
Package ‘cigarillo’
October 27, 2025

Title Efficient manipulation of CIGAR strings

Description CIGAR stands for Concise Idiosyncratic Gapped Alignment Report.
CIGAR strings are found in the BAM files produced by most aligners
and in the AIRR-formatted output produced by IgBLAST.
The cigarillo package provides functions to parse and inspect CIGAR
strings, trim them, turn them into ranges of positions relative to
the ``query space'' or ``reference space'', and project positions or
sequences from one space to the other. Note that these operations
are low-level operations that the user rarely needs to perform
directly. More typically, they are performed behind the scene by
higher-level functionality implemented in other packages like
Bioconductor packages GenomicAlignments and igblastr.

biocViews Infrastructure, Alignment, SequenceMatching, Sequencing

URL https://bioconductor.org/packages/cigarillo

BugReports https://github.com/Bioconductor/cigarillo/issues

Version 0.99.2

License Artistic-2.0

Encoding UTF-8

Depends methods, BiocGenerics, S4Vectors (>= 0.47.2), IRanges,
Biostrings

Imports stats

LinkingTo S4Vectors, IRanges

Suggests Rsamtools, GenomicAlignments, RNAseqData.HNRNPC.bam.chr14,
BSgenome.Hsapiens.UCSC.hg19, testthat, knitr, rmarkdown,
BiocStyle

VignetteBuilder knitr

Collate utils.R cigar_ops_visibility.R explode_cigars.R
tabulate_cigar_ops.R cigar_extent.R trim_cigars.R
cigars_as_ranges.R project_positions.R project_sequences.R
map_ref_ranges_to_query.R

git_url https://git.bioconductor.org/packages/cigarillo

git_branch devel

git_last_commit 389a346

git_last_commit_date 2025-10-25

1

https://bioconductor.org/packages/cigarillo
https://github.com/Bioconductor/cigarillo/issues

2 cigarillo-package

Repository Bioconductor 3.22

Date/Publication 2025-10-27

Author Hervé Pagès [aut, cre] (ORCID: <https://orcid.org/0009-0002-8272-4522>),
Valerie Obenchain [aut],
Michael Lawrence [aut],
Patrick Aboyoun [ctb],
Fedor Bezrukov [ctb],
Martin Morgan [ctb]

Maintainer Hervé Pagès <hpages.on.github@gmail.com>

Contents
cigarillo-package . 2
cigars_as_ranges . 3
cigar_extent . 6
cigar_ops_visibility . 9
explode_cigars . 10
map_ref_ranges_to_query . 12
project_positions . 14
project_sequences . 15
tabulate_cigar_ops . 20
trim_cigars . 21

Index 25

cigarillo-package Efficient manipulation of CIGAR strings

Description

CIGAR stands for Concise Idiosyncratic Gapped Alignment Report. CIGAR strings are found in
the BAM files produced by most aligners and in the AIRR-formatted output produced by IgBLAST.

The cigarillo package provides functions to parse and inspect CIGAR strings, trim them, turn them
into ranges of positions relative to the "query space" or "reference space", and project positions
or sequences from one space to the other. Note that these operations are low-level operations that
the user rarely needs to perform directly. More typically, they are performed behind the scene
by higher-level functionality implemented in other packages like Bioconductor packages Genomi-
cAlignments and igblastr.

Details

For an overview of the functionality provided by the package, please refer to the vignette:

vignette("cigarillo", package="cigarillo")

Author(s)

Hervé Pagès, Valerie Obenchain, Michael Lawrence

With contributions from Martin Morgan, Patrick Aboyoun, and Fedor Bezrukov

https://orcid.org/0009-0002-8272-4522

cigars_as_ranges 3

See Also

• cigar_ops_visibility for an introduction to CIGAR operations and their visibility in vari-
ous "projection spaces".

• explode_cigars to extract the letters (or lengths) of the CIGAR operations contained in a vector
of CIGAR strings.

• tabulate_cigar_ops to count the occurences of CIGAR operations in a vector of CIGAR
strings.

• cigar_extent for functions that calculate the extent of a CIGAR string, that is, the number of
positions spanned by the alignment that it describes.

• trim_cigars_along_ref and trim_cigars_along_query to trim CIGAR strings along the
"reference space" and "query space", respectively.

• cigars_as_ranges to turn CIGAR strings into ranges of positions.

• project_positions to project positions from query to reference space and vice versa.

• project_sequences to project sequences from one space to the other.

• The RleList class in the IRanges package.

cigars_as_ranges Turn CIGAR strings into ranges of positions

Description

Turn CIGAR strings into ranges of positions relative to the "query space", "reference space", or
"pairwise alignment space".

Usage

cigars_as_ranges_along_ref(cigars,
N.regions.removed=FALSE,
flags=NULL, lmmpos=1L, f=NULL,
ops=CIGAR_OPS, drop.empty.ranges=FALSE, reduce.ranges=FALSE,
with.ops=FALSE, with.oplens=FALSE)

cigars_as_ranges_along_query(cigars,
before.hard.clipping=FALSE, after.soft.clipping=FALSE,
flags=NULL,
ops=CIGAR_OPS, drop.empty.ranges=FALSE, reduce.ranges=FALSE,
with.ops=FALSE, with.oplens=FALSE)

cigars_as_ranges_along_pwa(cigars,
N.regions.removed=FALSE, dense=FALSE,
flags=NULL,
ops=CIGAR_OPS, drop.empty.ranges=FALSE, reduce.ranges=FALSE,
with.ops=FALSE, with.oplens=FALSE)

4 cigars_as_ranges

Arguments

cigars A character vector (or factor) containing CIGAR strings.

