
	 1	

Inference of regulatory networks from microarray data with R and the
Bioconductor package qpgraph

Robert Castelo
Research Program on Biomedical Informatics, Department of Experimental and
Health Sciences, Universitat Pompeu Fabra, and Institut Municipal d'Investigació
Mèdica, Barcelona, Spain. Email: robert.castelo@upf.edu (corresponding author)

Alberto Roverato
Department of Statistical Science. Università di Bologna, Bologna, Italy
Email: alberto.roverato@unibo.it

(This is a preprint from a chapter of the following book currently in press:
Next Generation Microarray Bioinformatics, J. Wang, A.C. Tan and T. Tian, Eds.,
Methods in Molecular Biology Series, Humana Press, USA, ISBN 978-1-61779-399-8.)

Abstract

Regulatory networks inferred from microarray data sets provide an estimated

blueprint of the functional interactions taking place under the assayed experimental

conditions. In each of these experiments, the gene expression pathway exerts a finely

tuned control simultaneously over all genes relevant to the cellular state. This

renders most pairs of those genes significantly correlated, and therefore, the

challenge faced by every method that aims at inferring a molecular regulatory

network from microarray data, lies in distinguishing direct from indirect

interactions. A straightforward solution to this problem would be to move directly

from bivariate to multivariate statistical approaches. However, the daunting

dimension of typical microarray data sets, with a number of genes p several orders

of magnitude larger than the number of samples n, precludes the application of

standard multivariate techniques and confronts the biologist with sophisticated

procedures that address this situation. We have introduced a new way to approach

this problem in an intuitive manner, based on limited-order partial correlations, and

in this chapter we illustrate this method through the R package qpgraph, which

forms part of the Bioconductor project and is available at its website (1).

Key words: molecular regulatory network, microarray data, reverse engineering,
network inference, non-rejection rate, qpgraph

	 2	

1. Introduction

The genome-wide assay of gene expression by microarray instruments provides a

high-throughput readout of the relative RNA concentration for a very large number

of genes p across a typically much smaller number of experimental conditions n. This

enables a fast systematic comparison of all expression profiles on a gene-by-gene

basis by analysis techniques such as differential expression. However, the

simultaneous assay of all genes embeds in the microarray data a pattern of

correlations projected from the regulatory interactions forming part of the cellular

state of the samples, and therefore, estimating this pattern from the data can aid in

building a network model of the transcriptional regulatory interactions.

Many published solutions to this problem rely on pairwise measures of association

based on bivariate statistics, such as Pearson correlation or mutual information (2).

However, marginal pairwise associations cannot distinguish direct from indirect

(that is, spurious) relationships and specific enhancements to this pairwise approach

have been made to address this problem (see, for instance, (3) and (4)).

A sensible approach is to try to apply multivariate statistical methods such as

undirected Gaussian graphical modeling (5) and compute partial correlations which

are a measure of association between two variables while controlling for the

remaining ones. However, these methods require inverting the sample covariance

matrix of the gene expression profiles and this is only possible when n > p (6). This

has led to the development of specific inferential procedures, which try to overcome

the small n and large p problem by exploiting specific biological background

knowledge on the structure of the network to be inferred. From this viewpoint, the

most relevant feature of regulatory networks is that they are sparse, that is the direct

regulatory interactions between genes represent a small proportion of the edges

	 3	

present in a fully connected network (see, for instance, (7)). Statistical procedures for

inference on sparse networks include, among others, a Bayesian approach with

sparsity inducing prior (8), the lasso estimate of the inverse covariance matrix (see,

among others, (9) and (10)), the shrinkage estimate of the covariance matrix (11) and

procedures based on limited-order partial correlations (see, for instance, (12) and

(13)).

In (14) a procedure is proposed for the statistical learning of sparse networks based

on a quantity called the non-rejection rate. The computation of the non-rejection rate

requires carrying out a large number of hypothesis tests involving limited-order

partial correlations, nonetheless that procedure is not affected by the multiple testing

problem. Furthermore, in (15) it is shown that averaging non-rejection rates obtained

through different orders of the partial correlations is an effective strategy to release

the user from making an educated guess on the most suitable order. In the same

article, a method based on the concept of functional coherence is introduced, for the

comparison of the functional relevance of different inferred networks and their

regulatory modules. In the rest of this chapter we show how to apply this entire

methodology by using the statistical software R and the Bioconductor package

qpgraph.

2. Materials

2.1. The non-rejection rate

We represent the molecular regulatory network we want to infer by means of a

mathematical object called a graph. A graph is a pair G=(V, E), where V={1,2, ... , p} is

a finite set of vertices and E is a subset of pairs of vertices, called the edges of G. In this

context, vertices are genes and edges are direct regulatory interactions (see Note 1).

Nevertheless, the graphs we consider here have no multiple edges and no loops;

	 4	

furthermore, they are undirected so that both (i,j) ∈ E and (j, i) ∈ E are an equivalent

way to write that the vertices i and j are linked by an edge. A basic feature of graphs

is that they are visual objects. In the graphical representation, vertices may be

depicted with circles while undirected edges are lines joining pairs of vertices. For

example, the graph G=(V, E) with V={1, 2, 3} and E={(1, 2), (2, 3)} can be represented

as ──────. A path in G from i to j is a sequence of vertices such that i and j

are the first and last vertex of the sequence, respectively, and every vertex in the

sequence is linked to the next vertex by an edge. The subset Q ⊆ V is said to separate i

from j if all paths from i to j have at least one vertex in Q. For instance, in the graph

of the example above the sequence (1, 2, 3) is a path between 1 and 3 whereas the

sequence (1, 3, 2) is not a path. Furthermore, the set Q={2} separates 1 from 3.

