UCell 2.9.0
The function AddModuleScore_UCell()
allows operating directly on Seurat objects. UCell scores are calculated from raw counts or normalized data, and returned as metadata columns. The example below defines some simple signatures, and applies them on single-cell data stored in a Seurat object.
To see how this function differs from Seurat’s own AddModuleScore()
(not based on per-cell ranks) see this vignette.
For this demo, we will download a single-cell dataset of lung cancer (Zilionis et al. (2019) Immunity) through the scRNA-seq package. This dataset contains >170,000 single cells; for the sake of simplicity, in this demo will we focus on immune cells, according to the annotations by the authors, and downsample to 5000 cells.
library(scRNAseq)
lung <- ZilionisLungData()
immune <- lung$Used & lung$used_in_NSCLC_immune
lung <- lung[,immune]
lung <- lung[,1:5000]
exp.mat <- Matrix::Matrix(counts(lung),sparse = TRUE)
colnames(exp.mat) <- paste0(colnames(exp.mat), seq(1,ncol(exp.mat)))
Here we define some simple gene sets based on the “Human Cell Landscape” signatures Han et al. (2020) Nature. You may edit existing signatures, or add new one as elements in a list.
signatures <- list(
Tcell = c("CD3D","CD3E","CD3G","CD2","TRAC"),
Myeloid = c("CD14","LYZ","CSF1R","FCER1G","SPI1","LCK-"),
NK = c("KLRD1","NCR1","NKG7","CD3D-","CD3E-"),
Plasma_cell = c("MZB1","DERL3","CD19-")
)
library(UCell)
library(Seurat)
seurat.object <- CreateSeuratObject(counts = exp.mat,
project = "Zilionis_immune")
seurat.object <- AddModuleScore_UCell(seurat.object,
features=signatures, name=NULL)
head(seurat.object[[]])
## orig.ident nCount_RNA nFeature_RNA Tcell Myeloid NK Plasma_cell
## bcHTNA1 Zilionis_immune 7516 2613 0 0.5227121 0 0.00000000
## bcHNVA2 Zilionis_immune 5684 1981 0 0.5112892 0 0.00000000
## bcALZN3 Zilionis_immune 4558 1867 0 0.3584502 0 0.07540874
## bcFWBP4 Zilionis_immune 2915 1308 0 0.1546426 0 0.00000000
## bcBJYE5 Zilionis_immune 3576 1548 0 0.4629927 0 0.00000000
## bcGSBJ6 Zilionis_immune 2796 1270 0 0.5452238 0 0.00000000
Generate PCA and UMAP embeddings
seurat.object <- NormalizeData(seurat.object)
seurat.object <- FindVariableFeatures(seurat.object,
selection.method = "vst", nfeatures = 500)
seurat.object <- ScaleData(seurat.object)
seurat.object <- RunPCA(seurat.object, npcs = 20,
features=VariableFeatures(seurat.object))
seurat.object <- RunUMAP(seurat.object, reduction = "pca",
dims = 1:20, seed.use=123)
Visualize UCell scores on low-dimensional representation (UMAP)
library(ggplot2)
library(patchwork)
FeaturePlot(seurat.object, reduction = "umap", features = names(signatures))