1PAC: identifcation of Protein Amino acid

Mutations
Gregory Ryslik Hongyu Zhao
Yale University Yale University

gregory.ryslik@yale.edu hongyu.zhao@yale.edu
March 18, 2025

Abstract

The iPAC package provides a novel tool to identify somatic mutation
clustering of amino acids while taking into account their three dimen-
sional structure. Currently, iPAC maps the protein’s amino acids into a
one dimensional space while preserving, as best as possible, the three di-
mensional local neighbor relationships. Mutation clusters are then found
by considering if pairwise mutations are closer together than expected by
chance alone via the the Nonrandom Mutation Clustering (NMC) algo-
rithm [Ye et al., 2010]. Finally, the clustering results are mapped back
onto the original protein and reported back to the user. A paper detail-
ing this methodology and results is currently in preparation. Additional
methodologies based on different algorithms will be added in the future.

1 Introduction

Recently, there have been significant pharmacological advances in treating on-
congenic driver mutations [Croce, 2008]. Several methods that rely on amino
acid mutational clusters have been developed in order to identify these muta-
tions. One of the most recent methods was presented by Ye et al. [2010]. Their
algorithm identifies mutation clusters by calculating whether pairwise mutations
are closer on the the line than expected by chance alone when assuming that
each amino acid has an equal probability of mutation. As their algorithm relies
on considering the protein in linear form, it can potentially exclude clusters
that are close together in 3D space but far apart in 1D space. This package is
specifically designed to overcome this limitation.

Currently, this package has two methods that deal with the 3D structure of
the protein: 1) linear and 2) MDS [Borg and Groenen, 1997]. The user should
primarily use MDS as it is more statistically rigorous. We include the linear
method as an example that the general package is itself flexible. Should the
user want to map the protein to 1D space using their own algorithm, they can
thus do so.

If users want to contribute to the code base, please contact the author.

2 The NMC Algorithm

The NMC algorithm, proposed by Ye et al. [2010], finds mutational clusters
when the protein is considered to be a straight line. While the full alogrithm is
presented in their paper, we provide a brief overview here for completeness.

Suppose that the protein was N amino acids long and that each amino acid
had a % probability of mutation. We can then construct order statistics over
many samples as follows:

. % 13 12
123456... N 1123/456... N
123456|.. N) X=2

- Xp=X5=X1y=3
123456.. N X(5=5

Figure 1: Three samples of the same protein. An asterisk above a number
indicates a non-synonomous mutation in that sample for that amino acid.

Letting Ry ; = X(x) — X(4), one can calculate if the Pr(Ry; < r) < o using
well known results about order statistics on the uniform distribution. While
discrete formulas exist for Pr(Ry,; < r), they are often too costly to calculate
when Ry ; > 1. In these cases, we scale the protein onto the interval (0,1) by
calculating Pr(w < r) which turns out to equal Pr(Beta(k —i,i+n —
k + 1) < r). Finally, since this calculation is done for every pair of mutations
in the protein, a multiple comparisons adjustment is performed.

The original NMC algorithm is included in this package via the nmc com-
mand. We provide an example of its use below.

First, we load iPAC and then the mutation matrix. The mutation matrix
is a matrix of 0’s and 1’s where each column represents an amino acid in the
protein and each row represents a sample (or a mutation). Thus, the entry for
row i column j, represents the ith sample (or mutation) and the jth amino acid.

Code Example 1: Running the NMC algorithm

> library(iPAC)

> #For more information on the mutations matrix,

> #type 7KRAS.Mutations after executing the line below.

> data(KRAS.Mutations)

> nmc (KRAS.Mutations, alpha = 0.05, multtest = "Bonferroni'')

cluster_size start end number p_value

Vi2 2 12 13 131 1.979447e-235
V12 1 12 12 100 6.486735e-188
V12 11 12 22 132 3.220145e-145
V12 12 12 23 133 6.524053e-142
V12 50 12 61 138 4.338908e-65
V13 1 13 13 31 2.732914e-39
Vi2 106 12 117 139 2.341227e-23
Vi2 135 12 146 149 1.356584e-20
V13 10 13 22 32 4.487362e-12
V13 11 13 23 33 1.279256e-11
Vi46 1 146 146 10 1.918440e-08

The results from Code Example 1 show all the statistically significant clusters
found, including the size of the cluster, the start and end positions and the
number of mutations in that cluster.

