1 Introduction

Since read counts are summed across cells in a pseudobulk approach, modeling continuous cell-level covariates also requires a collapsing step. Here we summarize the values of a variable from a set of cells using the mean, and store the value for each cell type. Including these variables in a regression formula uses the summarized values from the corresponding cell type.

We demonstrate this feature on a lightly modified analysis of PBMCs from 8 individuals stimulated with interferon-β (Kang, et al, 2018, Nature Biotech).

2 Standard processing

Here is the code from the main vignette:

library(dreamlet)
library(muscat)
library(ExperimentHub)
library(scater)

# Download data, specifying EH2259 for the Kang, et al study
eh <- ExperimentHub()
sce <- eh[["EH2259"]]

# only keep singlet cells with sufficient reads
sce <- sce[rowSums(counts(sce) > 0) > 0, ]
sce <- sce[, colData(sce)$multiplets == "singlet"]

# compute QC metrics
qc <- perCellQCMetrics(sce)

# remove cells with few or many detected genes
ol <- isOutlier(metric = qc$detected, nmads = 2, log = TRUE)
sce <- sce[, !ol]

# set variable indicating stimulated (stim) or control (ctrl)
sce$StimStatus <- sce$stim

In many datasets, continuous cell-level variables could be mapped reads, gene count, mitochondrial rate, etc. There are no continuous cell-level variables in this dataset, so we can simulate two from a normal distribution:

sce$value1 <- rnorm(ncol(sce))
sce$value2 <- rnorm(ncol(sce))

3 Pseudobulk

Now compute the pseudobulk using standard code:

sce$id <- paste0(sce$StimStatus, sce$ind)

# Create pseudobulk
pb <- aggregateToPseudoBulk(sce,
  assay = "counts",
  cluster_id = "cell",
  sample_id = "id",
  verbose = FALSE
)

The means per variable, cell type, and sample are stored in the pseudobulk SingleCellExperiment object:

metadata(pb)$aggr_means
## # A tibble: 128 × 5
## # Groups:   cell [8]
##    cell    id       cluster   value1   value2
##    <fct>   <fct>      <dbl>    <dbl>    <dbl>
##  1 B cells ctrl101     3.96 -0.0752  -0.0892 
##  2 B cells ctrl1015    4.00  0.00131 -0.00154
##  3 B cells ctrl1016    4     0.101   -0.146  
##  4 B cells ctrl1039    4.04  0.178   -0.0675 
##  5 B cells ctrl107     4    -0.0872   0.0406 
##  6 B cells ctrl1244    4    -0.0791   0.0678 
##  7 B cells ctrl1256    4.01  0.0126   0.00708
##  8 B cells ctrl1488    4.02  0.0618   0.0708 
##  9 B cells stim101     4.09 -0.0650   0.131  
## 10 B cells stim1015    4.06  0.00315 -0.0439 
## # ℹ 118 more rows

4 Analysis

Including these variables in a regression formula uses the summarized values from the corresponding cell type. This happens behind the scenes, so the user doesn’t need to distinguish bewteen sample-level variables stored in colData(pb) and cell-level variables stored in metadata(pb)$aggr_means.

Variance partition and hypothesis testing proceeds as ususal:

form <- ~ StimStatus + value1 + value2

# Normalize and apply voom/voomWithDreamWeights
res.proc <- processAssays(pb, form, min.count = 5)

# run variance partitioning analysis
vp.lst <- fitVarPart(res.proc, form)

# Summarize variance fractions genome-wide for each cell type
plotVarPart(vp.lst, label.angle = 60)

# Differential expression analysis within each assay
res.dl <- dreamlet(res.proc, form)

# dreamlet results include coefficients for value1 and value2
res.dl
## class: dreamletResult 
## assays(8): B cells CD14+ Monocytes ... Megakaryocytes NK cells
## Genes:
##  min: 164 
##  max: 5262 
## details(7): assay n_retain ... n_errors error_initial
## coefNames(4): (Intercept) StimStatusstim value1 value2

5 Details

A variable in colData(sce) is handled according to if the variable is

  • continuous: the mean per donor/cell type is stored in metadata(pb)$aggr_means
  • discrete
    • [constant within each donor/cell type] it is stored in colData(pb)
    • [varies within each donor/cell type] there is no good way to summarize it. The variable is dropped.