The random vector of gene expression profiles is indexed by the set V and denoted

by XV=(X1, X2, ... , Xp)T and, furthermore, we denote by ρij.V\{i,j} the full-order partial

correlation between the genes i and j, that is the correlation coefficient between the

two genes adjusted for all the remaining genes V\{i, j}. We assume that XV belongs

to a Gaussian graphical model with graph G=(V, E) and refer to (5) for a full account

on these models. Here, we recall that in a Gaussian graphical model XV is assumed

to be multivariate normal and that the vertices i and j are not linked by an edge if

and only if ρij.V\{i,j}=0. It follows that the sample version of full-order partial

correlations plays a key role in statistical procedures for inferring the network

structure from data. However, these quantities can be computed only if n is larger

than p and this has precluded the application of standard techniques in the context

of regulatory network inference from microarray data. On the other hand, if the edge

between the genes i and j is missing from the graph then possibly a large number of

limited-order partial correlations are equal to zero. More specifically, for a subset Q

⊂ V\{i,j} we denote by ρij.Q the limited-order partial correlation, that is the correlation

	 5	

coefficient between i and j adjusted for the genes in Q. It can be shown that if Q

separates i and j in G, then ρij.Q is equal to zero. This is a useful result because the

sample version of ρij.Q can be computed whenever n > q+2 and, if the distribution of

XV is faithful to G (see (14) and references therein), then ρij.Q=0 also implies that the

vertices i and j are not linked by an edge in G.

In sparse graphs one should expect a high degree of separation between vertices and

therefore limited-order partial correlations are useful tools for inferring sparse

molecular regulatory networks from data. There are, however, several difficulties

related to the use of limited-order partial correlations because for every pair of genes

i and j there are a huge number of potential subsets Q, and this leads to

computational problems as well as to multiple testing problems. In (14) the authors

propose to use a quantity based on partial correlations of order q that they call the

non-rejection rate. The non-rejection rate for vertices i and j is denoted by NRR(i,j|q)

and it is the probability of not rejecting, on the basis of a suitable statistical test, the

hypothesis that ρij.Q=0 where Q is a subset of q genes randomly selected from V\{i,j}.

Hence, the non-rejection rate is a probability associated to every pair of vertices,

genes in the context of this chapter, and takes values between zero and one, with

larger values providing stronger evidence that an edge is not present in G. The

procedure introduced in (15) amounts to estimating the non-rejection rate for every

pair of vertices, ranking all the possible edges of the graph according to these values

and then removing those edges whose non-rejection rate values are above a given

threshold. Different methods for the choice of the threshold are discussed in the

forthcoming sections where the graph inferred with this method will be called the

qp-graph; we refer to (14) and (15) for technical details. Here we recall that the

computation of the non-rejection rate requires the specification of a value q

corresponding to the dimension of the potential separator, with q ranging from the

	 6	

value 1 to the value n-3. Obviously, a key question when using the non-rejection rate

with microarray data is what value of q should be employed. We know that a larger

value of q increases the probability that a randomly chosen subset Q separates i and

j, but this could compromise the statistical power of the tests which depends on n-q.

In (15) a simple and effective solution to this question was introduced and consists of

averaging (taking the arithmetic mean), for each pair of genes, the estimates of the

non-rejection rates for different values of q spanning its entire range from 1 to

somewhere close to n-3. These authors also showed that the average non-rejection

rate is more stable than the non-rejection rate, avoids having to specify a particular

value of q and it behaves similarly to the non-rejection rate for connected pairs of

vertices in the true underlying graph G (i.e., for directly interacting genes in the

underlying molecular regulatory network). They also pointed out that the drawback

of averaging is that a disconnected pair of vertices (i,j) in a graph G whose indirect

relationship is mediated by a large number of other vertices, will be easier to identify

with the non-rejection rate using a sufficiently large value of q than with the average

non-rejection rate. However, in networks showing high degrees of modularity and

sparseness the number of genes mediating indirect interactions should not be very

large, and therefore, the average non-rejection rate should be working well, just as

they observed in the empirical results reported in (15).

2.2. Functional coherence

A critical question when estimating a molecular regulatory network from data is to

know the extent to which the inferred regulatory relationships reflect the functional

organization of the system under the experimental conditions employed to generate

the microarray data. The authors in (15) addressed this question using the Gene

Ontology (GO) database (16) which provides structured functional annotations on

genes for a large number of organisms including Escherichia coli (E. coli). The

	 7	

approach followed consists of assessing the functional coherence of every regulatory

module within a given network. Assume a regulatory module is defined as a

transcription factor and its set of regulated genes. The functional coherence of a

regulatory module is estimated by relying on the observation that, for many

transcription factor genes, their biological function, beyond regulating transcription,

is related to the genes they regulate. Note that different regulatory modules can form

part of a common pathway and thus share some more general functional

annotations, which can lead to some degree of functional coherence between target

genes and transcription factors of different modules. However, in (15) it is shown

that for the case of E. coli data, the degree of functional coherence within a

regulatory module is higher than between highly correlated but distinct modules.

This observation allowed them to conclude that functional coherence constitutes an

appealing measure for assessing the discriminative power between direct and

indirect interactions and therefore can be employed as an independent measure of

accuracy.

The way in which the authors in (15) estimated functional coherence is as follows.