N.regions.removed

TRUE or FALSE.
If TRUE, then cigars_as_ranges_along_ref reports ranges with respect to the
"reference space" from which the N regions have been removed, and cigars_as_ranges_along_pwa
reports them with respect to the "pairwise alignment space" from which the N
regions have been removed.

flags NULL or an integer vector parallel to cigars that contains the SAM/BAM flags
corresponding to each CIGAR string.
According to the SAM Spec v1.4, flag bit 0x4 is the only reliable place to tell
whether a segment (or read) is mapped (bit is 0) or not (bit is 1). If the flags ar-
gument is supplied, then cigars_as_ranges_along_ref, cigars_as_ranges_along_query,
and cigars_as_ranges_along_pwa don’t produce any range for unmapped
reads i.e. they treat them as if their CIGAR was empty (independently of what
their CIGAR is).

lmmpos An integer vector containing the 1-based leftmost mapping POSition of each
alignment with respect to the "reference space". These are the 1-based leftmost
positions/coordinates of each (eventually clipped) query sequence with respect
to the subject.
lmmpos must be a single integer, or an integer vector parallel to cigars.

f NULL or a factor parallel to cigars.
If NULL (the default), then the ranges are grouped by alignment i.e. the returned
IRangesList object has 1 list element per element in cigars. Otherwise they are
grouped by factor level i.e. the returned IRangesList object has 1 list element
per level in f and is named with those levels.
For example, if f is a factor containing the chromosome for each read, then the
returned IRangesList object will have 1 list element per chromosome and each
list element will contain all the ranges on that chromosome.

ops Character vector where the elements are single letters representing valid CIGAR
operations. Must be a subset of CIGAR_OPS. See ?CIGAR_OPS for more informa-
tion.
Only the operations listed in ops will be turned into ranges.

drop.empty.ranges

TRUE or FALSE.
Should empty ranges be dropped?

reduce.ranges TRUE or FALSE.
Should adjacent ranges coming from the same cigar be merged or not? Using
TRUE can significantly reduce the size of the returned object.

with.ops TRUE or FALSE.
Should the returned ranges be named/labeled with their corresponding CIGAR
operation? Only supported when f is NULL.

with.oplens TRUE or FALSE.
If with.oplens is TRUE, then the returned IRangesList object will carry the
lengths of the CIGAR operations in an inner metadata column named oplen.
Only supported when f is NULL.

cigars_as_ranges 5

before.hard.clipping

TRUE or FALSE.
If TRUE, then cigars_as_ranges_along_query reports ranges with respect to
the "query space" to which the H regions have been added. Note that before.hard.clipping
and after.soft.clipping cannot both be TRUE.

after.soft.clipping

TRUE or FALSE.
If TRUE, then cigars_as_ranges_along_query reports ranges with respect to
the "query space" from which the S regions have been removed. Note that
before.hard.clipping and after.soft.clipping cannot both be TRUE.

dense TRUE or FALSE.
If TRUE, then cigars_as_ranges_along_pwa reports ranges with respect to the
"pairwise alignment space" from which the I, D, and N regions have been re-
moved. Note that N.regions.removed and dense cannot both be TRUE.

Value

An IRangesList object (more precisely a CompressedIRangesList object) with one list element per
element in cigars.

However, if f is a factor, then the returned IRangesList object returned by cigars_as_ranges_along_ref()
is a SimpleIRangesList object (instead of CompressedIRangesList). In that case it has one list ele-
ment per level in f, and is named with those levels.

Author(s)

Hervé Pagès

See Also

• cigar_ops_visibility for an introduction to CIGAR operations and their visibility in vari-
ous "projection spaces".

• explode_cigars to extract the letters (or lengths) of the CIGAR operations contained in a vector
of CIGAR strings.

• tabulate_cigar_ops to count the occurences of CIGAR operations in a vector of CIGAR
strings.

• cigar_extent for functions that calculate the extent of a CIGAR string, that is, the number of
positions spanned by the alignment that it describes.

• trim_cigars_along_ref and trim_cigars_along_query to trim CIGAR strings along the
"reference space" and "query space", respectively.

• project_positions to project positions from query to reference space and vice versa.

• project_sequences to project sequences from one space to the other.

• The IRanges and IRangesList classes in the IRanges package.

Examples

cigar1 <- "3H15M55N4M2I6M2D5M6S"
my_cigars <- c("40M2I9M", cigar1, "2S10M2000N15M", "3H33M5H")

Turn CIGAR strings into ranges along the "reference space"

6 cigar_extent

cigars_as_ranges_along_ref(cigar1, with.ops=TRUE, with.oplens=TRUE)[[1]]

cigars_as_ranges_along_ref(cigar1, reduce.ranges=TRUE,
with.ops=TRUE, with.oplens=TRUE)[[1]]

ops <- setdiff(CIGAR_OPS, "N")

cigars_as_ranges_along_ref(cigar1, ops=ops,
with.ops=TRUE, with.oplens=TRUE)[[1]]

cigars_as_ranges_along_ref(cigar1, ops=ops, reduce.ranges=TRUE,
with.ops=TRUE, with.oplens=TRUE)[[1]]

ops <- setdiff(CIGAR_OPS, c("D", "N"))

cigars_as_ranges_along_ref(cigar1, ops=ops,
with.ops=TRUE, with.oplens=TRUE)[[1]]

lmmpos <- c(1, 1001, 1, 351)

cigars_as_ranges_along_ref(my_cigars, lmmpos=lmmpos,
with.ops=TRUE, with.oplens=TRUE)

cigars_as_ranges_along_ref(my_cigars, lmmpos=lmmpos,
ops=setdiff(CIGAR_OPS, "N"),
reduce.ranges=TRUE)

cigars_as_ranges_along_ref(my_cigars, lmmpos=lmmpos,
ops=setdiff(CIGAR_OPS, c("D", "N")),
reduce.ranges=TRUE)

seqnames <- factor(c("chr6", "chr6", "chr2", "chr6"),
levels=c("chr2", "chr6"))

ops <- c("M", "=", "X", "I", "D")
cigars_as_ranges_along_ref(my_cigars, lmmpos=lmmpos, f=seqnames, ops=ops)

Turn CIGAR strings into ranges along the "query space"

cigars_as_ranges_along_query(my_cigars, with.ops=TRUE, with.oplens=TRUE)

Turn CIGAR strings into ranges along the "pairwise alignment space"

cigars_as_ranges_along_pwa(my_cigars, with.ops=TRUE, with.oplens=TRUE)
cigars_as_ranges_along_pwa(my_cigars, dense=TRUE,

with.ops=TRUE, with.oplens=TRUE)

cigar_extent Calculate the number of positions spanned by a CIGAR string

cigar_extent 7

Description

The extent (or length) of an alignment is the number of positions that it spans. Note that positions
can be counted with respect to the "reference space", "query space", or "pairwise alignment space".
This means that the extent of a pairwise alignment depends on the space that we use to count
positions.

The extent of a CIGAR string is simply the extent of the alignment that it describes.