3 Remapping Algorithm

3.1 Matching the Mutation and Position Information

Before we can run the 3D clustering algorithm while, we first need to come up
with an alignment between the mutational information provided by a source
such as COSMIC [Forbes et al., 2008] and the positional information provided
by a source such as the PDB [Berman et al., 2000]. Such an alignment is nec-
essary because mutational information is typically provided on the “canonical"
amino acid numbering which often differs from the numbering used in the PDB
database. Thus amino acid #i from the PDB database might not be amino acid
#i from the mutational database.

To solve this problem, we consider the mutational database to contain the
“canonical" ordering of the protein. We then attempt to map the structural
information to the canonical ordering and create a new matrix of residues, their
canonical counts, and their positions in 3D space. If successful, we then have
a relational structure between the two databases allowing us to refer to amino
acid #i where i represents the same amino acid in both databases.

We have created two methods that allow one to construct such a matrix:
1) get. Positions and 2)get. AlignedPositions.

The first method, get.Positions attemps to create the position matrix di-
rectly from the CIF file in the PDB database. It returns a list of several items,
the first of which is $Positions, which must later be passed to the ClusterFind
method. Due to the complexity of CIF files, get.Positions currently works on
approximately 70% of the structures in the PDB database.

The second method, get.AlignedPositions performs a pairwise alignment
algorithm to align the canonical protein ordering with the XYZ positions in
the PDB. Since get. AlignedPositions runs an alignment algorithm, the ordering
might not be perfect and we recommend the user to verify the results. However,

from our testing, the alignment procedure works quite well. Furthermore, since
get. AlignedPositions does not have to consider as many aspects of the CIF file,
it is more robust and often works when get. Positions fails.

Let us first consider the get. Positions function. We will consider three exam-
ples, one for KRAS protein and two for the PIK3CA protein. For each example,
we need to input the location of the CIF file (this holds the structural informa-
tion), the location of the FASTA file (this holds the canonical protein sequence)
and the sidechain that we want to use from the CIF file.

As the entire position sequence is too long to print, we first save the result
and then print the first 10 rows of the position matrix. The remaining elements
of the result are printed in full.

Code Example 2: Extracting positions using the get.Positions function

> library(iPAC)

> CIF<-"https://files.rcsb.org/view/3GFT.cif"

> Fasta<-"https://www.uniprot.org/uniprot/P01116-2.fasta"
> KRAS.Positions<-get.Positions(CIF, Fasta, "A")

> names (KRAS.Positions)

[1] "Positions" "External.Mismatch" "PDB.Mismatch"
[4] "Result"

> KRAS.Positions$Positions[1:10,]

Residue Can.Count SideChain XCoord YCoord ZCoord

1 MET 1 A 62.935 97.579 30.223
2 THR 2 A 63.155 95.525 27.079
3 GLU 3 A 65.289 96.895 24.308
4 TYR 4 A 64.899 96.220 20.615
5 LYS 5 A 67.593 96.715 18.023
6 LEU 6 A 65.898 97.863 14.816
7 VAL 7 A 67.664 98.557 11.533
8 VAL 8 A 66.263 100.550 8.617
9 VAL 9 A 67.484 99.500 5.194
10 GLY 10 A 66.575 100.328 1.605
> KRAS.Positions$External.Mismatch
PDB.Residue Canonical.Residue Canonical.Num
1 H Q 61
> KRAS.Positions$PDB.Mismatch
PDB.Residue Canonical.Residue Canonical.Num Remark
19 H Q 61 SEE REMARK 999

> KRAS.Positions$Result

[1] "QK"

Observe that the final element in Code Ezample 2 is “OK". That is because
the only mismatched residue (at position 61), was documented in the CIF file
as well. Thus it is considered a “reconciled" mismatch. It is up to the user to
decide if they want to include it in the position sequence that is passed on to
the ClusterFind method or to remove it.

Code Example 3: Final example of the get.Positions function

> CIF <- "https://files.rcsb.org/view/2RD0.cif"

> Fasta <- "https://www.uniprot.org/uniprot/P42336.fasta"
> PIK3CAV2.Positions <- get.Positions(CIF, Fasta, "A")

> names (PIK3CAV2.Positions)

[1] "Positions" "External.Mismatch" "PDB.Mismatch"
[4] "Result"

> PIK3CAV2.Positions$Positions[1:10,]

Residue Can.Count SideChain XCoord YCoord ZCoord

1 GLY 8 A 88.344 61.306 112.918
2 GLU 9 A 90.119 58.543 111.029
3 LEU 10 A 92.954 56.400 109.709
4 TRP 11 A 93.105 53.251 107.542
5 GLY 12 A 91.616 50.221 109.372
6 ILE 13 A 90.825 52.285 112.474
7 HIS 14 A 87.540 54.192 112.953
8 LEU 15 A 88.806 56.633 115.544
9 MET 16 A 92.435 57.520 116.178
10 PRO 17 A 93.481 57.378 119.852

