XeniumIO 0.99.8
The XeniumIO
package provides functions to import 10X Genomics Xenium Analyzer
data into R. The package is designed to work with the output of the Xenium
Analyzer, which is a software tool that processes Visium spatial gene expression
data. The package provides functions to import the output of the Xenium Analyzer
into R, and to create a TENxXenium
object that can be used with other
Bioconductor packages.
The 10X suite of packages support multiple file formats. The following table lists the supported file formats and the corresponding classes that are imported into R.
Extension | Class | Imported as |
---|---|---|
.h5 | TENxH5 | SingleCellExperiment w/ TENxMatrix |
.mtx / .mtx.gz | TENxMTX | SummarizedExperiment w/ dgCMatrix |
.tar.gz | TENxFileList | SingleCellExperiment w/ dgCMatrix |
peak_annotation.tsv | TENxPeaks | GRanges |
fragments.tsv.gz | TENxFragments | RaggedExperiment |
.tsv / .tsv.gz | TENxTSV | tibble |
Extension | Class | Imported as |
---|---|---|
spatial.tar.gz | TENxSpatialList | DataFrame list * |
.parquet | TENxSpatialParquet | tibble * |
Extension | Class | Imported as |
---|---|---|
.zarr.zip | TENxZarr | (TBD) |
BiocManager::install("Bioconductor/XeniumIO")
library(XeniumIO)
The TENxXenium
class has a metadata
slot for the experiment.xenium
file.
The resources
slot is a TENxFileList
or TENxH5
object containing the cell
feature matrix. The coordNames
slot is a vector specifying the names of the
columns in the spatial data containing the spatial coordinates. The sampleId
slot is a scalar specifying the sample identifier.
TENxXenium(
resources = "path/to/matrix/folder/or/file",
xeniumOut = "path/to/xeniumOut/folder",
sample_id = "sample01",
format = c("mtx", "h5"),
boundaries_format = c("parquet", "csv.gz"),
spatialCoordsNames = c("x_centroid", "y_centroid"),
...
)
The format
argument specifies the format of the resources
object, either
“mtx” or “h5”. The boundaries_format
allows the user to choose whether to
read in the data using the parquet
or csv.gz
format.
Note that the xeniumOut
unzipped folder must contain the following files:
*outs
├── cell_feature_matrix.h5
├── cell_feature_matrix.tar.gz
| ├── barcodes.tsv*
| ├── features.tsv*
| └── matrix.mtx*
├── cell_feature_matrix.zarr.zip
├── experiment.xenium
├── cells.csv.gz
├── cells.parquet
├── cells.zarr.zip
[...]
Note that currently the zarr
format is not supported as the infrastructure is
currently under development.
The resources
slot should either be the TENxFileList
from the mtx
format or
a TENxH5
instance from an h5
file. The boundaries can either be a
TENxSpatialParquet
instance or a TENxSpatialCSV
. These classes are
automatically instantiated by the constructor function.
showClass("TENxXenium")
## Class "TENxXenium" [package "XeniumIO"]
##
## Slots:
##
## Name: resources
## Class: TENxFileList_OR_TENxH5
##
## Name: boundaries
## Class: TENxSpatialParquet_OR_TENxSpatialCSV
##
## Name: coordNames
## Class: character
##
## Name: sampleId
## Class: character
##
## Name: colData
## Class: TENxSpatialParquet
##
## Name: metadata
## Class: XeniumFile
import
methodThe import
method for a TENxXenium
instance returns a SpatialExperiment
class object. Dispatch is only done on the con
argument. See ?BiocIO::import
for details on the generic. The import
function call is meant to be a simple
call without much input. For more details in the package, see ?TENxXenium
.