The cigarillo package provides three functions to calculate the extent of a CIGAR string:

• cigar_extent_along_ref calculates the extent along the "reference space".
• cigar_extent_along_query calculates the extent along the "query space".
• cigar_extent_along_pwa calculates the extent along the "pairwise alignment space".

The three functions are vectorized.

Usage

cigar_extent_along_ref(cigars,
N.regions.removed=FALSE,
flags=NULL)

cigar_extent_along_query(cigars,
before.hard.clipping=FALSE, after.soft.clipping=FALSE,
flags=NULL)

cigar_extent_along_pwa(cigars,
N.regions.removed=FALSE, dense=FALSE,
flags=NULL)

Arguments

cigars A character vector (or factor) containing CIGAR strings.
N.regions.removed

TRUE or FALSE.
If TRUE, then cigar_extent_along_ref reports the CIGAR extents with re-
spect to the "reference space" from which the N regions have been removed, and
cigar_extent_along_pwa reports them with respect to the "pairwise alignment
space" from which the N regions have been removed.

flags NULL or an integer vector containing the SAM flag for each read.
According to the SAM Spec v1.4, flag bit 0x4 is the only reliable place to tell
whether a segment (or read) is mapped (bit is 0) or not (bit is 1). If the flags ar-
gument is supplied, then cigar_extent_along_ref, cigar_extent_along_query,
and cigar_extent_along_pwa return NAs for unmapped reads.

before.hard.clipping

TRUE or FALSE.
If TRUE, then cigar_extent_along_query reports the CIGAR extents with re-
spect to the "query space" to which the H regions have been added. Note that
before.hard.clipping and after.soft.clipping cannot both be TRUE.

after.soft.clipping

TRUE or FALSE.
If TRUE, then cigar_extent_along_query reports the CIGAR extents with re-
spect to the "query space" from which the S regions have been removed. Note
that before.hard.clipping and after.soft.clipping cannot both be TRUE.

8 cigar_extent

dense TRUE or FALSE.
If TRUE, then cigar_extent_along_pwa reports the CIGAR extents with re-
spect to the "pairwise alignment space" from which the I, D, and N regions have
been removed. Note that N.regions.removed and dense cannot both be TRUE.

Value

For cigar_extent_along_ref and cigar_extent_along_pwa: An integer vector of the same
length as cigars where each element is the extent of the alignment with respect to the reference and
pairwise space, respectively. More precisely, for cigar_extent_along_ref, the returned extents
are the lengths of the alignments on the reference, N gaps included (except if N.regions.removed
is TRUE). NAs or "*" in cigars will produce NAs in the returned vector.

For cigar_extent_along_query: An integer vector of the same length as cigars where each
element is the length of the corresponding query sequence as inferred from the CIGAR string.
Note that, by default (i.e. if before.hard.clipping and after.soft.clipping are FALSE), this
is the length of the query sequence stored in the SAM/BAM file. If before.hard.clipping or
after.soft.clipping is TRUE, the returned extents are the lengths of the query sequences before
hard clipping or after soft clipping. NAs or "*" in cigars will produce NAs in the returned vector.

Author(s)

Hervé Pagès

See Also

• cigar_ops_visibility for an introduction to CIGAR operations and their visibility in vari-
ous "projection spaces".

• explode_cigars to extract the letters (or lengths) of the CIGAR operations contained in a vector
of CIGAR strings.

• tabulate_cigar_ops to count the occurences of CIGAR operations in a vector of CIGAR
strings.

• trim_cigars_along_ref and trim_cigars_along_query to trim CIGAR strings along the
"reference space" and "query space", respectively.

• cigars_as_ranges to turn CIGAR strings into ranges of positions.

• project_positions to project positions from query to reference space and vice versa.

• project_sequences to project sequences from one space to the other.

Examples

my_cigars <- c("40M2I9M", "3H15M55N4M2I6M2D5M6S",
"2S10M2000N15M", "3H33M5H")

Extents along the "reference space":
cigar_extent_along_ref(my_cigars)

Extents along the "query space":
cigar_extent_along_query(my_cigars)
cigar_extent_along_query(my_cigars, before.hard.clipping=TRUE)

Extents along the "pairwise alignment space":
cigar_extent_along_pwa(my_cigars)
cigar_extent_along_pwa(my_cigars, dense=TRUE)

cigar_ops_visibility 9

cigar_ops_visibility Visibility of CIGAR operations

Description

CIGAR operations and their visibility in various projection spaces.

Usage

CIGAR_OPS

cigar_ops_visibility(ops=CIGAR_OPS)

Arguments

ops Character vector where the elements are single letters representing valid CIGAR
operations. Must be a subset of CIGAR_OPS.

Details

The 8 supported projection spaces are: "reference", "reference-N-regions-removed", "query", "query-
before-hard-clipping", "query-after-soft-clipping", "pairwise", "pairwise-N-regions-removed", and
"pairwise-dense".

Each space can be characterized by the extended CIGAR operations that are visible in it. A CIGAR
operation is said to be visible in a given space if it "runs along it", that is, if it’s associated with a
block of contiguous positions in that space (the size of the block being the length of the operation).
For example, the M/=/X operations are visible in all spaces, the D/N operations are visible in the
"reference" space but not in the "query" space, the S operation is visible in the "query" space but
not in the "reference" or in the "query-after-soft-clipping" space, etc...

Here are the extended CIGAR operations that are visible in each space:

1. reference: M, D, N, =, X

2. reference-N-regions-removed: M, D, =, X

3. query: M, I, S, =, X

4. query-before-hard-clipping: M, I, S, H, =, X

5. query-after-soft-clipping: M, I, =, X

6. pairwise: M, I, D, N, =, X

7. pairwise-N-regions-removed: M, I, D, =, X

8. pairwise-dense: M, =, X

Note that CIGAR operations M, =, and X are visible in all spaces.

Value

CIGAR_OPS is a predefined character vector containing the valid (extended) CIGAR operations: M,
I, D, N, S, H, P, =, X. See official SAM/BAM Format specs at https://samtools.github.io/
hts-specs/SAMv1.pdf for the list of extended CIGAR operations and their meaning.

cigar_ops_visibility() returns an 8-row integer matrix with 1 row per space and 1 column per
CIGAR operation. The matrix is made of 0’s and 1’s indicating visibility.

https://samtools.github.io/hts-specs/SAMv1.pdf
https://samtools.github.io/hts-specs/SAMv1.pdf

10 explode_cigars

Author(s)

Hervé Pagès

See Also

• explode_cigars to extract the letters (or lengths) of the CIGAR operations contained in a vector
of CIGAR strings.

