BiocParallel 1.43.3
This vignette is part of the BiocParallel package and focuses on error handling and logging. A section at the end demonstrates how the two can be used together as part of an effective debugging routine.
BiocParallel provides a unified interface to the parallel
infrastructure in several packages including snow,
parallel
, batchtools and foreach.
When implementing error handling in BiocParallel the primary
goals were to enable the return of partial results when an error is thrown (vs
just the error) and to establish logging on the workers. In cases where error
handling existed, such as batchtools and foreach,
those behaviors were preserved. Clusters created with snow and
parallel
now have flexible error handling and logging available
through SnowParam
and MulticoreParam
objects.
In this document the term “job” is used to describe a single call to a
bp*apply function (e.g., the X
in bplapply
). A “job” consists
of one or more “tasks”, where each “task” is run separately on a worker.
The BiocParallel package is available at bioconductor.org
and can be downloaded via BiocManager::install
:
if (!requireNamespace("BiocManager", quietly = TRUE))
install.packages("BiocManager")
BiocManager::install("BiocParallel")
Load the package:
library(BiocParallel)
BiocParallel captures messages and warnings in each job, returning the output to the manager and reporting these to the user after the completion of the entire operation. Thus
res <- bplapply(1:2, function(i) { message(i); Sys.sleep(3) })
reports messages only after the entire bplapply()
is complete.
It may be desired to output messages immediatly. Do this using
sink()
, as in the following example:
res <- bplapply(1:2, function(i) {
sink(NULL, type = "message")
message(i)
Sys.sleep(3)
})
This could be confusing when multiple workers write messages at the
same time – the messages will be interleaved in an arbitrary way – or
when the workers are not all running on the same computer (e.g., with
SnowParam()
) so should not be used in package code.
By default, BiocParallel attempts all computations and returns any warnings
and errors along with successful results. The stop.on.error
field
controls if the job is terminated as soon as one task throws an error. This is
useful when debugging or when running large jobs (many tasks) and you want to
be notified of an error before all runs complete.
stop.on.error
is TRUE
by default.
param <- SnowParam()
param
## class: SnowParam
## bpisup: FALSE; bpnworkers: 4; bptasks: 0; bpjobname: BPJOB
## bplog: FALSE; bpthreshold: INFO; bpstopOnError: TRUE
## bpRNGseed: ; bptimeout: NA; bpprogressbar: FALSE
## bpexportglobals: TRUE; bpexportvariables: TRUE; bpforceGC: FALSE
## bpfallback: TRUE
## bplogdir: NA
## bpresultdir: NA
## cluster type: SOCK
The field can be set when constructing the param or modified with the
bpstopOnError
accessor.
param <- SnowParam(2, stop.on.error = TRUE)
param
## class: SnowParam
## bpisup: FALSE; bpnworkers: 2; bptasks: 0; bpjobname: BPJOB
## bplog: FALSE; bpthreshold: INFO; bpstopOnError: TRUE
## bpRNGseed: ; bptimeout: NA; bpprogressbar: FALSE
## bpexportglobals: TRUE; bpexportvariables: TRUE; bpforceGC: FALSE
## bpfallback: TRUE
## bplogdir: NA
## bpresultdir: NA
## cluster type: SOCK
bpstopOnError(param) <- FALSE
In this example X
is length 6. By default, the elements of X
are divided as evenly as possible over the number of workers and run in chunks.
The number of tasks is set equal to the length of X
which forces
each element of X
to be executed separately (6 tasks).
X <- list(1, "2", 3, 4, 5, 6)
param <- SnowParam(3, tasks = length(X), stop.on.error = TRUE)
Tasks 1, 2, and 3 are assigned to the three workers, and are
evaluated. Task 2 fails, stopping further computation. All
successfully completed tasks are returned and can be accessed by bpresult
.
