
Data formats in GWASTools

Stephanie M. Gogarten

April 15, 2025

The central classes of the GWASTools package are GenotypeData and IntensityData. They
are designed to link all parts of a GWAS analysis (genotype data, SNP information, and sample
information) in a single S4 object, even when the genotype data is too large to be stored in R's
memory at one time. In designing GWASTools , we took care to separate the application program-
ming interface (API) of the GenotypeData and IntensityData classes from the format in which the
data are stored.

Each class contains a data slot (for a GenotypeReader or IntensityReader object, respectively)
and annotation slots (a SnpAnnotationReader and a ScanAnnotationReader). These Reader classes
are actually class unions, allowing multiple options for storing data and enabling new storage meth-
ods to be added without changing any code that uses GenotypeData and IntensityData objects.
The class unions are currently de�ned as follows:

� GenotypeReader: NcdfGenotypeReader, GdsGenotypeReader, or MatrixGenotypeReader

� IntensityReader: NcdfIntensityReader or GdsIntensityReader

� SnpAnnotationReader: SnpAnnotationDataFrame or SnpAnnotationSQLite

� ScanAnnotationReader: ScanAnnotationDataFrame or ScanAnnotationSQLite

We use the term �scan� to indicate a unique genotyping instance, as the same DNA sample may
be genotyped more than once. Each SNP and scan must have a unique integer ID (�snpID� and
�scanID�) that serves as the primary key between the genotype data and the annotation. Validity
methods ensure that these IDs, as well as chromosome and base position of SNPs, are consistent
between the data and annotation slots. Chromosome and position values must be integers, so all
classes which include SNP data have slots to record integer codes for non-autosomal chromosome
types (X, Y, pseudoautosomal, and mitochondrial).

1 Genotype data formats

1.1 NetCDF

The Network Common Data Form (NetCDF, http://www.unidata.ucar.edu/software/netcdf/) al-
lows array-oriented data to be stored on disk with fast access to subsets of the data in R using the
ncdf4 package. The NcdfReader class provides an S4 wrapper for ncdf objects. NcdfGenotypeReader
and NcdfIntensityReader extend NcdfReader with methods speci�c to genotype and intensity
data.

1

http://www.unidata.ucar.edu/software/netcdf/

All NetCDF �les created for GWASTools have two dimensions, one called snp and one titled
sample. Further, all NetCDF �les have three variables in common: sampleID, chromosome and
position. The sampleID is used for indexing the columns of the two dimensional values stored in
the NetCDF �les (genotype calls, for example). The index to the SNP probes in the NetCDF �le
is the snpID, which is stored as values of the SNP dimension.

1.2 GDS

Genomic Data Structure (GDS, http://corearray.sourceforge.net/) is a storage format for bioin-
formatics data similar to NetCDF. An R interface is provided with the gdsfmt package. The
GWASTools functions convertNcdfGds and convertGdsNcdf allow conversion between NetCDF
and GDS format. GDS format is required for the SNPRelate package, which computes relatedness
and PCA as demonstrated in the �GWAS Data Cleaning� vignette, so it may be convenient to store
data in this format from the start. The GdsReader class provides a wrapper for gdsfmt objects
with the same API as the NcdfReader class. GdsGenotypeReader and GdsIntensityReader extend
GdsReader with methods speci�c to genotype and intensity data.

All GDS �les created for GWASTools have variables sample.id, snp.id, snp.chromosome, and
snp.position. For genotype �les, which store the count of the �A� allele in two bits, the A and B
alleles are stored in the snp.allele variable in the form �A/B�. Character SNP identi�ers are often
stored in the variable snp.rs.id.

1.3 Matrix

The MatrixGenotypeReader class is convenient for analyses on smaller data sets which can easily �t
into R's memory. It combines a matrix of genotypes with scanID, snpID, chromosome, and position.

2 Annotation

SNP and scan annotation can be stored in either of two formats: an annotated data frame, or
a SQLite database. Either format may be supplied to the snpAnnot and scanAnnot slots of a
GenotypeData or IntensityData object. Each annotation object consists of two component data
frames (or tables). The main annotation data frame has one row for each SNP (or scan) and columns
containing variables such as (for SNPs) snpID, chromosome, position, rsID, A and B alleles and (for
scans) scanID, subject ID (to link duplicate scans of the same subject), sex, and phenotype. The
metadata data frame has one row for each column in the annotation data frame, and (at minimum)
a column containing a description of the variable. Both formats share methods to return annotation
columns and metadata.