• tabulate_cigar_ops to count the occurences of CIGAR operations in a vector of CIGAR
strings.

• cigar_extent for functions that calculate the extent of a CIGAR string, that is, the number of
positions spanned by the alignment that it describes.

• trim_cigars_along_ref and trim_cigars_along_query to trim CIGAR strings along the
"reference space" and "query space", respectively.

• cigars_as_ranges to turn CIGAR strings into ranges of positions.

• project_positions to project positions from query to reference space and vice versa.

• project_sequences to project sequences from one space to the other.

Examples

CIGAR_OPS # valid CIGAR operations

cigar_ops_visibility() # visibility in each "projection space"

explode_cigars Explode CIGAR strings

Description

Use explode_cigar_ops() (or explode_cigar_oplens()) to extract the letters (or lengths) of the
CIGAR operations contained in a vector of CIGAR strings.

Usage

explode_cigar_ops(cigars, ops=CIGAR_OPS)
explode_cigar_oplens(cigars, ops=CIGAR_OPS)

cigars_as_RleList(cigars)

Arguments

cigars A character vector (or factor) containing CIGAR strings.

ops Character vector where the elements are single letters representing valid CIGAR
operations. Must be a subset of CIGAR_OPS. See ?CIGAR_OPS for more informa-
tion.
explode_cigar_ops() and explode_cigar_oplens() will ignore operations
not listed in ops (in addition to 0-length operations which are always ignored).

explode_cigars 11

Value

For explode_cigar_ops and explode_cigar_oplens: Both functions return a list parallel to
cigars where each list element is a character vector (for explode_cigar_ops) or an integer vector
(for explode_cigar_oplens). The two lists are guaranteed to have the same shape, that is, the
same length() and same lengths().

More precisely: The i-th character vector in the list returned by explode_cigar_ops contains one
single-letter string per CIGAR operation in cigars[i]. The i-th integer vector in the list returned
by explode_cigar_oplens contains the corresponding CIGAR operation lengths. Operations not
listed in ops and 0-length operations are ignored.

For cigars_as_RleList: An RleList object.

Author(s)

Hervé Pagès, Martin Morgan, and Patrick Aboyoun

See Also

• cigar_ops_visibility for an introduction to CIGAR operations and their visibility in vari-
ous "projection spaces".

• tabulate_cigar_ops to count the occurences of CIGAR operations in a vector of CIGAR
strings.

• cigar_extent for functions that calculate the extent of a CIGAR string, that is, the number of
positions spanned by the alignment that it describes.

• trim_cigars_along_ref and trim_cigars_along_query to trim CIGAR strings along the
"reference space" and "query space", respectively.

• cigars_as_ranges to turn CIGAR strings into ranges of positions.

• project_positions to project positions from query to reference space and vice versa.

• project_sequences to project sequences from one space to the other.

• The RleList class in the IRanges package.

Examples

Turn CIGAR strings into other useful representations

my_cigars <- c(
"40M2I9M",
"60M",
"3H15M55N4M2I6M2D5M6S",
"50=2X3=1X10=",
"2S10M2000N15M",
"3H33M5H"

)

cig_ops <- explode_cigar_ops(my_cigars)
cig_ops

cig_oplens <- explode_cigar_oplens(my_cigars)
cig_oplens

12 map_ref_ranges_to_query

explode_cigar_ops(my_cigars, ops=c("I", "S"))
explode_cigar_oplens(my_cigars, ops=c("I", "S"))

cigs_as_rlelist <- cigars_as_RleList(my_cigars)
cigs_as_rlelist

Results can be coerced to CharacterList or IntegerList

as(cig_ops, "CharacterList")
as(cig_oplens, "IntegerList")
as(cigs_as_rlelist, "CharacterList")

Sanity checks

stopifnot(
identical(as.list(runValue(cigs_as_rlelist)), cig_ops),
identical(as.list(runLength(cigs_as_rlelist)), cig_oplens)

)

map_ref_ranges_to_query

Map ranges relative to reference space to query space

Description

Highly specialized utility functions whose main purpose is to support the mapToAlignments meth-
ods defined in the GenomicAlignments package. Only of interest to the authors/maintainers of
these methods, and not really meant to be used by the end user.

Usage

map_ref_ranges_to_query(start, end, cigars, lmmpos)

fast_map_ref_ranges_to_query(start, end, cigars, lmmpos,
strictly.sort.hits=FALSE)

Arguments

start, end Two parallel integer vectors containing the starts/ends of the ranges to map to
the "query space". Note that the positions in the two vectors are expected to be
relative to the "reference space".

cigars A character vector (or factor) containing CIGAR strings.

lmmpos An integer vector parallel to cigars. For each CIGAR string in cigars, lmmpos
must contain the 1-based leftmost mapping POSition of the alignment described
by the CIGAR string. Note that these positions must be relative to the "reference
space".

map_ref_ranges_to_query 13

strictly.sort.hits

Whether the rows in the data.frame returned by fast_map_ref_ranges_to_query()
should be sorted by from_hit first then by to_hit instead of by from_hit only.
Note that when strictly.sort.hits is set to TRUE, fast_map_ref_ranges_to_query()
is guaranted to return the exact same data.frame as map_ref_ranges_to_query().

Details

map_ref_ranges_to_query() uses a naive and inefficient approach to find hits between the input
ranges and the ranges implicitly defined by the (cigars[j], lmmpos[j]) pairs.

fast_map_ref_ranges_to_query() is just a reimplementation of map_ref_ranges_to_query()
that is based on findOverlaps(). It’s hundreds times faster than map_ref_ranges_to_query()
for medium size input (i.e. when nb of input ranges x nb of cigars is between 1e6 and 250e6), and
thousands to hundreds of thousands times faster or more for big inputs (i.e. when nb of input ranges
x nb of cigars is > 500e6).

Value

A 4-column data.frame with 1 hit per row. The columns are:

• start, end: start/end of input range relative to the "query space";

• from_hit: index of input range involved in hit;

• to_hit: index of (cigar,lmmpos) pair involved in hit.

The 4 columns are integer vectors.

Author(s)

Valerie Obenchain and Hervé Pagès

See Also

• The mapToAlignments methods defined in the GenomicAlignments package.