6 Session Info

## R Under development (unstable) (2025-03-13 r87965)
## Platform: x86_64-pc-linux-gnu
## Running under: Ubuntu 24.04.2 LTS
## 
## Matrix products: default
## BLAS:   /home/biocbuild/bbs-3.21-bioc/R/lib/libRblas.so 
## LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.12.0  LAPACK version 3.12.0
## 
## locale:
##  [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
##  [3] LC_TIME=en_GB              LC_COLLATE=C              
##  [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
##  [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
##  [9] LC_ADDRESS=C               LC_TELEPHONE=C            
## [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       
## 
## time zone: America/New_York
## tzcode source: system (glibc)
## 
## attached base packages:
## [1] stats4    stats     graphics  grDevices utils     datasets  methods  
## [8] base     
## 
## other attached packages:
##  [1] muscData_1.21.0             scater_1.35.4              
##  [3] scuttle_1.17.0              ExperimentHub_2.15.0       
##  [5] AnnotationHub_3.15.0        BiocFileCache_2.15.1       
##  [7] dbplyr_2.5.0                muscat_1.21.0              
##  [9] dreamlet_1.5.1              SingleCellExperiment_1.29.2
## [11] SummarizedExperiment_1.37.0 Biobase_2.67.0             
## [13] GenomicRanges_1.59.1        GenomeInfoDb_1.43.4        
## [15] IRanges_2.41.3              S4Vectors_0.45.4           
## [17] BiocGenerics_0.53.6         generics_0.1.3             
## [19] MatrixGenerics_1.19.1       matrixStats_1.5.0          
## [21] variancePartition_1.37.2    BiocParallel_1.41.2        
## [23] limma_3.63.10               ggplot2_3.5.1              
## [25] BiocStyle_2.35.0           
## 
## loaded via a namespace (and not attached):
##   [1] bitops_1.0-9              httr_1.4.7               
##   [3] RColorBrewer_1.1-3        doParallel_1.0.17        
##   [5] Rgraphviz_2.51.9          numDeriv_2016.8-1.1      
##   [7] sctransform_0.4.1         tools_4.6.0              
##   [9] backports_1.5.0           utf8_1.2.4               
##  [11] R6_2.6.1                  metafor_4.8-0            
##  [13] mgcv_1.9-1                GetoptLong_1.0.5         
##  [15] withr_3.0.2               prettyunits_1.2.0        
##  [17] gridExtra_2.3             cli_3.6.4                
##  [19] sandwich_3.1-1            labeling_0.4.3           
##  [21] sass_0.4.9                KEGGgraph_1.67.0         
##  [23] SQUAREM_2021.1            mvtnorm_1.3-3            
##  [25] blme_1.0-6                mixsqp_0.3-54            
##  [27] zenith_1.9.2              parallelly_1.43.0        
##  [29] invgamma_1.1              RSQLite_2.3.9            
##  [31] shape_1.4.6.1             gtools_3.9.5             
##  [33] dplyr_1.1.4               Matrix_1.7-3             
##  [35] metadat_1.4-0             ggbeeswarm_0.7.2         
##  [37] abind_1.4-8               lifecycle_1.0.4          
##  [39] multcomp_1.4-28           yaml_2.3.10              
##  [41] edgeR_4.5.9               mathjaxr_1.6-0           
##  [43] gplots_3.2.0              SparseArray_1.7.7        
##  [45] grid_4.6.0                blob_1.2.4               
##  [47] crayon_1.5.3              lattice_0.22-6           
##  [49] beachmat_2.23.7           msigdbr_10.0.1           
##  [51] annotate_1.85.0           KEGGREST_1.47.0          
##  [53] magick_2.8.6              pillar_1.10.1            
##  [55] knitr_1.50                ComplexHeatmap_2.23.0    
##  [57] rjson_0.2.23              boot_1.3-31              
##  [59] estimability_1.5.1        corpcor_1.6.10           
##  [61] future.apply_1.11.3       codetools_0.2-20         