2.1 Annotated data frames

The SnpAnnotationDataFrame and ScanAnnotationDataFrame classes extend the AnnotatedDataFrame
class in the Biobase package. In addition to GWASTools methods, all methods de�ned for AnnotatedDataFrame
are available to these classes, including operators which allow these objects to be used like standard
data frames in many ways. This format provides some built-in functionality from AnnotatedDataFrame

to ensure that the annotation and metadata data frames are consistent.

2

http://corearray.sourceforge.net/

2.2 SQLite databases

The ScanAnnotationSQLite and ScanAnnotationSQLite classes provide an alternate means of
storing annotation that is portable across multiple platforms. In addition to the methods shared
with the annotation data frame classes, these classes have getQuery methods to pass any SQL query
to the database.

3 Input

3.1 Plain text

Data in plain text format (for example, FinalReport �les produced by Illumina's GenomeStudio)
can be converted to NetCDF or GDS �les using the function createDataFile. See the �GWAS
Data Cleaning� and �Preparing A�ymetrix Data� vignettes for examples.

3.2 PLINK

PLINK ped/map �les can be converted to NetCDF with accompanying SNP and scan annotation
using the function plinkToNcdf. plinkToNcdf will automatically convert between the sex chromo-
some codes used by PLINK and the default codes used by GWASTools .

snpgdsBED2GDS in the SNPRelate package converts binary PLINK to GDS. snpgdsBED2GDS is
signi�cantly faster than plinkToNcdf, and the resulting GDS �le may be used with SNPRelate as
well. The option cvt.snpid="int" is required to generate integer snpIDs. Chromosome codes are
not converted.

> library(GWASTools)

> library(SNPRelate)

> bed.fn <- system.file("extdata", "plinkhapmap.bed.gz", package="SNPRelate")

> fam.fn <- system.file("extdata", "plinkhapmap.fam.gz", package="SNPRelate")

> bim.fn <- system.file("extdata", "plinkhapmap.bim.gz", package="SNPRelate")

> gdsfile <- "snps.gds"

> snpgdsBED2GDS(bed.fn, fam.fn, bim.fn, gdsfile, family=TRUE,

+ cvt.chr="int", cvt.snpid="int", verbose=FALSE)

Now that the �le has been created, we can access it in GWASTools using the GdsGenotypeReader
class. We create sample and SNP annotation from the variables stored in the GDS �le. Note that
PLINK sex chromosome coding is di�erent from the GWASTools default, so specify codes if your
�le contains Y or pseudoautosomal SNPs.

> (gds <- GdsGenotypeReader(gdsfile, YchromCode=24L, XYchromCode=25L))

File: F:\biocbuild\bbs-3.22-bioc\tmpdir\RtmpQPeU3t\Rbuild123888ff5923\GWASTools\vignettes\snps.gds (101.2K)

+ [] *

|--+ sample.id { Str8 60 LZMA_ra(53.8%), 265B }

|--+ snp.id { Int32 5000 LZMA_ra(11.7%), 2.3K }

|--+ snp.rs.id { Int32 5000 LZMA_ra(20.8%), 4.1K }

|--+ snp.position { Int32 5000 LZMA_ra(78.5%), 15.3K }

3

|--+ snp.chromosome { UInt8 5000 LZMA_ra(3.00%), 157B } *

|--+ snp.allele { Str8 5000 LZMA_ra(13.8%), 2.7K }

|--+ genotype { Bit2 60x5000, 73.2K } *

\--+ sample.annot [data.frame] *

|--+ family { Int32 60 LZMA_ra(35.8%), 93B }

|--+ father { Int32 60 LZMA_ra(35.8%), 93B }

|--+ mother { Int32 60 LZMA_ra(35.8%), 93B }

|--+ sex { Str8 60 LZMA_ra(136.7%), 89B }

\--+ phenotype { Int32 60 LZMA_ra(37.5%), 97B }

> scanID <- getScanID(gds)

> family <- getVariable(gds, "sample.annot/family")

> father <- getVariable(gds, "sample.annot/father")

> mother <- getVariable(gds, "sample.annot/mother")

> sex <- getVariable(gds, "sample.annot/sex")

> sex[sex == ""] <- NA # sex must be coded as M/F/NA

> phenotype <- getVariable(gds, "sample.annot/phenotype")

> scanAnnot <- ScanAnnotationDataFrame(data.frame(scanID, father, mother,

+ sex, phenotype,

+ stringsAsFactors=FALSE))

> snpID <- getSnpID(gds)