• ref_pos_as_query_pos to project positions that are defined along the "reference space" onto
the "query space".

• cigar_extent for functions that calculate the extent of a CIGAR string, that is, the number of
positions spanned by the alignment that it describes.

• findOverlaps() in the IRanges package.

Examples

set.seed(888)

Random input ranges:
start <- sample(50000L, 10000, replace=TRUE)
end <- start + sample(15L, 10000, replace=TRUE) - 1L

Random (cigar,lmmpos) pairs, kind of:
cigars <- sample(c("4M", "5M3I4M", "4M3D5M", "3M", "10M", "5M8N5M"),

25000, replace=TRUE)
lmmpos <- sample(50000L, 25000, replace=TRUE)

map_ref_ranges_to_query():
system.time(df <- map_ref_ranges_to_query(start, end, cigars, lmmpos))

14 project_positions

dim(df)
df[1:15,]

fast_map_ref_ranges_to_query() is about 300x-400x faster:
system.time(df2 <- fast_map_ref_ranges_to_query(start, end, cigars, lmmpos,

strictly.sort.hits=TRUE))
stopifnot(identical(df, df2))

project_positions Project positions from query to reference space and vice versa

Description

query_pos_as_ref_pos() projects positions defined along the "query space" onto the "reference
space", that is, it turns them into positions defined along the "reference space".

ref_pos_as_query_pos() does the opposite i.e. it projects positions that are defined along the
"reference space" onto the "query space".

Usage

query_pos_as_ref_pos(query_pos, cigars, lmmpos, narrow.left)

ref_pos_as_query_pos(ref_pos, cigars, lmmpos, narrow.left)

Arguments

query_pos An integer vector containing positions relative to the "query space".

cigars A character vector (or factor) parallel to query_pos containing CIGAR strings.

lmmpos An integer vector parallel to cigars and query_pos. For each CIGAR string
in cigars, lmmpos must contain the 1-based leftmost mapping POSition of the
alignment described by the CIGAR string. Note that these positions must be
relative to the "reference space".

ref_pos An integer vector containing positions relative to the "reference space".

narrow.left For query_pos_as_ref_pos(): How should positions in the "query space" that
fall within an insertion be treated?
Such positions are peculiar, because, strictly speaking, they don’t have corre-
sponding positions in the "reference space". Instead, each of them falls between
two adjacent positions in the "reference space". Another way to describe this
situation is to say that each of them is mapped to a zero-width range along the
"reference space".
If narrow.left is TRUE, such position will be mapped to the position that is
immediately on the left of the corresponding zero-width range on the "reference
space". If narrow.left is FALSE, it will be mapped to the position that is im-
mediately on the right of the corresponding zero-width range on the "reference
space".
For ref_pos_as_query_pos(): How should positions in the "reference space"
that fall within a deletion be treated?
Such positions are peculiar, because, strictly speaking, they don’t have corre-
sponding positions in the "query space". Instead, each of them falls between

project_sequences 15

two adjacent positions in the "query space". Another way to describe this situa-
tion is to say that each of them is mapped to a zero-width range along the "query
space".

If narrow.left is TRUE, such position will be mapped to the position that is
immediately on the left of the corresponding zero-width range on the "query
space". If narrow.left is FALSE, it will be mapped to the position that is imme-
diately on the right of the corresponding zero-width range on the "query space".

Value

An integer vector parallel to the input positions. NAs in the returned vector indicate input positions
that cannot be mapped.

Author(s)

Michael Lawrence

See Also

• cigar_ops_visibility for an introduction to CIGAR operations and their visibility in vari-
ous "projection spaces".

• explode_cigars to extract the letters (or lengths) of the CIGAR operations contained in a vector
of CIGAR strings.

• tabulate_cigar_ops to count the occurences of CIGAR operations in a vector of CIGAR
strings.

• cigar_extent for functions that calculate the extent of a CIGAR string, that is, the number of
positions spanned by the alignment that it describes.

• trim_cigars_along_ref and trim_cigars_along_query to trim CIGAR strings along the
"reference space" and "query space", respectively.

• cigars_as_ranges to turn CIGAR strings into ranges of positions.

• project_sequences to project sequences from one space to the other.

Examples

query_pos <- -1:11
cigars <- rep("5M3I2M", 13)
lmmpos <- rep(101, 13)
query_pos_as_ref_pos(query_pos, cigars, lmmpos, narrow.left=TRUE)
query_pos_as_ref_pos(query_pos, cigars, lmmpos, narrow.left=FALSE)

project_sequences Project sequences from one space to the other

16 project_sequences

Description

project_sequences projects sequences that belong to a given projection space (e.g. the "query
space") onto another projection space (e.g. the "reference space") by removing/injecting substrings
from/into them, based on their corresponding CIGAR string.

Its primary use case is to project the read sequences stored in a BAM file (which are considered to
belong to the "query space") onto the "reference space". It can also be used to remove the parts of
the read sequences that correspond to soft-clipping. More generally it can project sequences that
belong to any supported space onto any other supported space. See the Details section below for
the list of supported spaces.

Usage

project_sequences(x, cigars, from="query", to="reference",
I.letter="-", D.letter="-", N.letter=".",
S.letter="+", H.letter="+")

Arguments

x An XStringSet derivative (e.g. BStringSet, DNAStringSet, or AAStringSet ob-
ject) containing sequences that are considered to belong to the from space (see
below).

cigars A character vector (or factor) parallel to x containing CIGAR strings.

from, to A single string specifying one of the 8 supported "projection spaces". See
?cigar_ops_visibility for more information. from must be the current space
(i.e. the space that the sequences in x belong to) and to is the space onto which
the sequences in x must be projected.

I.letter, D.letter, N.letter, S.letter, H.letter
A single letter used as a filler for injections. More on this in the Details section
below.

Details

See ?cigar_ops_visibility for the 8 supported projection spaces.

project_sequences projects a sequence that belongs to one space onto another by (1) removing the
substrings associated with operations that are no longer visible in the new space, and (2) injecting
substrings associated with operations that become visible in the new space. Each injected substring
has the length of the operation associated with it, and its content is controlled via the corresponding
*.letter argument.

For example, when going from the "query" space to the "reference" space (the default), the I-
and S-substrings (i.e. the substrings associated with I/S operations) are removed, and substrings
associated with D/N operations are injected. More precisely, the D-substrings are filled with the
letter specified in D.letter, and the N-substrings with the letter specified in N.letter. The other
*.letter arguments are ignored in that case.