Usually, this means that the results of tasks 1, 2, and 3
will be returned.
result <- tryCatch({
bplapply(X, sqrt, BPPARAM = param)
}, error=identity)
result
## <bplist_error: BiocParallel errors
## 1 remote errors, element index: 2
## 1 unevaluated and other errors
## first remote error:
## Error in FUN(...): non-numeric argument to mathematical function
## >
## results and errors available as 'bpresult(x)'
bpresult(result)
## [[1]]
## [1] 1
##
## [[2]]
## <remote_error in FUN(...): non-numeric argument to mathematical function>
## traceback() available as 'attr(x, "traceback")'
##
## [[3]]
## [1] 1.732051
##
## [[4]]
## [1] 2
##
## [[5]]
## [1] 2.236068
##
## [[6]]
## <unevaluated_error: not evaluated due to previous error>
##
## attr(,"REDOENV")
## <environment: 0x57611ba45490>
Using stop.on.error=FALSE
, all tasks are evaluated.
X <- list("1", 2, 3, 4, 5, 6)
param <- SnowParam(3, tasks = length(X), stop.on.error = FALSE)
result <- tryCatch({
bplapply(X, sqrt, BPPARAM = param)
}, error=identity)
result
## <bplist_error: BiocParallel errors
## 1 remote errors, element index: 1
## 0 unevaluated and other errors
## first remote error:
## Error in FUN(...): non-numeric argument to mathematical function
## >
## results and errors available as 'bpresult(x)'
bpresult(result)
## [[1]]
## <remote_error in FUN(...): non-numeric argument to mathematical function>
## traceback() available as 'attr(x, "traceback")'
##
## [[2]]
## [1] 1.414214
##
## [[3]]
## [1] 1.732051
##
## [[4]]
## [1] 2
##
## [[5]]
## [1] 2.236068
##
## [[6]]
## [1] 2.44949
##
## attr(,"REDOENV")
## <environment: 0x57611c42cd30>
bptry()
is a convenient way of trying to evaluate a
bpapply
-like expression, returning the evaluated results
without signalling an error.
bptry({
bplapply(X, sqrt, BPPARAM=param)
})
## [[1]]
## <remote_error in FUN(...): non-numeric argument to mathematical function>
## traceback() available as 'attr(x, "traceback")'
##
## [[2]]
## [1] 1.414214
##
## [[3]]
## [1] 1.732051
##
## [[4]]
## [1] 2
##
## [[5]]
## [1] 2.236068
##
## [[6]]
## [1] 2.44949
##
## attr(,"REDOENV")
## <environment: 0x57611c45e6e8>
In the next example the elements of X
are grouped instead
of run separately. The default value for tasks
is 0 which means ‘X’ is
split as evenly as possible across the number of workers. There are 3
workers so the first task consists of list(1, 2), the second is list(“3”, 4)
and the third is list(5, 6).
X <- list(1, 2, "3", 4, 5, 6)
param <- SnowParam(3, stop.on.error = TRUE)
The output shows an error in when evaluating the third element, but also that the fourth element, in the same chunk as 3, was not evaluated. All elements are evaluated because they were assigned to workers before the first error occurred.
bptry(bplapply(X, sqrt, BPPARAM = param))
## [[1]]
## [1] 1
##
## [[2]]
## [1] 1.414214
##
## [[3]]
## <remote_error in FUN(...): non-numeric argument to mathematical function>
## traceback() available as 'attr(x, "traceback")'
##
## [[4]]
## <unevaluated_error: not evaluated due to previous error>
##
## [[5]]
## [1] 2.236068
##
## [[6]]
## [1] 2.44949
##
## attr(,"REDOENV")
## <environment: 0x57611c7b6858>
Side Note: Results are collected from workers as they finish which is not
necessarily the same order in which they were loaded. Depending on how tasks
are divided it is possible that the task with the error completes after all
others so essentially all workers complete before the job is stopped. In this
situation the output includes all results along with the error message and it
may appear that stop.on.error=TRUE
did not stop the job soon enough.