getMethod("import", c(con = "TENxXenium"))
## Method Definition:
##
## function (con, format, text, ...)
## {
## sce <- import(con@resources, ...)
## metadata <- import(con@metadata)
## coldata <- import(con@colData)
## SpatialExperiment::SpatialExperiment(assays = list(counts = assay(sce)),
## rowData = rowData(sce), mainExpName = mainExpName(sce),
## altExps = altExps(sce), sample_id = con@sampleId, colData = as(coldata,
## "DataFrame"), spatialCoordsNames = con@coordNames,
## metadata = list(experiment.xenium = metadata, polygons = import(con@boundaries)))
## }
## <bytecode: 0x5eed6ca90658>
## <environment: namespace:XeniumIO>
##
## Signatures:
## con format text
## target "TENxXenium" "ANY" "ANY"
## defined "TENxXenium" "ANY" "ANY"
The following code snippet demonstrates how to import a Xenium Analyzer output
into R. The TENxXenium
object is created by specifying the path to the
xeniumOut
folder. The TENxXenium
object is then imported into R using the
import
method for the TENxXenium
class.
First, we cache the ~12 MB file to avoid downloading it multiple times (via BiocFileCache).
zipfile <- paste0(
"https://mghp.osn.xsede.org/bir190004-bucket01/BiocXenDemo/",
"Xenium_Prime_MultiCellSeg_Mouse_Ileum_tiny_outs.zip"
)
destfile <- XeniumIO:::.cache_url_file(zipfile)
## adding rname 'https://mghp.osn.xsede.org/bir190004-bucket01/BiocXenDemo/Xenium_Prime_MultiCellSeg_Mouse_Ileum_tiny_outs.zip'
We then create an output folder for the contents of the zipped file. We use the
same name as the zip file but without the extension (with
tools::file_path_sans_ext
).
outfold <- file.path(
tempdir(), tools::file_path_sans_ext(basename(zipfile))
)
if (!dir.exists(outfold))
dir.create(outfold, recursive = TRUE)
We now unzip the file and use the outfold
as the exdir
argument to unzip
.
The outfold
variable and folder will be used as the xeniumOut
argument in
the TENxXenium
constructor. Note that we use the ref = "Gene Expression"
argument in the import
method to pass down to the internal splitAltExps
function call. This will set the mainExpName
in the SpatialExperiment
object.
unzip(
zipfile = destfile, exdir = outfold, overwrite = FALSE
)
TENxXenium(xeniumOut = outfold) |>
import(ref = "Gene Expression")
## class: SpatialExperiment
## dim: 5006 36
## metadata(2): experiment.xenium polygons
## assays(1): counts
## rownames(5006): ENSMUSG00000052595 ENSMUSG00000030111 ...
## ENSMUSG00000055670 ENSMUSG00000027596
## rowData names(3): ID Symbol Type
## colnames(36): aaamobki-1 aaclkaod-1 ... olbjkpjc-1 omjmdimk-1
## colData names(13): cell_id transcript_counts ... segmentation_method
## sample_id
## reducedDimNames(0):
## mainExpName: Gene Expression
## altExpNames(5): Deprecated Codeword Genomic Control Negative Control
## Codeword Negative Control Probe Unassigned Codeword
## spatialCoords names(2) : x_centroid y_centroid
## imgData names(0):
Note that you may also use the swapAltExp
function to set a mainExpName
in
the SpatialExperiment
but this is not recommended. The operation returns a
SingleCellExperiment
which has to be coerced back into a SpatialExperiment
.
The coercion also loses some metadata information particularly the
spatialCoords
.
TENxXenium(xeniumOut = outfold) |>
import() |>
swapAltExp(name = "Gene Expression") |>
as("SpatialExperiment")
## class: SpatialExperiment
## dim: 5006 36
## metadata(1): TENxFileList
## assays(1): counts
## rownames(5006): ENSMUSG00000052595 ENSMUSG00000030111 ...
## ENSMUSG00000055670 ENSMUSG00000027596
## rowData names(3): ID Symbol Type
## colnames(36): aaamobki-1 aaclkaod-1 ... olbjkpjc-1 omjmdimk-1
## colData names(13): cell_id transcript_counts ... segmentation_method
## sample_id
## reducedDimNames(0):
## mainExpName: Gene Expression
## altExpNames(5): Genomic Control Negative Control Codeword Negative
## Control Probe Unassigned Codeword Deprecated Codeword
## spatialCoords names(0) :
## imgData names(0):
The dataset was obtained from the 10X Genomics website under the
X0A v3.0 section
and is a subset of the Xenium Prime 5K Mouse Pan Tissue & Pathways Panel.