Using GO annotations, concretely those that refer to the biological process (BP)

ontology, two GO graphs are built such that vertices are GO terms and (directed)

links are GO relationships. One GO graph is induced (i.e., grown toward vertices

representing more generic GO terms) from GO terms annotated on the transcription

factor gene discarding those terms related to transcriptional regulation. The other

GO graph is induced from GO terms overrepresented among the regulated genes in

the estimated regulatory module which, to try to avoid spuriously enriched GO

terms, we take it only into consideration if it contains at least 5 genes. These

overrepresented GO terms can be found, for instance, by using the conditional

hypergeometric test implemented in the Bioconductor package GOstats (17) on the

	 8	

E. coli GO annotations from the org.EcK12.eg.db Bioconductor package. Finally,

the level of functional coherence of the regulatory module is estimated as the degree

of similarity between the two GO graphs, which in this case amounts to a

comparison of the two corresponding subsets of vertices. The level of functional

coherence of the entire network is determined by the distribution of the functional

coherence values of all the regulatory modules for which this measure was

calculated (see Note 2).

2.3. Escherichia coli microarray data

In this chapter we describe our procedure through the analysis of an E. coli

microarray data set from (18) and deposited at the NCBI Gene Expression Omnibus

(GEO) with accession GDS680. It contains 43 microarray hybridizations that monitor

the response from E. coli during an oxygen shift targeting the a priori most relevant

part of the network by using six strains with knockouts of key transcriptional

regulators in the oxygen response (∆arcA, ∆appY, ∆fnr, ∆oxyR, ∆soxS and the double

knockout ∆arcA∆fnr). We will infer a network starting from the full gene set of E. coli

with p=4,205 genes (see the following subsection for details on filtering steps).

2.4. Escherichia coli functional and microarray data processing

We downloaded the Release 6.1 from RegulonDB (19) formed by an initial set of

3,472 transcriptional regulatory relationships. We translated the Blattner IDs into

Entrez IDs, discarded those interactions for which an Entrez ID was missing in any

of the two genes and did the rest of the filtering using Entrez IDs. We filtered out

those interactions corresponding to self-regulation and among those conforming to

feedback-loop interactions we discarded arbitrarily one of the two interactions. Some

interactions were duplicated due to a multiple mapping of some Blattner IDs to

Entrez IDs, in that case we removed the duplicated interactions arbitrarily. We

	 9	

finally discarded interactions that did not map to genes in the array and were left

with 3,283 interactions involving a total of 1,428 genes.

We have obtained RMA expression values for the data in (18) using the rma()

function from the affy package in Bioconductor. We filtered out those genes, for

which there was no Entrez ID and when two or more probesets were annotated

under the same Entrez ID we kept the probeset with highest median expression

level. These filtering steps left a total number of p=4,205 probesets mapped one-to-

one with E. coli Entrez genes.

3. Methods

3.1. Running the Bioconductor package qpgraph

The methodology briefly described in this chapter is implemented in the software

called qpgraph, which is an add-on package for the statistical software R (20).

However, unlike most other available software packages for R, which are deposited

at the Comprehensive R Archive Network -CRAN- (21), the package qpgraph forms

part of the Bioconductor project (see (22) and (1)) and it is deposited in the

Bioconductor website instead. The version of the software employed to illustrate this

chapter runs over R 2.12 and thus forms part of Bioconductor package bundle

version 2.7 (see Note 3). Among the packages that get installed by default with R

and Bioconductor, qpgraph will automatically load some of them when calling

certain functions but one of these, Biobase, should be explicitly loaded to

manipulate microarray expression data through the ExpressionSet class of

objects. Therefore, the initial sequence of commands to successfully start working

with qpgraph through the example illustrated in this chapter is as folows:

> library(Biobase)
> library(qpgraph)

	 10	

Additionally, we may consider the fact that most modern desktop computers come

with four or more core processors and that it is relatively common to have access to

a cluster facility with dozens, hundreds or perhaps thousands of processors

scattered through an interconnected network of computer nodes. The qpgraph

package can take advantage of such a multiprocessor hardware by performing some

of the calculations in parallel. In order to enable this feature it is necessary to install

the R packages snow and rlecuyer from the CRAN repository and load them prior

to using the qpgraph package. The specific type of cluster configuration that will be

employed will depend on whether additional packages providing such a specific

support are installed. For example if the package Rmpi is installed, then the cluster

configuration will be that of an MPI cluster (see (23) and Note 4 for details on this

subject). Thus, if we want to take advantage of an available multiprocessor

infrastructure we should additionally write the following commands:

> library(snow)
> library(rlecuyer)

Once these packages have been successfully loaded, to perform calculations in

parallel it is necessary to provide an argument, called clusterSize, to the

corresponding function indicating the number of processors that we wish to use. In

this chapter we assume we can use 8 processors, which should allow the longest

calculation illustrated in this chapter to finish in less than 15 minutes. During long

calculations it is convenient to monitor their progress and this is possible in most of

the functions from the qpgraph package if we set the argument verbose=TRUE,

which by default is set to FALSE.

	 11	

3.2. A quick tour through the qpgraph package

In this section we illustrate the minimal function calls in the qpgraph package that

allow one to infer a molecular regulatory network from microarray data. We need

first to load the data described in the previous section and which is included as an

example data set in the qpgraph package.