This is just a heads up that the usefulness of stop.on.error=TRUE
may
vary with run time and distribution of tasks over workers.
bpok()
The bpok()
function is a quick way to determine which (if any)
tasks failed. In this example we use bptry()
to retrieve the
partially evaluated expression, including the failed elements.
param <- SnowParam(2, stop.on.error=FALSE)
result <- bptry(bplapply(list(1, "2", 3), sqrt, BPPARAM=param))
bpok
returns TRUE if the task was successful.
bpok(result)
## [1] TRUE FALSE TRUE
Once errors are identified with bpok
the traceback can be retrieved
with the attr
function. This is possible because errors are returned
as condition
objects with the traceback as an attribute.
attr(result[[which(!bpok(result))]], "traceback")
## [1] "3: handle_error(e)"
## [2] "2: h(simpleError(msg, call))"
## [3] "1: .handleSimpleError(function (e) "
## [4] " {"
## [5] " annotated_condition <- handle_error(e)"
## [6] " stop(annotated_condition)"
## [7] " }, \"non-numeric argument to mathematical function\", base::quote(FUN(...)))"
Note that the traceback has been modified from the full traceback
provided by R to include only the calls from the time the
bplapply
FUN
is evaluated.
BPREDO
Tasks can fail due to hardware problems or bugs in the input data. The
BiocParallel functions support a BPREDO
(re-do) argument for
recomputing only the tasks that failed. A list of partial results and errors is
supplied to BPREDO
in a second call to the function. The failed
elements are identified, recomputed and inserted into the original results.
The bug in this example is the second element of ‘X’ which is a character when it should be numeric.
X <- list(1, "2", 3)
param <- SnowParam(2, stop.on.error=FALSE)
result <- bptry(bplapply(X, sqrt, BPPARAM=param))
result
## [[1]]
## [1] 1
##
## [[2]]
## <remote_error in FUN(...): non-numeric argument to mathematical function>
## traceback() available as 'attr(x, "traceback")'
##
## [[3]]
## [1] 1.732051
##
## attr(,"REDOENV")
## <environment: 0x57611c9684c0>
First fix the input data.
X.redo <- list(1, 2, 3)
Repeat the call to bplapply
this time supplying the partial
results as BPREDO
. Only the failed calculations are computed,
in the present case requiring only one worker.
bplapply(X.redo, sqrt, BPREDO=result, BPPARAM=param)
## [[1]]
## [1] 1
##
## [[2]]
## [1] 1.414214
##
## [[3]]
## [1] 1.732051
NOTE: Logging as described in this section is supported for SnowParam, MulticoreParam and SerialParam.
Logging in BiocParallel is controlled by 3 fields in the
BiocParallelParam
:
log: TRUE or FALSE
logdir: location to write log file
threshold: one of "TRACE", "DEBUG", "INFO", "WARN", "ERROR", "FATAL"
When log = TRUE
the futile.logger package is loaded on
each worker. BiocParallel uses a custom script on the workers to
collect log messages as well as additional statistics such as gc, runtime
and node information. Output to stderr and stdout is also captured.
By default log
is FALSE and threshold
is INFO.
param <- SnowParam(stop.on.error=FALSE)
param
## class: SnowParam
## bpisup: FALSE; bpnworkers: 4; bptasks: 0; bpjobname: BPJOB
## bplog: FALSE; bpthreshold: INFO; bpstopOnError: FALSE
## bpRNGseed: ; bptimeout: NA; bpprogressbar: FALSE
## bpexportglobals: TRUE; bpexportvariables: TRUE; bpforceGC: FALSE
## bpfallback: TRUE
## bplogdir: NA
## bpresultdir: NA
## cluster type: SOCK
Turn logging on and set the threshold to TRACE.
bplog(param) <- TRUE
bpthreshold(param) <- "TRACE"
param
## class: SnowParam
## bpisup: FALSE; bpnworkers: 4; bptasks: 0; bpjobname: BPJOB
## bplog: TRUE; bpthreshold: TRACE; bpstopOnError: FALSE
## bpRNGseed: ; bptimeout: NA; bpprogressbar: FALSE
## bpexportglobals: TRUE; bpexportvariables: TRUE; bpforceGC: FALSE
## bpfallback: TRUE
## bplogdir: NA
## bpresultdir: NA
## cluster type: SOCK
All thresholds defined in futile.logger are supported: FATAL, ERROR, WARN, INFO, DEBUG and TRACE. All messages greater than or equal to the severity of the threshold are shown. For example, a threshold of INFO will print all messages tagged as FATAL, ERROR, WARN and INFO.