> PIK3CAV2.Positions$External.Mismatch
NULL

> PIK3CAV2.Positions$PDB.Mismatch

NULL

> PIK3CAV2.Positions$Result

[1] "OK"

Observe that the final result in Code Ezample 8 is “OK". Here we use
a different file location for the canonical sequence — the UNIPROT database.
Here, the canonical sequence is slightly different and matches up exactly to the
extracted positions. As there is only 1 isoform listed on UNIPROT for PIK3CA
we suggest using the same source for both the mutational and canonical position

information. For example, if your mutation data was obtained from COSMIC,

you should use COSMIC to get the canonical protein sequence.

Let us now consider the get. AlignedPositions function. This function auto-
matically drops positions that do not match up.

Code Example 4: Extracting positions using the get.AlignedPositions function

> CIF<- "https://files.rcsb.org/view/2RDO.cif"

> Fasta <- "https://www.uniprot.org/uniprot/P42336.fasta"
> PIK3CAV3.Positions<-get.AlignedPositions(CIF,Fasta , "A")

> names (PIK3CAV3.Positions)

[1] "Positions" "Diff.Count"

[5] "Result"

> PIK3CAV3.Positions$Positions[1:10,]

"Diff.Positions"

Residue Can.Count SideChain XCoord YCoord

14 GLY 8 A 88.344
15 GLU 9 A 90.119
16 LEU 10 A 92.954
17 TRP 11 A 93.105
18 GLY 12 A 91.616
19 ILE 13 A 90.825
20 HIS 14 A 87.540
21 LEU 15 A 88.806
22 MET 16 A 92.435
23 PRO 17 A 93.481

> PIK3CAV3.Positions$External.Mismatch
NULL

> PIK3CAV3.Positions$PDB.Mismatch

NULL

> PIK3CAV3.Positions$Result

[1] "QK"

61.
58.
56.
53.
50.
52,
54,
56.
57.
57.

306
543
400
251
221
285
192
633
520
378

ZCoord

112,
111.
109.
107.
109.
.474
112,
115.
116.
119.

112

918
029
709
542
372

953
544
178
852

"Alignment.Result"

Both get. Aligned Positions and get. Positions are still in beta and are provided
to the user for convenience only. Changes by the PDB or COSMIC to their file
structure might result in errors and it is up to the user to ensure the correct

data is supplied to the ClusterFind function.

3.2 Finding Clusters in 3D Space

Now that we have the positional data, we can find the mutational clusters while
taking into account the 3D protein structure. We begin by slecting a method
to map the protein down to a 1D space.

The first method, “linear", fixes a specified point (zg,yo,20) and then calcu-
lates the distance from each amino acid to that point. The amino acids are then
rearranged in order from the shortest distance to the longest distance. The sec-
ond method, “MDS", uses Multidimensional Scaling [Borg and Groenen, 1997]
to map the protein to a 1D space. We strongly encourage the user to employ the
MDS method as it is more statistically rigorous. The linear method is provided
as an example to show how other mapping paradigms might be implemented.

A diagram of either the MDS or linear mapping can be displayed when
the ClusterFind method is run. As the mapping algorithms are different, the
mapping images created are different as well. The linear method will generate
an image of the distances from (xo, Yo, 20) to each amino acid. These distance
will be drawn as dotted green lines from each amino acid to the fixed point.
Conversely, the MDS methodology will create lines from each amino acid to the
x-axis which will mark where on the line the amino acid is positioned.

We begin by first running the algorithm on KRAS using the MDS method
followed by the linear method. For a full list of all the possible parameters,
simply type ‘7ClusterFind’ after loading the iPAC library.

Code Example 5: Running the ClusterFind method with a MDS mapping

#Extract the data from a CIF file and match it up with the canonical protein sequence.
#Here we use the 3GFT structure from the PDB, which corresponds to the KRAS protein.
CIF<-"https://files.rcsb.org/view/3GFT.cif"
Fasta<-"https://www.uniprot.org/uniprot/P01116-2.fasta"
KRAS.Positions<-get.Positions (CIF,Fasta, "A")
#Load the mutational data for KRAS. Here the mutational data was obtained from the
#COSMIC database (version 58).
data(KRAS.Mutations)
#Identify and report the clusters.
ClusterFind (mutation.data=KRAS.Mutations,

position.data=KRAS.Positions$Positions,

create.map = "Y", Show.Graph = "Y",

Graph.Title = "MDS Mapping",

method = "MDS")