Value

An XStringSet derivative of the same class as input object x, and parallel to x. The names on x, if
any, are propagated.

Author(s)

Hervé Pagès

project_sequences 17

See Also

• cigar_ops_visibility for an introduction to CIGAR operations and their visibility in vari-
ous "projection spaces".

• explode_cigars to extract the letters (or lengths) of the CIGAR operations contained in a vector
of CIGAR strings.

• tabulate_cigar_ops to count the occurences of CIGAR operations in a vector of CIGAR
strings.

• cigar_extent for functions that calculate the extent of a CIGAR string, that is, the number of
positions spanned by the alignment that it describes.

• trim_cigars_along_ref and trim_cigars_along_query to trim CIGAR strings along the
"reference space" and "query space", respectively.

• cigars_as_ranges to turn CIGAR strings into ranges of positions.

• project_positions to project positions from query to reference space and vice versa.

• The stackStringsFromBam function in the GenomicAlignments package for stacking the
read sequences (or their quality strings) stored in a BAM file on a region of interest.

• The readGAlignments function in the GenomicAlignments package for loading read se-
quences from a BAM file (as a GAlignments object).

• The extractAt and replaceAt functions in the Biostrings package for extracting/replacing
arbitrary substrings from/in a string or set of strings.

Examples

library(GenomicAlignments)

A. FROM "query" TO "reference" SPACE

Load read sequences from a BAM file (they will be returned in a
GAlignments object):
bamfile <- system.file("extdata", "ex1.bam", package="Rsamtools")
param <- ScanBamParam(what="seq")
gal <- readGAlignments(bamfile, param=param)
qseq <- mcols(gal)$seq # the read sequences (aka query sequences)

Project the query sequences onto the reference space. This will
remove the substrings associated with insertions to the reference
(I operations) and soft clipping (S operations), and will inject new
substrings (filled with "-") where deletions from the reference (D
operations) and skipped regions from the reference (N operations)
occurred during the alignment process:
qseq_on_ref <- project_sequences(qseq, cigar(gal))

A typical use case for doing the above is to compute 1 consensus
sequence per chromosome. The code below shows how this can be done
in 2 extra steps.

Step 1: Compute one consensus matrix per chromosome.
qseq_on_ref_by_chrom <- splitAsList(qseq_on_ref, seqnames(gal))
pos_by_chrom <- splitAsList(start(gal), seqnames(gal))

cm_by_chrom <- lapply(names(pos_by_chrom),

18 project_sequences

function(seqname)
consensusMatrix(qseq_on_ref_by_chrom[[seqname]],

as.prob=TRUE,
shift=pos_by_chrom[[seqname]]-1,
width=seqlengths(gal)[[seqname]]))

names(cm_by_chrom) <- names(pos_by_chrom)

'cm_by_chrom' is a list of consensus matrices. Each matrix has 17
rows (1 per letter in the DNA alphabet) and 1 column per chromosome
position.

Step 2: Compute the consensus string from each consensus matrix.
We'll put "+" in the strings wherever there is no coverage for that
position, and "N" where there is coverage but no consensus.
cs_by_chrom <- lapply(cm_by_chrom,

function(cm) {
Because consensusString() doesn't like consensus matrices
with columns that contain only zeroes (and you will have
columns like that for chromosome positions that don't
receive any coverage), we need to "fix" 'cm' first.
idx <- colSums(cm) == 0
cm["+", idx] <- 1
DNAString(consensusString(cm, ambiguityMap="N"))

})

consensusString() provides some flexibility to let you extract
the consensus in different ways. See '?consensusString' in the
Biostrings package for the details.

Finally, note that the read quality strings can also be used as
input for project_sequences():
param <- ScanBamParam(what="qual")
gal <- readGAlignments(bamfile, param=param)
qual <- mcols(gal)$qual # the read quality strings
qual_on_ref <- project_sequences(qual, cigar(gal))
Note that since the "-" letter is a valid quality code, there is
no way to distinguish it from the "-" letters inserted by
project_sequences().

B. FROM "query" TO "query-after-soft-clipping" SPACE

Going from "query" to "query-after-soft-clipping" simply removes
the substrings associated with soft clipping (S operations):
qseq <- DNAStringSet(c("AAAGTTCGAA", "TTACGATTAN", "GGATAATTTT"))
cigars <- c("3H10M", "2S7M1S2H", "2M1I1M3D2M4S")
clipped_qseq <- project_sequences(qseq, cigars,

from="query",
to="query-after-soft-clipping")

project_sequences(clipped_qseq, cigars,
from="query-after-soft-clipping", to="query")

project_sequences(clipped_qseq, cigars,
from="query-after-soft-clipping", to="query",
S.letter="-")

project_sequences 19

C. BRING QUERY AND REFERENCE SEQUENCES TO THE "pairwise"
OR "pairwise-dense" SPACE

Load read sequences from a BAM file:
library(RNAseqData.HNRNPC.bam.chr14)
bamfile <- RNAseqData.HNRNPC.bam.chr14_BAMFILES[1]
param <- ScanBamParam(what="seq",

which=GRanges("chr14", IRanges(1, 25000000)))
gal <- readGAlignments(bamfile, param=param)
qseq <- mcols(gal)$seq # the read sequences (aka query sequences)

Load the corresponding reference sequences from the appropriate
BSgenome package (the reads in RNAseqData.HNRNPC.bam.chr14 were
aligned to hg19):
library(BSgenome.Hsapiens.UCSC.hg19)
rseq <- getSeq(Hsapiens, as(gal, "GRanges")) # the reference sequences

Bring 'qseq' and 'rseq' to the "pairwise" space.
For 'qseq', this will remove the substrings associated with soft
clipping (S operations) and inject substrings (filled with "-")
associated with deletions from the reference (D operations) and
skipped regions from the reference (N operations). For 'rseq', this
will inject substrings (filled with "-") associated with insertions
to the reference (I operations).
qseq2 <- project_sequences(qseq, cigar(gal),

from="query", to="pairwise")
rseq2 <- project_sequences(rseq, cigar(gal),

from="reference", to="pairwise")

Sanity check: 'qseq2' and 'rseq2' should have the same shape.
stopifnot(identical(elementNROWS(qseq2), elementNROWS(rseq2)))