Because the default threshold is INFO it catches the ERROR-level message thrown when attempting the square root of a character (“2”).
tryCatch({
bplapply(list(1, "2", 3), sqrt, BPPARAM = param)
}, error=function(e) invisible(e))
## ############### LOG OUTPUT ###############
## Task: 1
## Node: 4
## Timestamp: 2025-05-29 16:20:06.883389
## Success: TRUE
##
## Task duration:
## user system elapsed
## 0.055 0.001 0.056
##
## Memory used:
## used (Mb) gc trigger (Mb) max used (Mb)
## Ncells 1034525 55.3 1894002 101.2 1609837 86
## Vcells 1877173 14.4 8388608 64.0 8387913 64
##
## Log messages:
## INFO [2025-05-29 16:20:06] loading futile.logger package
##
## stderr and stdout:
## ############### LOG OUTPUT ###############
## Task: 3
## Node: 2
## Timestamp: 2025-05-29 16:20:07.016864
## Success: TRUE
##
## Task duration:
## user system elapsed
## 0.058 0.002 0.060
##
## Memory used:
## used (Mb) gc trigger (Mb) max used (Mb)
## Ncells 1035131 55.3 1894002 101.2 1609837 86
## Vcells 1878563 14.4 8388608 64.0 8387913 64
##
## Log messages:
## INFO [2025-05-29 16:20:06] loading futile.logger package
##
## stderr and stdout:
## ############### LOG OUTPUT ###############
## Task: 2
## Node: 3
## Timestamp: 2025-05-29 16:20:07.151846
## Success: FALSE
##
## Task duration:
## user system elapsed
## 0.065 0.002 0.066
##
## Memory used:
## used (Mb) gc trigger (Mb) max used (Mb)
## Ncells 1035162 55.3 1894002 101.2 1609837 86
## Vcells 1878657 14.4 8388608 64.0 8387913 64
##
## Log messages:
## INFO [2025-05-29 16:20:06] loading futile.logger package
## ERROR [2025-05-29 16:20:06] non-numeric argument to mathematical function
##
## stderr and stdout:
All user-supplied messages written in the futile.logger syntax are also captured. This function performs argument checking and includes a couple of WARN and DEBUG-level messages.
FUN <- function(i) {
futile.logger::flog.debug(paste("value of 'i':", i))
if (!length(i)) {
futile.logger::flog.warn("'i' has length 0")
NA
} else if (!is(i, "numeric")) {
futile.logger::flog.debug("coercing 'i' to numeric")
as.numeric(i)
} else {
i
}
}
Turn logging on and set the threshold to WARN.
param <- SnowParam(2, log = TRUE, threshold = "WARN", stop.on.error=FALSE)
result <- bplapply(list(1, "2", integer()), FUN, BPPARAM = param)
## ############### LOG OUTPUT ###############
## Task: 1
## Node: 2
## Timestamp: 2025-05-29 16:20:08.541308
## Success: TRUE
##
## Task duration:
## user system elapsed
## 0.061 0.004 0.065
##
## Memory used:
## used (Mb) gc trigger (Mb) max used (Mb)
## Ncells 1041944 55.7 1894002 101.2 1609837 86
## Vcells 1894137 14.5 8388608 64.0 8387913 64
##
## Log messages:
##
##
## stderr and stdout:
## ############### LOG OUTPUT ###############
## Task: 2
## Node: 1
## Timestamp: 2025-05-29 16:20:08.655411
## Success: TRUE
##
## Task duration:
## user system elapsed
## 0.070 0.002 0.071
##
## Memory used:
## used (Mb) gc trigger (Mb) max used (Mb)
## Ncells 1041967 55.7 1894002 101.2 1609837 86
## Vcells 1894196 14.5 8388608 64.0 8387913 64
##
## Log messages:
## WARN [2025-05-29 16:20:08] 'i' has length 0
##
## stderr and stdout:
simplify2array(result)
## [1] 1 2 NA
Changing the threshold to DEBUG catches both WARN and DEBUG messages.