+ + + + VvV VVVVVVVYV

[1] "Running Remapped"
[1] "Running Full"
[1] "Running Culled"
$Remapped
cluster_size start end number p_value

V136 1

V136
Vi21 49
V124 134
V136 106
V121 57
V124 30
V124 135
vVi21 50
Vo3 10
Vo3 96
V73 11
V73 95
Vo3 11
V142 1
V73 12
V142 105
V124 1
Vi21 86
$0riginalCulled
cluster_size
V12 2
V12 1
V12 11
Vi2 12
Vi2 50
Vi3 1
V12 106
V12 135
Vi3 10
Vi3 11
V146 1
$0riginal
cluster_size
Vi2 2
Vi2 1
V12 11
V12 12
V12 50
Vi3 1
Vi2 106
V12 135
Vi3 10
Vi3 11

12
12
13
13
12
61
117
12
12
13
22
13
23
12
13
12
13
146
61

start
12
12
12
12
12
13
12
12
13
13
146

start
12
12
12
12
12
13
12
12
13
13

12 100
13 131
61 38
146 49
117 139
117 6
146 11
146 149
61 138
22 32
117 8
23 33
117 7
22 132
13 31
23 133
117 39
146 10
146 16

end number

13 131
12 100
22 132
23 133
61 138
13 31
117 139
146 149
22 32
23 33
146 10

end number

13 131
12 100
22 132
23 133
61 138
13 31
117 139
146 149
22 32
23 33

Wk, P, W Wwo

OO WP O0WddhEFHFEF WNW

9.
7.
1.
3.

Gl N 00 W 00N

1.
6.
3.
6.

4

2
2
1
4
1

.932390e-183
.908116e-165
.097954e-124
.017093e-122
.362730e-119
.016259e-106
.666182e-102

.813215e-90
.682445e-87
.434148e-73
.140497e-65
.429105e-53
.204875e-48
.398568e-39
.571798e-38
.963564e-23
.563510e-12
.897757e-08
.115605e-07

p_value
453887e-229
630495e-183
554973e-138
526333e-135
.824800e-58
.857871e-38
.538089e-17
.8563241e-13
.603544e-11
.5563752e-10
.331155e-08

p_value
979447e-235
486735e-188
220145e-145
524053e-142
.338908e-65
.732914e-39
.341227e-23
.356584e-20
.487362e-12
.279256e-11

V146 1 146 146 10 1.918440e-08
$MissingPositions

LHS RHS
[1,] 168 188

MDS Mapping

20 30 40

z-axis

10

12(

y—axis

110
100

-10

45 50 55 60 65 70 75 80 85

Code Example 6: Running the ClusterFind method with a Linear mapping

> #Extract the data from a CIF file and match it up with the canonical protein sequence.
> #Here we use the 3GFT structure from the PDB, which corresponds to the KRAS protein.
> CIF<-"https://files.rcsb.org/view/3GFT.cif"

> Fasta<-"https://www.uniprot.org/uniprot/P01116-2.fasta"

> KRAS.Positions<-get.Positions(CIF,Fasta, "A")

> #Load the mutational data for KRAS. Here the mutational data was obtained from the
> #COSMIC database (version 58).

> data(KRAS.Mutations)

> #Identify and report the clusters.

> ClusterFind (mutation.data=KRAS.Mutations,

+ position.data=KRAS.Positions$Positions,

create.map = "Y", Show.Graph = "Y",

Graph.Title = "Linear Mapping",

method = "Linear")

+ + +

[1] "Running Remapped"
[1] "Running Full"
[1] "Running Culled"

$Remapped

cluster_size start
Vo0 1 12
Vo0 2 12
Vo0 135 12
Vo0 50 12
Vo0 11 12
V66 57 61
Vo0 12 12
V66 30 117
V66 105 13
V66 96 22
V66 95 23
V66 106 12
Vo5 1 13
Vo5 134 13
V95 49 13
V100 1 146
V100 86 61
Vo5 11 13
Vo5 10 13
$0riginalCulled

cluster_size start
V12 2 12
V12 1 12
V12 11 12
Vi2 12 12
Vi2 50 12
Vi3 1 13
V12 106 12
V12 135 12
Vi3 10 13
Vi3 11 13
V146 1 146
$0riginal

cluster_size start
Vi2 2 12
Vi2 1 12
V12 11 12
V12 12 12
V12 50 12

end number

12 100
13 131
146 149
61 138
22 132
117 6
23 133
146 11
117 39
117 8
117 7
117 139
13 31
146 49
61 38
146 10
146 16
23 33
22 32
end number
13 131
12 100
22 132
23 133
61 138
13 31
117 139
146 149
22 32
23 33
146 10