> data(EcoliOxygen)

The previous command will load on our current R default environment two objects,

one of them called gds680.eset, which is an object of the class ExpressionSet

and contains the E. coli microarray data described in the previous section. We can

see these objects in the workspace with the function ls() and figure out the

dimension of this particular microarray data set with dim(), as follows:

> ls()
[1] "filtered.regulon6.1" "gds680.eset"
> dim(gds680.eset)
Features Samples
 4205 43

When we have a microarray data set, either as an ExpressionSet object or simply

as a matrix of numeric values, we can immediately proceed to estimate non-rejection

rates with a q-order of, for instance, q=3 with the function qpNrr():

> nrr <- qpNrr(gds680.eset, q=3, clusterSize=8)

This function returns a symmetric matrix of non-rejection rate values with its

diagonal entries set to NA. Using this matrix as input to the function qpGraph() we

can directly infer a molecular regulatory network by setting a non-rejection rate

cutoff value above which edges are removed from an initial fully connected graph.

The selection of this cutoff could be done, for instance, on the basis of targeting a

graph of specific density which can be examined by calling first the function

	 12	

qpGraphDensity(), whose result is displayed in Figure 1a and from which we

consider retrieving a graph of 7% density by using a 0.1 cutoff value:

> qpGraphDensity(nrr, title="", breaks=10)
> g <- qpGraph(nrr, threshold=0.1, return.type="graphNEL")
> g
A graphNEL graph with undirected edges
Number of Nodes = 4205
Number of Edges = 644036

By default, the qpGraph() function returns an adjacency matrix but, by setting

return.type="graphNEL" we obtain a graphNEL-class object as a result,

which, as we shall see later, is amenable for processing with functions from the

Bioconductor packages graph and Rgraphviz. We can conclude this quick tour

through the main cycle of the task of inferring a network from microarray data by

showing how we can extract a ranking of the strongest edges in the network with

the function qpTopPairs():

> qpTopPairs(nrr)
 i j x
1 947758 947761 0
2 948517 948512 0
3 944834 944794 0
4 948517 944797 0
5 948512 944797 0
6 945112 945108 0

where the first two columns, called i and j, correspond to the identifiers of the pair

of variables and the third column x corresponds, in this case, to non-rejection rate

values. An immediate question is whether the value of q=3 was appropriate for this

data set and while we may try to find an answer by exploring the estimated non-

rejection rate values in a number of ways described in (14), an easy solution

introduced in (15) consists of estimating the so-called average non-rejection rates

whose corresponding function, qpAvgNrr(), is called in an analogous way to

qpNrr() but without the need to specify a value for q.

	 13	

In (15) a comparison of this procedure with other widely used techniques is carried

out. Here, we restrict the comparison to a simple procedure based on sample

Pearson correlation coefficients and, furthermore, to the worst performing strategy

which consists of setting association values uniformly at random to every pair of

genes (which we shall informally call the random association method) leading to a

completely random ranking of the edges of the graph. All these quantities can be

computed using two functions available also through the qpgraph package:

> allGenes <- featureNames(gds680.eset)
> pcc <- qpPCC(gds680.eset)
> rndcor <- qpUnifRndAssociation(length(allGenes), allGenes)

3.3. Avoiding unnecessary calculations

We saw before that as part of the EcoliOxygen example data set included in the

qpgraph package, there was an object called filtered.regulon6.1. This object

is a data.frame and contains pairs of genes corresponding to curated

transcriptional regulatory relationships from E. coli retrieved from the 6.1 version of

the RegulonDB database. Each of these relationships indicates that one transcription

factor gene activates or represses the transcription of the other target gene. If we are

interested in just this kind of transcriptional regulatory interactions, i.e., associations

involving at least one transcription factor gene, we can substantially speed up

calculations by restricting them to those pairs of genes suitable to form such an

association. In order to illustrate this feature, we start here by extracting from the

RegulonDB data what genes form the subset of transcription factors:

> regulonTFgenes <- unique(filtered.regulon6.1[, "EgID_TF"])

In general, this kind of functional information about genes is available for many

organisms through different on-line databases (24). Once we have a list of

	 14	

transcription factor genes, restricting the pairs that include at least one of them can

be done through the arguments pairup.i and pairup.j in both functions,

qpNrr() and qpAvgNrr(). We use here the latter to estimate average non-rejection

rates that will help us to infer a transcriptional regulatory network without having to

specify a particular q-order value. Since the estimation of non-rejection rates is

carried out by means of a Monte Carlo sampling procedure, in order to allow the

reader to reproduce the exact numbers shown here we will set a specific seed to the

random number generator before estimating average non-rejection rates.

> set.seed(123)
> avgnrr <- qpAvgNrr(gds680.eset, pairup.i=regulonTFgenes,
 pairup.j=allGenes, clusterSize=8)

The default settings for the function qpAvgNrr() employ 4 q-values uniformly

distributed along the available range of q values. In this example, these correspond

to q={1, 11, 21, 31}. However, we can change this default setting by using the

argument qOrders.

3.4. Network accuracy with respect to a gold-standard

E. coli is the free-living organism with the largest fraction of its transcriptional

regulatory network supported by some sort of experimental evidence. As a result of

an effort in combining all this evidence the database RegulonDB (19) provides a

curated set of transcription factor and target gene relationships that we can use as a

gold-standard to, as we shall see later, calibrate a nominal precision or recall at

which we want to infer the network or compare the performance of different

parameters and network inference methods. This performance is assessed in terms

of precision-recall curves.