param <- SnowParam(2, log = TRUE, threshold = "DEBUG", stop.on.error=FALSE)
result <- bplapply(list(1, "2", integer()), FUN, BPPARAM = param)
## ############### LOG OUTPUT ###############
## Task: 2
## Node: 1
## Timestamp: 2025-05-29 16:20:09.824746
## Success: TRUE
##
## Task duration:
## user system elapsed
## 0.113 0.002 0.113
##
## Memory used:
## used (Mb) gc trigger (Mb) max used (Mb)
## Ncells 1041875 55.7 1894002 101.2 1609837 86
## Vcells 1894242 14.5 8388608 64.0 8387913 64
##
## Log messages:
## INFO [2025-05-29 16:20:09] loading futile.logger package
## DEBUG [2025-05-29 16:20:09] value of 'i':
## WARN [2025-05-29 16:20:09] 'i' has length 0
##
## stderr and stdout:
## ############### LOG OUTPUT ###############
## Task: 1
## Node: 2
## Timestamp: 2025-05-29 16:20:09.923058
## Success: TRUE
##
## Task duration:
## user system elapsed
## 0.115 0.002 0.117
##
## Memory used:
## used (Mb) gc trigger (Mb) max used (Mb)
## Ncells 1041900 55.7 1894002 101.2 1609837 86
## Vcells 1894323 14.5 8388608 64.0 8387913 64
##
## Log messages:
## INFO [2025-05-29 16:20:09] loading futile.logger package
## DEBUG [2025-05-29 16:20:09] value of 'i': 1
## DEBUG [2025-05-29 16:20:09] value of 'i': 2
## DEBUG [2025-05-29 16:20:09] coercing 'i' to numeric
##
## stderr and stdout:
simplify2array(result)
## [1] 1 2 NA
When log == TRUE
, log messages are written to the console by default.
If logdir
is given the output is written out to files, one per task.
File names are prefixed with the name in bpjobname(BPPARAM)
; default
is ‘BPJOB’.
param <- SnowParam(2, log = TRUE, threshold = "DEBUG", logdir = tempdir())
res <- bplapply(list(1, "2", integer()), FUN, BPPARAM = param)
## loading futile.logger on workers
list.files(bplogdir(param))
## [1] "BPJOB.task1.log" "BPJOB.task2.log"
Read in BPJOB.task2.log:
readLines(paste0(bplogdir(param), "/BPJOB.task2.log"))
## [1] "############### LOG OUTPUT ###############"
## [2] "Task: 2"
## [3] "Node: 2"
## [4] "Timestamp: 2015-07-08 09:03:59"
## [5] "Success: TRUE"
## [6] "Task duration: "
## [7] " user system elapsed "
## [8] " 0.009 0.000 0.011 "
## [9] "Memory use (gc): "
## [10] " used (Mb) gc trigger (Mb) max used (Mb)"
## [11] "Ncells 325664 17.4 592000 31.7 393522 21.1"
## [12] "Vcells 436181 3.4 1023718 7.9 530425 4.1"
## [13] "Log messages:"
## [14] "DEBUG [2015-07-08 09:03:59] value of 'i': 2"
## [15] "INFO [2015-07-08 09:03:59] coercing to numeric"
## [16] "DEBUG [2015-07-08 09:03:59] value of 'i': "
## [17] "WARN [2015-07-08 09:03:59] 'i' is missing"
## [18] ""
## [19] "stderr and stdout:"
## [20] "character(0)"
NOTE: timeout
is supported for SnowParam and MulticoreParam.