end number
13 131
12 100
22 132
23 133
61 138

10

p_value

8.862875e-183
2.234056e-175
2.965106e-158
1.092881e-149

QO 00 W WK 0NDNOGWOU NWWW

.127863e-90
.393497e-89
.393497e-89
.804316e-86
.838579e-79
.125462e-61
.427091e-60
.047918e-48
.857871e-38
.438417e-26
.252899e-22
.897757e-08
.607373e-05
.412719e-04
.663956e-04

p_value

9.453887e-229
7.630495e-183
1.554973e-138
3.526333e-135

Gl N 00 Wb 00N

.824800e-58
.857871e-38
.538089%e-17
.8563241e-13
.603544e-11
.5563752e-10
.331155e-08

p_value

1.979447e-235
6.486735e-188
3.220145e-145
6.524053e-142

4.

338908e-65

V13 1 13 13 31 2.732914e-39
V12 106 12 117 139 2.341227e-23
V12 135 12 146 149 1.356584e-20
V13 10 13 22 32 4.487362e-12
V13 11 13 23 33 1.279256e-11
V146 1 146 146 10 1.918440e-08
$MissingPositions
LHS RHS
[1,] 168 188
Linear Mapping
S
3 |
Q|
(%2}
g
N g 2
- 120 &
110 >
° 100
90
< 80

45 50 55 60 65 70 75 80 85

X—axis

As can be seen from Code Examples 5 and 6 above, the ClusterFind method
returns a list of four elements. The first element, $Remapped, displays all the
clusters found while taking into account the 3D structure of the protein by utiliz-
ing either the linear or MDS methodology. The next element, $OriginalCulled,
displays all the clusters found using the original NMC algorithm after removing
all the amino acids for which we do not have (z,y, z) positions. The $Origi-
nal element displays all the clusters found using the NMC algorithm without
removing the amino acids for which we do not have 3D positional information.

If the user wants to compare the results generated when taking protein
structure into account versus those when protein structure is ignored, it is rec-
ommended that the user compare the matrices in $Remapped versus $Original-
Culled. In this way, the user is considering the differences that arise strictly

11

from the protein structure as the amino acids with missing 3D positions have
been removed prior to the analysis.

Finally, the $MissingPositions element displays a matrix of all the amino
acids for which we had mutational data but for which we did not have positional
data. For instance, in Code Ezample 5, the mutation data matrix had 188
columns while we were able to extract positional information only for amino
acids 1-167. Furthermore, amino acid 61 was excluded from the final position
matrix when the get. AlignedPositions function was run as the amino acid listed
in the CIF file did not match the canonical sequence in the FASTA file. As
such, the $MissingPositions element has a matrix of 2 rows as follows:

$MissingPositions
LHS RHS

[1,] 61 61

[2,] 168 188

References

H. M. Berman, J. Westbrook, Z. Feng, G. Gilliland, T.N. Bhat, H. Weissig, I.N.
Shindyalov, and P.E. Bourne. The protein data bank. Nucleic Acids Research,
28(1):235-242, January 2000. ISSN 13624962. doi: 10.1093/nar/28.1.235.
URL www.pdb.org.

Ingwer Borg and Patrick J. F Groenen. Modern multidimensional scaling
: theory and applications. Springer, New York, 1997. ISBN 0387948457
9780387948454.

Carlo M Croce. Oncogenes and cancer. The New England Journal of Medicine,
358(5):502-511, January 2008. ISSN 1533-4406. doi: 10.1056/NEJMra072367.
URL http://www.ncbi.nlm.nih.gov/pubmed/18234754. PMID: 18234754.

S A Forbes, G Bhamra, S Bamford, E Dawson, C Kok, J Clements, A Men-
zies, J W Teague, P A Futreal, and M R Stratton. The catalogue of so-
matic mutations in cancer (COSMIC). Current Protocols in Human Genetics
/ Editorial Board, Jonathan L. Haines ... [et Al], Chapter 10:Unit 10.11,
April 2008. ISSN 1934-8258. doi: 10.1002/0471142905.hgl1011s57. URL
http://www.ncbi.nlm.nih.gov/pubmed/18428421. PMID: 18428421.

Jingjing Ye, Adam Pavlicek, Elizabeth A Lunney, Paul A Rejto, and Chi-Hse
Teng. Statistical method on nonrandom clustering with application to somatic
mutations in cancer. 11(1):11, 2010. ISSN 1471-2105. doi: 10.1186,/1471-2105-
11-11. URL http://www.biomedcentral.com/1471-2105/11/11.

12