The link to the data can be seen as the url
input above and shown below for
completeness.
sessionInfo()
## R Under development (unstable) (2025-01-20 r87609)
## Platform: x86_64-pc-linux-gnu
## Running under: Ubuntu 24.04.2 LTS
##
## Matrix products: default
## BLAS: /home/biocbuild/bbs-3.21-bioc/R/lib/libRblas.so
## LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.12.0 LAPACK version 3.12.0
##
## locale:
## [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
## [3] LC_TIME=en_GB LC_COLLATE=C
## [5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
## [7] LC_PAPER=en_US.UTF-8 LC_NAME=C
## [9] LC_ADDRESS=C LC_TELEPHONE=C
## [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
##
## time zone: America/New_York
## tzcode source: system (glibc)
##
## attached base packages:
## [1] stats4 stats graphics grDevices utils datasets methods
## [8] base
##
## other attached packages:
## [1] XeniumIO_0.99.8 TENxIO_1.9.3
## [3] SingleCellExperiment_1.29.1 SummarizedExperiment_1.37.0
## [5] Biobase_2.67.0 GenomicRanges_1.59.1
## [7] GenomeInfoDb_1.43.4 IRanges_2.41.3
## [9] S4Vectors_0.45.4 BiocGenerics_0.53.6
## [11] generics_0.1.3 MatrixGenerics_1.19.1
## [13] matrixStats_1.5.0 BiocStyle_2.35.0
##
## loaded via a namespace (and not attached):
## [1] rjson_0.2.23 xfun_0.51 bslib_0.9.0
## [4] lattice_0.22-6 tzdb_0.4.0 vctrs_0.6.5
## [7] tools_4.5.0 parallel_4.5.0 curl_6.2.1
## [10] tibble_3.2.1 RSQLite_2.3.9 blob_1.2.4
## [13] pkgconfig_2.0.3 BiocBaseUtils_1.9.0 Matrix_1.7-2
## [16] dbplyr_2.5.0 assertthat_0.2.1 lifecycle_1.0.4
## [19] GenomeInfoDbData_1.2.13 compiler_4.5.0 codetools_0.2-20
## [22] htmltools_0.5.8.1 sass_0.4.9 yaml_2.3.10
## [25] pillar_1.10.1 crayon_1.5.3 jquerylib_0.1.4
## [28] DelayedArray_0.33.6 cachem_1.1.0 magick_2.8.5
## [31] abind_1.4-8 tidyselect_1.2.1 digest_0.6.37
## [34] purrr_1.0.4 dplyr_1.1.4 bookdown_0.42
## [37] arrow_18.1.0.1 fastmap_1.2.0 grid_4.5.0
## [40] archive_1.1.11 cli_3.6.4 SparseArray_1.7.6
## [43] magrittr_2.0.3 S4Arrays_1.7.3 withr_3.0.2
## [46] readr_2.1.5 filelock_1.0.3 UCSC.utils_1.3.1
## [49] bit64_4.6.0-1 rmarkdown_2.29 XVector_0.47.2
## [52] httr_1.4.7 bit_4.5.0.1 hms_1.1.3
## [55] SpatialExperiment_1.17.0 memoise_2.0.1 evaluate_1.0.3
## [58] knitr_1.49 BiocIO_1.17.1 BiocFileCache_2.15.1
## [61] rlang_1.1.5 Rcpp_1.0.14 glue_1.8.0
## [64] DBI_1.2.3 BiocManager_1.30.25 VisiumIO_1.3.5
## [67] vroom_1.6.5 jsonlite_1.9.0 R6_2.6.1