For long running jobs or untested code it can be useful to set a time limit.
The timeout
field is the time, in seconds, allowed for each worker to
complete a task; default is Inf
. If the task takes longer than
timeout
a timeout error is returned.
Time can be changed during param construction with the timeout
arg,
param <- SnowParam(timeout = 20, stop.on.error=FALSE)
param
## class: SnowParam
## bpisup: FALSE; bpnworkers: 4; bptasks: 0; bpjobname: BPJOB
## bplog: FALSE; bpthreshold: INFO; bpstopOnError: FALSE
## bpRNGseed: ; bptimeout: 20; bpprogressbar: FALSE
## bpexportglobals: TRUE; bpexportvariables: TRUE; bpforceGC: FALSE
## bpfallback: TRUE
## bplogdir: NA
## bpresultdir: NA
## cluster type: SOCK
or with the bptimeout
setter:
param <- SnowParam(timeout = 2, stop.on.error=FALSE)
fun <- function(i) {
Sys.sleep(i)
i
}
bptry(bplapply(1:3, fun, BPPARAM = param))
## [[1]]
## [1] 1
##
## [[2]]
## [1] 2
##
## [[3]]
## [1] 3
Effective debugging strategies vary by problem and often involve a combination
of error handling and logging techniques. In general, when debugging
R-generated errors the traceback is often the best place to start followed
by adding debug messages to the worker function. When trouble shooting
unexpected behavior (i.e., not a formal error or warning) adding debug messages
or switching to SerialParam
are good approaches. Below is an overview
of these different strategies.
The traceback is a good place to start when tracking down R-generated
errors. Because the function is executed on the workers it’s not accessible for
interactive debugging with functions such as trace
or debug
.
The traceback provides a snapshot of the state of the worker at the time
the error was thrown.
This function takes the square root of the absolute value of a vector.
fun1 <- function(x) {
v <- abs(x)
sapply(1:length(v), function(i) sqrt(v[i]))
}
Calling “fun1” with a character throws an error:
param <- SnowParam(stop.on.error=FALSE)
result <- bptry({
bplapply(list(c(1,3), 5, "6"), fun1, BPPARAM = param)
})
result
## [[1]]
## [1] 1.000000 1.732051
##
## [[2]]
## [1] 2.236068
##
## [[3]]
## <remote_error in abs(x): non-numeric argument to mathematical function>
## traceback() available as 'attr(x, "traceback")'
##
## attr(,"REDOENV")
## <environment: 0x11bdb3a18>
Identify which elements failed with bpok
:
bpok(result)
## [1] TRUE TRUE FALSE
The error (i.e., third element of “res”) is a condition
object:
is(result[[3]], "condition")
## [1] TRUE
The traceback is an attribute of the condition
and can be accessed with
the attr
function.
cat(attr(result[[3]], "traceback"), sep = "\n")
## 4: handle_error(e)
## 3: h(simpleError(msg, call))
## 2: .handleSimpleError(function (e)
## {
## annotated_condition <- handle_error(e)
## stop(annotated_condition)
## }, "non-numeric argument to mathematical function", base::quote(abs(x))) at #2
## 1: FUN(...)
In this example the error occurs in FUN
; lines 2, 3, 4 involve
error handling.
When a numeric()
is passed to “fun1” no formal error is thrown
but the length of the second list element is 2 when it should be 1.
bplapply(list(c(1,3), numeric(), 6), fun1, BPPARAM = param)
## [[1]]
## [1] 1.000000 1.732051
##
## [[2]]
## [[2]][[1]]
## [1] NA
##
## [[2]][[2]]
## numeric(0)
##
## [[3]]
## [1] 2.44949
Without a formal error we have no traceback so we’ll add a few debug messages.