A closer look at reads with insertions and deletions:
cigar_op_table <- cigarOpTable(cigar(gal))
head(cigar_op_table)

I_idx <- which(cigar_op_table[, "I"] >= 2) # at least 2 insertions
qseq2[I_idx]
rseq2[I_idx]

D_idx <- which(cigar_op_table[, "D"] >= 2) # at least 2 deletions
qseq2[D_idx]
rseq2[D_idx]

A closer look at reads with skipped regions:
N_idx <- which(cigar_op_table[, "N"] != 0)
qseq2[N_idx]
rseq2[N_idx]

A variant of the "pairwise" space is the "pairwise-dense" space.
In that space, all indels and skipped regions are removed from 'qseq'
and 'rseq'.
qseq3 <- project_sequences(qseq, cigar(gal),

from="query", to="pairwise-dense")

20 tabulate_cigar_ops

rseq3 <- project_sequences(rseq, cigar(gal),
from="reference", to="pairwise-dense")

Sanity check: 'qseq3' and 'rseq3' should have the same shape.
stopifnot(identical(elementNROWS(qseq3), elementNROWS(rseq3)))

Insertions were removed:
qseq3[I_idx]
rseq3[I_idx]

Deletions were removed:
qseq3[D_idx]
rseq3[D_idx]

Skipped regions were removed:
qseq3[N_idx]
rseq3[N_idx]

tabulate_cigar_ops Tabulate CIGAR operations

Description

Count the occurences of CIGAR operations in a vector of CIGAR strings.

Usage

tabulate_cigar_ops(cigars, oplens.as.weights=FALSE)

Arguments

cigars A character vector (or factor) containing CIGAR strings.
oplens.as.weights

TRUE or FALSE.
Should the operation lengths be used as weights for the counts?

Value

An integer matrix with 1 row per CIGAR string in cigars and 1 column per CIGAR operation in
CIGAR_OPS.

Author(s)

Patrick Aboyoun and Hervé Pagès

See Also

• cigar_ops_visibility for an introduction to CIGAR operations and their visibility in vari-
ous "projection spaces".

• explode_cigars to extract the letters (or lengths) of the CIGAR operations contained in a vector
of CIGAR strings.

trim_cigars 21

• cigar_extent for functions that calculate the extent of a CIGAR string, that is, the number of
positions spanned by the alignment that it describes.

• trim_cigars_along_ref and trim_cigars_along_query to trim CIGAR strings along the
"reference space" and "query space", respectively.

• cigars_as_ranges to turn CIGAR strings into ranges of positions.

• project_positions to project positions from query to reference space and vice versa.

• project_sequences to project sequences from one space to the other.

Examples

my_cigars <- c(
"40M2I9M",
"60M",
"3H15M55N4M2I6M2D5M6S",
"50=2X3=1X10=",
"2S10M2000N15M",
"3H33M5H"

)

op_counts <- tabulate_cigar_ops(my_cigars)
op_counts

tabulate_cigar_ops(my_cigars, oplens.as.weights=TRUE)

Get the total number of operations per CIGAR string:
rowSums(op_counts) # a numeric vector parallel to 'my_cigars'

Note that the above is equivalent to -- but much faster and more
memory-efficient than -- 'lengths(explode_cigar_ops(my_cigars))'
or 'lengths(explode_cigar_oplens(my_cigars))':
nop_per_cig <- as.integer(rowSums(op_counts))
stopifnot(

identical(nop_per_cig, lengths(explode_cigar_ops(my_cigars))),
identical(nop_per_cig, lengths(explode_cigar_oplens(my_cigars)))

)

Identify CIGAR strings with indels:
has_indels <- rowSums(op_counts[, c("I", "D")]) != 0
has_indels # a logical vector parallel to 'my_cigars'

Summarize the counts for the whole vector of CIGAR strings:
colSums(op_counts)

trim_cigars Trim CIGAR strings along the reference or query space

Description

The CIGAR string associated with a pairwise alignment describes the alignment in its entirety in the
sense that it covers all the positions in the alignment. However, there might be situations where one
is only interested in a particular portion of the alignment, that is, in the portion of the alignment that
is left after trimming it by a given number of positions on its left and/or right ends. Furthermore,
one might want to know the effect of this trimming on the original CIGAR string.

22 trim_cigars

The cigarillo package provides two core functions, trim_cigars_along_ref and trim_cigars_along_query,
to compute the CIGAR string that describes a "trimmed alignment". Both take:

• the original CIGAR string i.e. the CIGAR string that describes the alignment before trimming

• the numbers of left/right positions to trim

Both functions return the "trimmed CIGAR string", that is, the CIGAR string that describes the
"trimmed alignment".

The only difference between the two function is how the numbers of left and right positions to trim
are counted: with respect to the "reference space" for trim_cigars_along_ref, and with respect
to the "query space" for trim_cigars_along_query.

Both functions are vectorized.

Usage

trim_cigars_along_ref(cigars, Lnpos=0L, Rnpos=0L)
trim_cigars_along_query(cigars, Lnpos=0L, Rnpos=0L)

Wrappers to the above that do the same thing but via
the "narrow()" interface:
narrow_cigars_along_ref(cigars, start=NA, end=NA, width=NA)
narrow_cigars_along_query(cigars, start=NA, end=NA, width=NA)

Arguments

cigars A character vector (or factor) containing CIGAR strings.

Lnpos, Rnpos The numbers of left/right positions to trim.

Each of Lnpos and Rnpos must be a non-negative integer, or a vector of non-
negative integers of the same length as cigars.

Note that the numbers of left and right positions to trim are counted with respect
to the "reference space" for trim_cigars_along_ref, and with respect to the
"query space" for trim_cigars_along_query.

start, end, width
Vectors of integers. NAs and negative values are allowed and "solved" similarly
to what IRanges::narrow() does. See ?IRanges::narrow in the IRanges
package for more information.

Value

A character vector of the same length as cigars that contains the "trimmed CIGAR strings".

In addition the vector has an "rshift" attribute which is an integer vector of the same length as
cigars. It contains the values that would need to be added to the POS field (1-based leftmost
mapping POSition) of a SAM/BAM file as a consequence of this trimming.

Author(s)

Hervé Pagès

trim_cigars 23

See Also

• cigar_ops_visibility for an introduction to CIGAR operations and their visibility in vari-
ous "projection spaces".

• explode_cigars to extract the letters (or lengths) of the CIGAR operations contained in a vector
of CIGAR strings.