Every network inference method that we consider here provides a ranking of the

edges of the fully connected graph, that is, of all possible interactions. Then a

	 15	

threshold is chosen and this leads to a partition of the set of all edges into a set of

predicted edges and a set of missing edges. On the other hand, the set of RegulonDB

interactions are a subset of the set of all possible interactions and a predicted edge

that belongs to the set of RegulonDB interactions is called a true positive. Following

the conventions from (25), when using RegulonDB interactions for comparison the

recall (also known as sensitivity) is defined as the fraction of true positives in the set

of RegulonDB interactions and the precision (also known as positive predictive value)

is defined as the number of true positives over the number of predicted edges whose

genes belong to at least one transcription factor and target gene relationship in

RegulonDB. For a given network inference method, the precision-recall curve is

constructed by plotting the precision against the recall for a wide range of different

threshold values. In the E. coli dataset we analyze, precision-recall curves should be

calculated on the subset of 1,428 genes forming the 3,283 RegulonDB interactions

and this can be achieved with the qpgraph package through the function

qpPrecisionRecall() as follows:

> regulonGenes <- unique(c(filtered.regulon6.1$EgID_TF,
 filtered.regulon6.1$EgID_TG))
> avgnrr.pr <- qpPrecisionRecall(avgnrr,
 refGraph=filtered.regulon6.1[, c("EgID_TF", "EgID_TG")],
 decreasing=FALSE,
 pairup.i=regulonTFgenes,
 pairup.j=regulonGenes,
 recallSteps=c(seq(0,0.1,0.005),
 seq(0.1,1.0,0.1)))

The previous lines calculate the precision-recall curve for the ranking derived from

the average non-rejection rate values. The calculation of these curves for the other

two rankings derived from Pearson coefficients and uniformly random association

values would require replacing the first argument by the corresponding matrix of

measurements in absolute value since these two methods provide values ranging

	 16	

from -1 to +1. We can plot the resulting precision-recall curve for the average non-

rejection rate stored in avgnrr.pr as follows:

> plot(100*avgnrr.pl[, 1:2], type="b", pch=19, xlim=c(0, 6),

 xlab="Recall (% RegulonDB interactions)", ylab="Precision (%)")

In Figure 1b this plot is shown jointly with the other calculated curves, where the

comparison of the average non-rejection rate (labeled qp-graph) with the other

methods yields up to 40% improvement in precision with respect to using absolute

Pearson correlation coefficients and observe that for precision levels between 50%

and 80% the qp-graph method doubles the recall. We shall see later that this has an

important impact when targeting a network of a reasonable nominal precision in

such a data set with p=4,205 and n=43.

[FIGURE 1 NEAR HERE]

3.5. Inference of molecular regulatory networks of specific size

Given a measure of association for every pair of genes of interest, the most

straightforward way to infer a network is to select a number of top-scoring

interactions that conform a resulting network of a specific size that we choose. We

showed before such a strategy by looking at the graph density as a function of

threshold, however, we can also extract a network of specific size by using the

argument topPairs in the call to the qpGraph() and qpAnyGraph() functions

where the call for the random association values would be analogous to the one of

Pearson correlations.

> qpg1000sze <- qpGraph(avgnrr, threshold=NULL, topPairs=1000)
> pcc1000sze <- qpAnyGraph(abs(pcc$R), threshold=NULL,
 topPairs=1000, decreasing=TRUE,
 pairup.i=regulonTFgenes,
 pairup.j=allGenes)

	 17	

In the example above we are extracting networks formed by the top-scoring 1,000

interactions.

3.6. Inference of molecular regulatory networks at nominal precision and recall
levels

When a gold-standard network is available we can infer a specific molecular

regulatory network using a nominal precision and/or using a nominal recall. This is

implemented in the qpgraph package by calling first the function

qpPRscoreThreshold() which, given a precision-recall curve calculated with

qpPrecisionRecall(), will calculate for us the score that attains the desired

nominal level. In this particular example, and considering the precision-recall curve

of Figure 1b, we will employ nominal values of 50% precision and 3% recall:

> avgnrr.50p.thr <- qpPRscoreThreshold(avgnrr.pr, level=0.50,
 recall.level=FALSE, max.score=0)
> avgnrr.3r.thr <- qpPRscoreThreshold(avgnrr.pr, level=0.03,
 recall.level=TRUE, max.score=0)

where the thresholds for the other methods would be analogously calculated

replacing the first argument by the object storing the corresponding curve returned

by qpPrecisionRecall().

Next, we apply these nominal precision and recall thresholds to obtain the networks

by using the functions qpGraph() for the average non-rejection rate and

qpAnyGraph() for any other type of association measure, here illustrated only with

Pearson correlation coefficients:

> qpg50pre <- qpGraph(avgnrr, avgnrr.50p.thr)
> pcc50pre <- qpAnyGraph(abs(pcc$R), abspcc.50p.thr,
 remove="below", pairup.i=regulonTFgenes,
 pairup.j=allGenes)
> qpg3rec <- qpGraph(avgnrr, avgnrr.3r.thr)
> pcc3rec <- qpAnyGraph(abs(pcc$R), abspcc.3r.thr,
 remove="below", pairup.i=regulonTFgenes,
 pairup.j=allGenes)

	 18	

3.7. Estimation of functional coherence

In order to estimate functional coherence we need to install a Bioconductor package

with GO functional annotations associated to the feature names (genes, probes, etc.)

of the microarray data. For this example, we require the E. coli GO annotations

stored in the package org.EcK12.eg.db. It will be also necessary to have installed

the GOstats package to enable the GO enrichment analysis. The function

qpFunctionalCoherence() will allow us to estimate functional coherence values

as we illustrate here below for the case of the nominal 50%-precision network

obtained with the qp-graph method. The estimation for the other networks would

require replacing only the first argument by the object storing the corresponding

network:

> library(GOstats)
> library(org.EcK12.eg.db)
> qpg50preFC <- qpFunctionalCoherence(qpg50pre,
 TFgenes=regulonTFgenes,
 chip="org.EcK12.eg.db",
 minRMsize=5, clusterSize=8)

This function returns a list object storing the transcriptional network and the

values of functional coherence for each regulatory module. These values can be

examined by means of a boxplot as follows:

> boxplot(qpg50preFC$functionalCoherenceValues,
 col=grey(0.50), ylim=c(0,1), ylab="Functional coherence")

In Figure 2 we see the boxplots for the functional coherence values of all networks

obtained from each method and selection strategy. Through the three different

strategies, the networks obtained with the qp-graph method provide distributions of

functional coherence with mean and median values larger than those obtained from

networks built with Pearson correlation or simply at random.

 [FIGURE 2 NEAR HERE]

	 19	

3.8. The 50%-precision qp-graph regulatory network

We are going to examine in detail the 50%-precision qp-graph transcriptional

regulatory network. A quick glance at the pairs with strongest average non-rejection

rates including the functional coherence values of their regulatory modules within

this 50%-precision network can be obtained with the function qpTopPairs() as

follows:

> qpTopPairs(measurementsMatrix=avgnrr, refGraph=qpg50pre,
 pairup.i=regulonTFgenes, pairup.j=allGenes,
 annotation="org.EcK12.eg.db", fcOutput=qpg50preFC,
 fcOutput.na.rm=TRUE)
 i j iSymbol jSymbol x funCoherence
1 948797 945585 appY appC 0.01 0.33
2 947466 945938 glcC mhpR 0.01 0.14
3 945938 946255 mhpR astC 0.01 0.71
4 947466 948336 glcC fadB 0.02 0.14
5 948797 947547 appY appB 0.02 0.33
6 948797 946206 appY appA 0.02 0.33

The previous function call admits also a file argument that would allow us to store

these information as a tab-separated column text file, thus more amenable for

automatic processing when combined with the argument n=Inf since by default

this is set to a limited number (n=6) of pairs being reported.

For many other types of analysis, it is useful to store the network as an object of the

graphNEL class, which is defined in the graph package. This is obtained by calling

the qpGraph() function setting properly the argument return.type as follows:

> g <- qpGraph(avgnrr, threshold=avgnrr.50p.thr, return.type="graphNEL")
> g
A graphNEL graph with undirected edges
Number of Nodes = 147
Number of Edges = 120

As we see from the object's description, the 50%-precision qp-graph network consists

of 120 transcriptional regulatory relationships involving 147 different genes. A GO

enrichment analysis on this subset of genes can give us insights into the main

	 20	

molecular processes related to the assayed conditions. Such an analysis can be

performed by means of a conditional hypergeometric test using the Bioconductor

package GOstats as follows:

> goHypGparams <- new("GOHyperGParams",
 geneIds=nodes(g),
 universeGeneIds=allGenes,
 annotation="org.EcK12.eg.db", ontology="BP",
 pvalueCutoff=0.05, conditional=TRUE,
 testDirection="over")
> goHypGcond <- hyperGTest(goHypGparams)

where the object goHypGcond stores the result of the analysis which can be

examined in R through the summary() function whose output is displayed in Table

1. The GO terms enriched by the subset of 147 genes reflect three broad functional

categories one being transcription, which is the most enriched but it is also probably

a byproduct of the network models themselves that are anchored on transcription

factor genes. The other two are metabolism and response to an external stimulus,

which are central among the biological processes that are triggered by an oxygen

shift. Particularly related to this, is the fatty acid oxidation process since fatty acid

metabolism is crucial to allow the cell to adapt quickly to environmental changes

and allows E. coli to grow under anaerobic conditions (26).

 [TABLE 1 NEAR HERE]

Finally, using the graphNEL representation of our network stored in the variable g

and the function connComp()from the graph package we can easily look up the

distribution of sizes of the connected components:

> table(sapply(connComp(g), length))

 2 3 4 6 8 9 17 19
24 6 4 2 1 1 1 1

and observe that two of them, formed by 17 and 19 genes, are distinctively larger

than the rest, thus corresponding to the more complex part of the network. In order

	 21	

to examine in more detail these two subnetworks we can plot them using the

Bioconductor package Rgraphviz (see Note 5) and calling the function

qpPlotNetwork() which will output Figure 3a:

> library(Rgraphviz)
> qpPlotNetwork(g, minimumSizeConnComp=17, pairup.i=regulonTFgenes,
 pairup.j=allGenes, annotation="org.EcK12.eg.db")

Often the visualization of many interacting genes is dificult to interpret as, for

instance in this case, the module regulated by mhpR. We can also visualize the part

of the network connected to mhpR by using the arguments vertexSubset and

boundary as follows and obtain the result shown in Figure 3b:

> g_mhpR <- qpPlotNetwork(g, vertexSubset="mhpR", boundary=TRUE,
 pairup.i=regulonTFgenes, pairup.j=allGenes,
 annotation="org.EcK12.eg.db")

Note that we have assigned the result of this function to a variable named g_mhpR.