> chromosome <- getChromosome(gds)

> position <- getPosition(gds)

> alleleA <- getAlleleA(gds)

> alleleB <- getAlleleB(gds)

> rsID <- getVariable(gds, "snp.rs.id")

> snpAnnot <- SnpAnnotationDataFrame(data.frame(snpID, chromosome, position,

+ rsID, alleleA, alleleB,

+ stringsAsFactors=FALSE),

+ YchromCode=24L, XYchromCode=25L)

> genoData <- GenotypeData(gds, scanAnnot=scanAnnot, snpAnnot=snpAnnot)

> getGenotype(genoData, snp=c(1,5), scan=c(1,5))

[,1] [,2] [,3] [,4] [,5]

[1,] 1 2 2 1 0

[2,] 0 0 0 0 1

[3,] 1 0 1 1 0

[4,] 1 1 0 0 0

[5,] 0 0 1 0 1

> close(genoData)

3.3 VCF

Bi-allelic SNP data from Variant Call Format (VCF) can be converted to GDS using the function
snpgdsVCF2GDS in the SNPRelate package.

4

> library(GWASTools)

> library(SNPRelate)

> vcffile <- system.file("extdata", "sequence.vcf", package="SNPRelate")

> gdsfile <- "snps.gds"

> snpgdsVCF2GDS(vcffile, gdsfile, verbose=FALSE)

Now that the �le has been created, we can access it in GWASTools using the GdsGenotypeReader
class. We create a SnpAnnotationDataFrame from the variables stored in the GDS �le.

> (gds <- GdsGenotypeReader(gdsfile))

File: F:\biocbuild\bbs-3.22-bioc\tmpdir\RtmpQPeU3t\Rbuild123888ff5923\GWASTools\vignettes\snps.gds (2.6K)

+ [] *

|--+ sample.id { Str8 3 LZMA_ra(375.0%), 97B }

|--+ snp.id { Int32 2 LZMA_ra(975.0%), 85B }

|--+ snp.rs.id { Str8 2 LZMA_ra(745.5%), 89B }

|--+ snp.position { Int32 2 LZMA_ra(975.0%), 85B }

|--+ snp.chromosome { Str8 2 LZMA_ra(1300.0%), 85B }

|--+ snp.allele { Str8 2 LZMA_ra(975.0%), 85B }

|--+ genotype { Bit2 3x2, 2B } *

\--+ snp.annot []

|--+ qual { Float32 2 LZMA_ra(975.0%), 85B }

\--+ filter { Str8 2 LZMA_ra(911.1%), 89B }

> getScanID(gds)

[1] "NA00001" "NA00002" "NA00003"

> snpID <- getSnpID(gds)

> chromosome <- as.integer(getChromosome(gds))

> position <- getPosition(gds)

> alleleA <- getAlleleA(gds)

> alleleB <- getAlleleB(gds)

> rsID <- getVariable(gds, "snp.rs.id")

> qual <- getVariable(gds, "snp.annot/qual")

> filter <- getVariable(gds, "snp.annot/filter")

> snpAnnot <- SnpAnnotationDataFrame(data.frame(snpID, chromosome, position,

+ rsID, alleleA, alleleB,

+ qual, filter,

+ stringsAsFactors=FALSE))

> genoData <- GenotypeData(gds, snpAnnot=snpAnnot)

> getGenotype(genoData)

[,1] [,2] [,3]

[1,] 2 1 0

[2,] 2 1 2

> close(genoData)

5

3.4 Imputed genotypes

Genotype probabilities or dosages from IMPUTE2, BEAGLE, or MaCH can be converted into A
allele dosage and stored in NetCDF or GDS with the function imputedDosageFile.

4 Output

4.1 PLINK

A GenotypeData object can be written to PLINK ped/map �les with the function plinkWrite.

4.2 VCF

A GenotypeData object can be written to VCF with the function vcfWrite. genoDataAsVCF converts
a GenotypeData object to a VCF object for use with the VariantAnnotation package.

4.3 snpStats

asSnpMatrix converts a GenotypeData object to a SnpMatrix object for use with the snpStats

package.

6

	1 Genotype data formats
	1.1 NetCDF
	1.2 GDS
	1.3 Matrix

	2 Annotation
	2.1 Annotated data frames
	2.2 SQLite databases

	3 Input
	3.1 Plain text
	3.2 PLINK
	3.3 VCF
	3.4 Imputed genotypes

	4 Output
	4.1 PLINK
	4.2 VCF
	4.3 snpStats

