
coherence:
silhouette

For each observation i, the _silhouette width_ s(i) is defined as
follows:

Put a(i) = average dissimilarity between i and all other points of
the cluster to which i belongs (if i is the _only_ observation in
its cluster, s(i) := @ without further calculations). For all
_other_ clusters C, put d(i,C) = average dissimilarity of i to all
observations of C. The smallest of these d(i,C) is b(i) := \min_C
d(i,C), and can be seen as the dissimilarity between i and its
"neighbor” cluster, i.e., the nearest one to which it does _not_
belong. Finally,

s(i) := ( b(i) - a(i) ) / max( a(i), b(i) ).

'silhouette.default()’ is now based on C code donated by Romain
Francois (the R version being still available as
‘cluster:::silhouette.default.R’).

Observations with a large s(i) (almost 1) are very well clustered,
a small s(i) (around @) means that the observation lies between
two clusters, and observations with a negative s(i) are probably
placed in the wrong cluster.



Order of dimension reduction and clustering

Typical procedure is
to use clustering
after dimension
reduction?

factor(kmrawcl7)
1

If we already reduce o ,.
the feature set to
hundreds of genes
before dimension
reduction, we might
cluster with those ...
example to right
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"Classification” -- lots of material ready to hand for
self-study

https://web.stanford.edu/~hastie/ElemStatL earn/printings/ESLIlI print12.pdf

instead we take a quick look at reusable deep learning!


https://web.stanford.edu/~hastie/ElemStatLearn/printings/ESLII_print12.pdf

Predicting effects of
noncoding variants with
deep learning-based
sequence model

Jian Zhou!-2 & Olga G Troyanskaya!-3+4
Identifying functional effects of noncoding variants is a

major challenge in human genetics. To predict the noncoding-
variant effects de novo from sequence, we developed a deep

BRIEF COMMUNICATIONS |

TF binding depends upon sequence beyond traditionally defined
motifs. For example, TF binding can be influenced by cofactor
binding sequences, chromatin accessibility and structural flex-
ibility of binding-site DNAS. DNase I-hypersensitive sites (DHSs)
and histone marks are expected to have even more complex
underlying mechanisms involving multiple chromatin proteins”:8.
Therefore, accurate sequence-based prediction of chromatin fea-
tures requires a flexible quantitative model capable of modeling
such complex dependencies—and those predictions may then be
used to estimate functional effects of noncoding variants.

To address this fundamental problem, here we developed a fully
sequence-based algorithmic framework, DeepSEA (deep learning-
based sequence analyzer), for noncoding-variant effect prediction.
We first directly learn regulatory sequence code from genomic



Resource 1: a large
number of epigenomic
reference resources

Output:
variant functionality
prediction Functional-variant prediction
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Figure 1 | Schematic overview of the DeepSEA pipeline, a strategy for
predictina chromatin effects of noncodina variants.
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trained model repository usage
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DeepSEA/variantEffects

This CNN is based on the DeepSEA model from Zhou and Troyanskaya (2015). The model has
been converted to a pytorch model on a modified version of
https://github.com/clcarwin/convert_torch_to_pytorch Model outputs can only be used directly
for variant effect prediction. For sequence predictions use the DeepSEA/predict model in order
to reproduce results from the DeepSEA website. It categorically predicts 919 cell type-specific
epigenetic features from DNA sequence. The model is trained on publicly available ENCODE
and Roadmap Epigenomics data and on DNA sequences of size 1000bp. The input of the
tensor has to be (N, 4, 1, 1000) for N samples, 1000bp window size and 4 nucleotides. Per
sample, 919 probabilities of a specific epigentic feature will be predicted.

Troyanskaya
License: CC-BY 3.0
Contributed by: Roman Kreuzhuber €

Cite as:
https://doi.org/10.1038/nmeth.3547

CLI python R

Postprocessing: €Lt erd

Trained on: Chromosome 8 and 9 were
excluded from training, and the rest of

the autosomes were used for training

and validation. 4,000 samples on
chromosome 7 spanning the genomic
coordinates 30,508,751-35,296,850

were used as the validation set. Data
were ENCODE and Roadmap
Epigenomics chromatin profiles
https://www.nature.com/articles/nmeth.354

Source files ©

Create a new conda environment with all dependencies installed

kipoi env create DeepSEA/variantEffects
source activate kipoi-DeepSEA__variantEffects

Install model dependencies into current environment

kipoi env install DeepSEA/variantEffects

Test the model

kipoi test DeepSEA/variantEffects --source=kipoi



CLI python R

Get the model e Couldn't be easier to
get acquainted with
capabilities of 'deep

library(reticulate)
kipoi <- import('kipoi‘)

model <- kipois$get_model('DeepSEA/variantEffects') Iearning'
e downloads to set up
Make a prediction for example files models and

infrastructure can
take some time

e inter-language
interface can be
opaque

predictions <- modelSpipelineSpredict_example()

Use dataloader and model separately

# Download example dataloader kwargs

dl_kwargs <- models$default_dataloader$download_example('example’)
# Get the dataloader

dl <- modelsdefault_dataloader{dl_kwargs)

# get a batch iterator

it <- dlsbatch_iter{batch_size=4)

# predict for a batch

batch <- iter_next(it)

model$predict_on_batch(batch$inputs)

Make predictions for custom files directly
pred <— modelSpipelineSpredict{dl_kwargs, batch_size=4) m



Upshots

Various resources for model definition and fitting stored in zenodo and AWS
S3
interfaces to tensorflow etc. set up for use in CLI, python, R
understanding how to

o deploy against new data

o update model with new reference data

o contribute de novo models to this reusability framework

o exercises!
| have observed that some models of interest don't work as advertised, but
deepSEA example did work. Could be a continuous integration issue



Summary

e (Case study: single-cell RNA-seq in glioblastoma
o use CONQUER, try Rtsne, smoothing expression, etc.
e Distances and the curse of dimensionality
o many ad hoc approaches, check sensitivity to
assumptions
e Dimension reduction and feature engineering
o t-SNE, ivis, PCA -- biplots are interpretable
o framework for comparing feature engineering methods
Is urgently needed but very hard



e Options and figures of merit in cluster analysis
e Concepts of supervised learning -- use ESL_|I
e kipoi.org: an archive of trained models