This will store the graph we have just visualized into this variable as a graphNEL

object and can be useful to extract the list of edges forming this subnetwork again

through the function qpTopPairs():

> qpTopPairs(measurementsMatrix=avgnrr[nodes(g_mhpR), nodes(g_mhpR)],
 refGraph=g_mhpR, pairup.i=regulonTFgenes, pairup.j=allGenes,
 annotation="org.EcK12.eg.db", fcOutput=qpg50preFC)
 i j iSymbol jSymbol x funCoherence
1 945938 947466 mhpR glcC 0.01 0.71
2 945938 946255 mhpR astC 0.01 0.71
3 947466 948336 glcC fadB 0.02 0.14
4 945938 944954 mhpR mhpC 0.02 0.71
5 947466 946255 glcC astC 0.02 0.14
6 945938 948823 mhpR fadI 0.02 0.71

This last step allows us to see that the two strongest associations occur within the

mhpR regulatory module, which also has a very high value of functional coherence,

thus constituting two promising candidates for a follow up study.

 [FIGURE 3 NEAR HERE]

	 22	

Notes

1. The underlying method assumes that it is estimating an undirected Gaussian

graphical model, which is a well-defined statistical model. However, our

biological interpretation of this model as a transcriptional regulatory network

will lead us to discard interactions between genes where none of them is a

transcription factor, and to put directions in the resulting graph from

transcription factor genes to their putative targets. This provides us with a

network model of the underlying transcriptional regulation, which does not

have a statistical interpretation anymore in terms of, for instance, conditional

independence, but which allows one to formulate educated guesses on

plausible biological hypotheses.

2. The limited availability of GO functional annotations for genes outside well-

studied model organisms can compromise a reliable estimation of functional

coherence values.

3. Bioconductor release versions are synchronized with R software release

versions and thus updated twice a year. It is always recommended to work

with the latest versions. For a detailed explanation on how to install and

update the R and Bioconductor software please visit the website (27).

4. The installation of the package Rmpi requires a prior installation and

configuration of an MPI library. For further details on this issue please visit

the website (28).

5. The installation of the package Rgraphviz requires a prior installation of the

software graphviz available at the website (29).

	 23	

Acknowledgments

This work is supported by the Spanish Ministerio de Ciencia e Innovación

(MICINN) [TIN2008-00556 / TIN] and the ISCIII COMBIOMED Network

[RD07/0067/0001]. R.C. is a research fellow of the "Ramon y Cajal" program from

the Spanish MICINN [RYC-2006-000932]. A.R. acknowledges support from the

Ministero dell'Università e della Ricerca [PRIN-2007AYHZWC].

References

1. http://www.bioconductor.org

2. Butte, A. J., Tamayo, P., Slonim, D., et al. (2000) Discovering functional

relationships between RNA expression and chemotherapeutic susceptibility

using relevance networks., Proc Natl Acad Sci U S A 97, 12182-12186.

3. Basso, K., Margolin, A. A., Stolovitzky, G., et al. (2005) Reverse engineering of

regulatory networks in human B cells., Nat Genet 37, 382-390.

4. Faith, J. J., Hayete, B., Thaden, J. T., et al. (2007) Large-scale mapping and

validation of Escherichia coli transcriptional regulation from a compendium

of expression profiles., PLoS Biol 5, e8.

5. Edwards, D. (2000) Introduction to graphical modelling, Springer New York.

6. Dykstra, R. L. (1970) Establishing Positive Definiteness of Sample Covariance

Matrix, Ann Math Statist 41, 2153-2154.

7. Barabasi, A.-L., and Oltvai, Z. N. (2004) Network biology: understanding the

cell's functional organization., Nat Rev Genet 5, 101-113.

8. Dobra, A., Hans, C., Jones, B., et al. (2004) Sparse graphical models for

exploring gene expression data, J. Multivariate. Anal. 90, 196-212.

9. Friedman, J., Hastie, T., and Tibshirani, R. (2008) Sparse inverse covariance

estimation with the graphical lasso, Biostatistics 9, 432-441.

	 24	

10. Yuan, M., and Lin, Y. (2007) Model selection and estimation in the Gaussian

graphical model, Biometrika 94, 19-35.

11. Schäfer, J., and Strimmer, K. (2005) A shrinkage approach to large-scale

covariance matrix estimation and implications for functional genomics, Stat.

Appl. Genet. Mol. Biol. 4, 1-32.

12. de la Fuente, A., Bing, N., Hoeschele, I., et al. (2004) Discovery of meaningful

associations in genomic data using partial correlation coefficients

Bioinformatics 20, 3565-3574.

13. Wille, A., and Bühlmann, P. (2006) Low-order conditional independence

graphs for inferring genetic networks, Stat. Appl. Genet. Mol. Biol. 5, 1.

14. Castelo, R., and Roverato, A. (2006) A robust procedure for Gaussian

graphical model search from microarray data with p larger than n, J Mach

Learn Res 7, 2621-2650.

15. Castelo, R., and Roverato, A. (2009) Reverse engineering molecular regulatory

networks from microarray data with qp-graphs, J Comput Biol 16, 213-227.

16. http://www.geneontology.org

17. Falcon, S., and Gentleman, R. (2007) Using GOstats to test gene lists for GO

term association., Bioinformatics 23, 257-258.

18. Covert, M. W., Knight, E. M., Reed, J. L., et al. (2004) Integrating high-

throughput and computational data elucidates bacterial networks., Nature

429, 92-96.

19. Gama-Castro, S., Jimenez-Jacinto, V., Peralta-Gil, M., et al. (2008) RegulonDB

(version 6.0): gene regulation model of Escherichia coli K-12 beyond

transcription, active (experimental) annotated promoters and Textpresso

navigation., Nucleic Acids Res 36, D120-124.