The futile.logger syntax tags messages with different levels of
severity. A message created with flog.debug
will only print if the threshold
is DEBUG or lower. So in this case it will catch both INFO
and DEBUG
messages.
fun2
has debug statements that show the value of x
, length of v
and
the index i
.
fun2 <- function(x) {
v <- abs(x)
futile.logger::flog.debug(
paste0("'x' = ", paste(x, collapse=","), ": length(v) = ", length(v))
)
sapply(1:length(v), function(i) {
futile.logger::flog.info(paste0("'i' = ", i))
sqrt(v[i])
})
}
Create a param that logs at a threshold level of DEBUG.
param <- SnowParam(3, log = TRUE, threshold = "DEBUG")
res <- bplapply(list(c(1,3), numeric(), 6), fun2, BPPARAM = param)
## ############### LOG OUTPUT ###############
## Task: 2
## Node: 2
## Timestamp: 2025-05-29 16:20:16.269699
## Success: TRUE
##
## Task duration:
## user system elapsed
## 0.115 0.003 0.118
##
## Memory used:
## used (Mb) gc trigger (Mb) max used (Mb)
## Ncells 1042482 55.7 1894002 101.2 1609837 86
## Vcells 1896107 14.5 8388608 64.0 8387913 64
##
## Log messages:
## INFO [2025-05-29 16:20:16] loading futile.logger package
## DEBUG [2025-05-29 16:20:16] 'x' = : length(v) = 0
## INFO [2025-05-29 16:20:16] 'i' = 1
## INFO [2025-05-29 16:20:16] 'i' = 0
##
## stderr and stdout:
## ############### LOG OUTPUT ###############
## Task: 3
## Node: 1
## Timestamp: 2025-05-29 16:20:16.37091
## Success: TRUE
##
## Task duration:
## user system elapsed
## 0.113 0.002 0.115
##
## Memory used:
## used (Mb) gc trigger (Mb) max used (Mb)
## Ncells 1042509 55.7 1894002 101.2 1609837 86
## Vcells 1896174 14.5 8388608 64.0 8387913 64
##
## Log messages:
## INFO [2025-05-29 16:20:16] loading futile.logger package
## DEBUG [2025-05-29 16:20:16] 'x' = 6: length(v) = 1
## INFO [2025-05-29 16:20:16] 'i' = 1
##
## stderr and stdout:
## ############### LOG OUTPUT ###############
## Task: 1
## Node: 3
## Timestamp: 2025-05-29 16:20:16.462248
## Success: TRUE
##
## Task duration:
## user system elapsed
## 0.118 0.002 0.120
##
## Memory used:
## used (Mb) gc trigger (Mb) max used (Mb)
## Ncells 1042531 55.7 1894002 101.2 1609837 86
## Vcells 1896256 14.5 8388608 64.0 8387913 64
##
## Log messages:
## INFO [2025-05-29 16:20:16] loading futile.logger package
## DEBUG [2025-05-29 16:20:16] 'x' = 1,3: length(v) = 2
## INFO [2025-05-29 16:20:16] 'i' = 1
## INFO [2025-05-29 16:20:16] 'i' = 2
##
## stderr and stdout:
res
## [[1]]
## [1] 1.000000 1.732051
##
## [[2]]
## [[2]][[1]]
## [1] NA
##
## [[2]][[2]]
## numeric(0)
##
##
## [[3]]
## [1] 2.44949
The debug messages require close inspection, but focusing on task 2 we see
res
## ############### LOG OUTPUT ###############
## Task: 2
## Node: 2
## Timestamp: 2023-03-23 12:17:28.969158
## Success: TRUE
##
## Task duration:
## user system elapsed
## 0.156 0.005 0.163
##
## Memory used:
## used (Mb) gc trigger (Mb) limit (Mb) max used (Mb)
## Ncells 942951 50.4 1848364 98.8 NA 1848364 98.8
## Vcells 1941375 14.9 8388608 64.0 32768 2446979 18.7
##
## Log messages:
## INFO [2023-03-23 12:17:28] loading futile.logger package
## DEBUG [2023-03-23 12:17:28] 'x' = : length(v) = 0
## INFO [2023-03-23 12:17:28] 'i' = 1
## INFO [2023-03-23 12:17:28] 'i' = 0
##
## stderr and stdout:
This reveals the problem. The index for sapply
is along v
which in this case has length 0. This forces i
to take values of
1
and 0
giving an output of length 2 for the second element (i.e.,
NA
and numeric(0)
).