• tabulate_cigar_ops to count the occurences of CIGAR operations in a vector of CIGAR
strings.

• cigar_extent for functions that calculate the extent of a CIGAR string, that is, the number of
positions spanned by the alignment that it describes.

• cigars_as_ranges to turn CIGAR strings into ranges of positions.

• project_positions to project positions from query to reference space and vice versa.

• project_sequences to project sequences from one space to the other.

Examples

cigar1 <- "3H15M55N4M2I6M2D5M6S"

trim_cigars_along_ref():
trim_cigars_along_ref(cigar1) # only drops the soft/hard clipping
trim_cigars_along_ref(cigar1, Lnpos=9)
trim_cigars_along_ref(cigar1, Lnpos=14)
trim_cigars_along_ref(cigar1, Lnpos=14, Rnpos=16)
trim_cigars_along_ref(cigar1, Lnpos=15)
#trim_cigars_along_ref(cigar1, Lnpos=15, Rnpos=17) # error! (empty cigar)
trim_cigars_along_ref(cigar1, Lnpos=70)
trim_cigars_along_ref(cigar1, Lnpos=71)
trim_cigars_along_ref(cigar1, Lnpos=74)

trim_cigars_along_query():
trim_cigars_along_query(cigar1, Lnpos=3, Rnpos=2)
trim_cigars_along_query(cigar1, Lnpos=9)
trim_cigars_along_query(cigar1, Lnpos=18)
trim_cigars_along_query(cigar1, Lnpos=23)

Using the "narrow()" interface:

stopifnot(
narrow_cigars_along_ref() vs trim_cigars_along_ref():
identical(narrow_cigars_along_ref(cigar1, start=10),

trim_cigars_along_ref(cigar1, Lnpos=9)),
identical(narrow_cigars_along_ref(cigar1, start=15),

trim_cigars_along_ref(cigar1, Lnpos=14)),
identical(narrow_cigars_along_ref(cigar1, start=15, width=57),

trim_cigars_along_ref(cigar1, Lnpos=14, Rnpos=16)),
identical(narrow_cigars_along_ref(cigar1, start=16),

trim_cigars_along_ref(cigar1, Lnpos=15)),
identical(narrow_cigars_along_ref(cigar1, start=71),

trim_cigars_along_ref(cigar1, Lnpos=70)),
identical(narrow_cigars_along_ref(cigar1, start=72),

trim_cigars_along_ref(cigar1, Lnpos=71)),
identical(narrow_cigars_along_ref(cigar1, start=75),

trim_cigars_along_ref(cigar1, Lnpos=74)),

narrow_cigars_along_query() vs trim_cigars_along_query():

24 trim_cigars

identical(narrow_cigars_along_query(cigar1, start=4, end=-3),
trim_cigars_along_query(cigar1, Lnpos=3, Rnpos=2)),

identical(narrow_cigars_along_query(cigar1, start=10),
trim_cigars_along_query(cigar1, Lnpos=9)),

identical(narrow_cigars_along_query(cigar1, start=19),
trim_cigars_along_query(cigar1, Lnpos=18)),

identical(narrow_cigars_along_query(cigar1, start=24),
trim_cigars_along_query(cigar1, Lnpos=23))

)

Index

∗ manip
cigar_extent, 6
cigar_ops_visibility, 9
cigars_as_ranges, 3
explode_cigars, 10
map_ref_ranges_to_query, 12
project_positions, 14
project_sequences, 15
tabulate_cigar_ops, 20
trim_cigars, 21

∗ methods
project_sequences, 15

∗ package
cigarillo-package, 2

AAStringSet, 16

BStringSet, 16

cigar_extent, 3, 5, 6, 10, 11, 13, 15, 17, 21,
23

cigar_extent_along_pwa (cigar_extent), 6
cigar_extent_along_query

(cigar_extent), 6
cigar_extent_along_ref (cigar_extent), 6
CIGAR_OPS, 4, 10
CIGAR_OPS (cigar_ops_visibility), 9
cigar_ops_visibility, 3, 5, 8, 9, 11, 15–17,

20, 23
cigarillo (cigarillo-package), 2
cigarillo-package, 2
cigars_as_ranges, 3, 3, 8, 10, 11, 15, 17, 21,

23
cigars_as_ranges_along_pwa

(cigars_as_ranges), 3
cigars_as_ranges_along_query

(cigars_as_ranges), 3
cigars_as_ranges_along_ref

(cigars_as_ranges), 3
cigars_as_RleList (explode_cigars), 10
CompressedIRangesList, 5

DNAStringSet, 16

explode_cigar_oplens (explode_cigars),
10

explode_cigar_ops (explode_cigars), 10
explode_cigars, 3, 5, 8, 10, 10, 15, 17, 20, 23
extractAt, 17

fast_map_ref_ranges_to_query
(map_ref_ranges_to_query), 12

findOverlaps, 13

GAlignments, 17

IRanges, 5
IRangesList, 4, 5

map_ref_ranges_to_query, 12
mapToAlignments, 12, 13

narrow, 22
narrow_cigars_along_query

(trim_cigars), 21
narrow_cigars_along_ref (trim_cigars),

21

project_positions, 3, 5, 8, 10, 11, 14, 17,
21, 23

project_sequences, 3, 5, 8, 10, 11, 15, 15,
21, 23

query_pos_as_ref_pos
(project_positions), 14

readGAlignments, 17
ref_pos_as_query_pos, 13
ref_pos_as_query_pos

(project_positions), 14
replaceAt, 17
RleList, 3, 11

SimpleIRangesList, 5
stackStringsFromBam, 17

tabulate_cigar_ops, 3, 5, 8, 10, 11, 15, 17,
20, 23

trim_cigars, 21

25

26 INDEX

trim_cigars_along_query, 3, 5, 8, 10, 11,
15, 17, 21

trim_cigars_along_query (trim_cigars),
21

trim_cigars_along_ref, 3, 5, 8, 10, 11, 15,
17, 21

trim_cigars_along_ref (trim_cigars), 21

validate_cigars (explode_cigars), 10

XStringSet, 16

	cigarillo-package
	cigars_as_ranges
	cigar_extent
	cigar_ops_visibility
	explode_cigars
	map_ref_ranges_to_query
	project_positions
	project_sequences
	tabulate_cigar_ops
	trim_cigars
	Index