##  [63] glue_1.8.0                data.table_1.17.0        
##  [65] vctrs_0.6.5               png_0.1-8                
##  [67] Rdpack_2.6.3              gtable_0.3.6             
##  [69] assertthat_0.2.1          cachem_1.1.0             
##  [71] zigg_0.0.2                xfun_0.51                
##  [73] mime_0.13                 rbibutils_2.3            
##  [75] S4Arrays_1.7.3            Rfast_2.1.5.1            
##  [77] coda_0.19-4.1             reformulas_0.4.0         
##  [79] survival_3.8-3            iterators_1.0.14         
##  [81] tinytex_0.56              statmod_1.5.0            
##  [83] TH.data_1.1-3             nlme_3.1-167             
##  [85] pbkrtest_0.5.3            bit64_4.6.0-1            
##  [87] filelock_1.0.3            progress_1.2.3           
##  [89] EnvStats_3.0.0            bslib_0.9.0              
##  [91] TMB_1.9.17                irlba_2.3.5.1            
##  [93] vipor_0.4.7               KernSmooth_2.23-26       
##  [95] colorspace_2.1-1          rmeta_3.0                
##  [97] DBI_1.2.3                 DESeq2_1.47.5            
##  [99] tidyselect_1.2.1          emmeans_1.11.0           
## [101] curl_6.2.2                bit_4.6.0                
## [103] compiler_4.6.0            graph_1.85.3             
## [105] BiocNeighbors_2.1.3       DelayedArray_0.33.6      
## [107] bookdown_0.42             scales_1.3.0             
## [109] caTools_1.18.3            remaCor_0.0.18           
## [111] rappdirs_0.3.3            stringr_1.5.1            
## [113] digest_0.6.37             minqa_1.2.8              
## [115] rmarkdown_2.29            aod_1.3.3                
## [117] XVector_0.47.2            RhpcBLASctl_0.23-42      
## [119] htmltools_0.5.8.1         pkgconfig_2.0.3          
## [121] lme4_1.1-37               sparseMatrixStats_1.19.0 
## [123] mashr_0.2.79              fastmap_1.2.0            
## [125] rlang_1.1.5               GlobalOptions_0.1.2      
## [127] UCSC.utils_1.3.1          DelayedMatrixStats_1.29.1
## [129] farver_2.1.2              jquerylib_0.1.4          
## [131] zoo_1.8-13                jsonlite_1.9.1           
## [133] BiocSingular_1.23.0       RCurl_1.98-1.17          
## [135] magrittr_2.0.3            GenomeInfoDbData_1.2.14  
## [137] munsell_0.5.1             Rcpp_1.0.14              
## [139] babelgene_22.9            viridis_0.6.5            
## [141] EnrichmentBrowser_2.37.0  stringi_1.8.4            
## [143] MASS_7.3-65               plyr_1.8.9               
## [145] listenv_0.9.1             parallel_4.6.0           
## [147] ggrepel_0.9.6             Biostrings_2.75.4        
## [149] splines_4.6.0             hms_1.1.3                
## [151] circlize_0.4.16           locfit_1.5-9.12          
## [153] reshape2_1.4.4            ScaledMatrix_1.15.0      
## [155] BiocVersion_3.21.1        XML_3.99-0.18            
## [157] evaluate_1.0.3            RcppParallel_5.1.10      
## [159] BiocManager_1.30.25       nloptr_2.2.1             
## [161] foreach_1.5.2             tidyr_1.3.1              
## [163] purrr_1.0.4               future_1.34.0            
## [165] clue_0.3-66               scattermore_1.2          
## [167] ashr_2.2-63               rsvd_1.0.5               
## [169] broom_1.0.7               xtable_1.8-4             
## [171] fANCOVA_0.6-1             viridisLite_0.4.2        
## [173] truncnorm_1.0-9           tibble_3.2.1             
## [175] lmerTest_3.1-3            glmmTMB_1.1.10           
## [177] memoise_2.0.1             beeswarm_0.4.0           
## [179] AnnotationDbi_1.69.0      cluster_2.1.8.1          
## [181] globals_0.16.3            GSEABase_1.69.1