“fun2” can be fixed by using seq_along(v)
to create the index
instead of 1:length(v)
.
SerialParam
Errors that occur on parallel workers can be difficult to debug. Often the
traceback sent back from the workers is too much to parse or not informative.
We are also limited in that our interactive strategies of
browser
and trace
are not available.
One option for further debugging is to run the code in serial with
SerialParam
. This removes the “parallel” component and is
the same as running a straight *apply
function. This approach
may not help if the problem was hardware related but can be very
useful when the bug is in the R code.
We use the now familiar square root example with a bug in the second element
of X
.
res <- bptry({
bplapply(list(1, "2", 3), sqrt,
BPPARAM = SnowParam(3, stop.on.error=FALSE))
})
result
## [[1]]
## [1] 1
##
## [[2]]
## [1] 2
##
## [[3]]
## [1] NA
sqrt
is an internal function. The problem is likely with our data
going into the function and not the sqrt
function itself. We can
write a small wrapper around sqrt
so we can see the input.
fun3 <- function(i) sqrt(i)
Debug the new function:
debug(fun3)
We want to recompute only elements that failed and for that we use
the BPREDO
argument. The BPPARAM has been changed to
SerialParam
so the job is run in the local workspace in serial.
> bplapply(list(1, "2", 3), fun3, BPREDO = result, BPPARAM = SerialParam())
Resuming previous calculation ...
debugging in: FUN(...)
debug: sqrt(i)
Browse[2]> objects()
[1] "i"
Browse[2]> i
[1] "2"
Browse[2]>
The local browsing allowed us to see the problem input was the character “2”.
sessionInfo()
## R version 4.5.0 (2025-04-11)
## Platform: x86_64-pc-linux-gnu
## Running under: Ubuntu 24.04.2 LTS
##
## Matrix products: default
## BLAS: /home/biocbuild/bbs-3.22-bioc/R/lib/libRblas.so
## LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.12.0 LAPACK version 3.12.0
##
## locale:
## [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
## [3] LC_TIME=en_GB LC_COLLATE=C
## [5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
## [7] LC_PAPER=en_US.UTF-8 LC_NAME=C
## [9] LC_ADDRESS=C LC_TELEPHONE=C
## [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
##
## time zone: America/New_York
## tzcode source: system (glibc)
##
## attached base packages:
## [1] stats graphics grDevices utils datasets methods base
##
## other attached packages:
## [1] BiocParallel_1.43.3 BiocStyle_2.37.0
##
## loaded via a namespace (and not attached):
## [1] base64url_1.4 jsonlite_2.0.0 compiler_4.5.0
## [4] BiocManager_1.30.25 crayon_1.5.3 parallel_4.5.0
## [7] jquerylib_0.1.4 progress_1.2.3 yaml_2.3.10
## [10] fastmap_1.2.0 R6_2.6.1 batchtools_0.9.17
## [13] knitr_1.50 backports_1.5.0 checkmate_2.3.2
## [16] tibble_3.2.1 bookdown_0.43 snow_0.4-4
## [19] pillar_1.10.2 bslib_0.9.0 rlang_1.1.6
## [22] cachem_1.1.0 stringi_1.8.7 xfun_0.52
## [25] fs_1.6.6 sass_0.4.10 debugme_1.2.0
## [28] cli_3.6.5 magrittr_2.0.3 withr_3.0.2
## [31] digest_0.6.37 rappdirs_0.3.3 hms_1.1.3
## [34] lifecycle_1.0.4 prettyunits_1.2.0 vctrs_0.6.5
## [37] glue_1.8.0 evaluate_1.0.3 data.table_1.17.4
## [40] codetools_0.2-20 rmarkdown_2.29 tools_4.5.0
## [43] pkgconfig_2.0.3 htmltools_0.5.8.1 brew_1.0-10