20. http://www.r-project.org

	 25	

21. http://cran.r-project.org

22. Gentleman, R. C., Carey, V. J., Bates, D. M., et al. (2004) Bioconductor: open

software development for computational biology and bioinformatics., Genome

Biol 5, R80.

23. Schmidberger, M., Morgan, M., Eddelbuettel, D., et al. (2009) State-of-the-art

in Parallel Computing with R, Journal of Statistical Software 31.

24. Wasserman, W. W., and Sandelin, A. (2004) Applied bioinformatics for the

identification of regulatory elements, Nat Rev Genet 5, 276-287.

25. Fawcett, T. (2006) An introduction to ROC analysis, Pattern Recogn Lett 27,

861-874.

26. Cho, B.-K., Knight, E. M., and Palsson, B. O. (2006) Transcriptional regulation

of the fad regulon genes of Escherichia coli by arcA., Microbiology 152, 2207-

2219.

27. http://www.bioconductor.org/install

28. http://www.stats.uwo.ca/faculty/yu/Rmpi

29. http://www.graphviz.org

	 26	

Tables

Table 1. Gene Ontology biological process terms enriched (P-value ≤ 0.05) among the

147 genes forming the 50%-precision qp-graph network inferred from the oxygen

deprivation data in (18).

GO Term
Identifier

P-value Odds
Ratio

Exp. Count Count Size Term

GO:0006350 < 0.0001 4.76 13.79 39 292 transcription
GO:0009059 0.0004 2.14 27.81 43 589 macromolecule biosynthetic

process
GO:0019395 0.0022 5.34 1.42 6 30 fatty acid oxidation
GO:0030258 0.0022 5.34 1.42 6 30 lipid modification
GO:0044260 0.0035 1.84 38.15 51 808 cellular macromolecule

metabolic process
GO:0044238 0.0073 2.08 66.10 76 1400 primary metabolic process
GO:0006542 0.0096 8.92 0.47 3 10 glutamine biosynthetic process
GO:0006578 0.0124 20.62 0.19 2 4 betaine biosynthetic process
GO:0009268 0.0124 20.62 0.19 2 4 response to pH
GO:0006807 0.0398 1.50 43.44 52 920 nitrogen compound metabolic

process
GO:0042594 0.0428 4.44 0.80 3 17 response to starvation

	 27	

Figure legends

Figure 1. Performance comparison on the oxygen deprivation E. coli data with

respect to RegulonDB. (A) Graph density as function of the non-rejection rate

estimated with q=3. (B) Precision-recall curves comparing a random ranking of the

putative interactions, a ranking made by absolute Pearson correlation (Pairwise

PCC) and a ranking derived from the average non-rejection rate (qp-graph).

Figure 2. Functional coherence estimated from networks derived with different

strategies and methods. (A) A nominal RegulonDB-precision of 50%, (B) a nominal

RegulonDB-recall of 3%, and (C) using the top ranked 1 000 interactions. On the x-

axis and between square brackets, under each method, are indicated, respectively,

the total number of regulatory modules of the network, the number of them with at

least 5 genes and the number of them with at least 5 genes with GO-BP annotations.

Among this latter number of modules, the number of them where the transcription

factor had GO annotations beyond transcription regulation is noted above between

parentheses by n and corresponds to the number of modules on which functional

coherence could be calculated.

Figure 3. The 50%-precision qp-graph transcriptional network. (A) The two largest

connected components. (B) The mhpR regulatory module in detail.

A B
Figure 1

Recall (% RegulonDB interactions)
Pr

ec
is

io
n

(%
)

0 1 2 3 4 5 6

0
10

20
30

40
50

60
70

80
90

10
0

0 16 33 49 66 82 98 115 131 148 164 181 197

Recall (# RegulonDB interactions)

qp−graph
Pairwise PCC
Random

0.0 0.2 0.4 0.6 0.8 1.0

0
20

40
60

80
10

0

threshold

gr
ap

h
de

ns
ity

1%
7%

13%
18%

23%
28%

34%
41%

51%

67%

100%
graph density

A B

Figure 2

C

qp−graph PwsePCC Random

50% precision

Fu
nc

tio
na

l c
oh

er
en

ce
0.

0
0.

1
0.

2
0.

3
0.

4
0.

5
0.

6
0.

7
0.

8
0.

9
1.

0

(n=3) (n=1) (n=79)
[46,7,3] [13,3,1] [160,160,119]

Method

qp−graph PwsePCC Random

3% recall

Fu
nc

tio
na

l c
oh

er
en

ce
0.

0
0.

1
0.

2
0.

3
0.

4
0.

5
0.

6
0.

7
0.

8
0.

9
1.

0

(n=13) (n=26) (n=104)
[104,36,19] [97,56,41] [160,160,160]

Method

qp−graph PwsePCC Random

Top 1000 interactions

Fu
nc

tio
na

l c
oh

er
en

ce
0.

0
0.

1
0.

2
0.

3
0.

4
0.

5
0.

6
0.

7
0.

8
0.

9
1.

0

(n=24) (n=15) (n=19)
[145,69,38] [58,31,22] [160,128,26]

Method

A B

mhpR
acs

fadJ

fadI

astCfadA
fadB

fadD

glcC
astB

astD

astA
mhpC yejG

yjcH

arcA

acs
aldA

fadJ

fadI
astCfadA

fadB

fadD glcC

astB astD
astA

mhpC
mhpR

glcD

mglB

yejG

yjcH

gadA

gadB

hdeA
hdeB

hdeD

slp

gadC

ybaS

yhiD

gadE

aidB

ybaT

gadW

dctR

mdtE
mdtF

gadX

Figure 3

