
Simulating molecular regulatory networks us-
ing qpgraph

Inma Tur1,3, Alberto Roverato2 and Robert Castelo1

October 25, 2023
1. Universitat Pompeu Fabra, Barcelona, Spain.
2. Università di Bologna, Bologna, Italy.
3. Now at Kernel Analytics, Barcelona, Spain.

1 Introduction
The theoretical substrate used by qpgraph to estimate network models of molecular regulatory
interactions is that of graphical Markov models (GMMs). A useful way to understand the
underpinnings of these models is to simulate them and simulate data from them. More
importantly, these simulated data may serve the purpose of verifying properties of GMM
estimation procedures, such as correctness or asymptotic behavior. Here we illustrate the
functionalities of qpgraph to perform these simulations. If you use them in your own research,
please cite the following article:

Tur, I., Roverato, A. and Castelo, R. Mapping eQTL networks with mixed graph-
ical Markov models. Genetics, 198(4):1377-1393, 2014.

The interface provided by qpgraph tries to comply with the available functions in the base R
stats package for simulating data from probability distributions and the names of functions
described below for the purpose of simulating graphs, models and data follow the convention:

r<objectclass>(n, ...)
where <objectclass> refers to the class of object (in a broad sense, not just a formal S3 or
S4 class) being simulated and n is the number of observations to simulate. Except for the
case of data, since the simulated observations are other than R atomic types of objects, when
n > 1, these functions return simulated observations in the form of a list with n elements.

2 Simulation of graphs
An undirected graph G is a mathematical object defined by a pair of sets G = (V,E)
where V = {1, . . . , p} is the vertex set and E ⊆ (V × V) is the edge set. In the context
of GMMs labeled undirected graphs are employed to represent conditional (in)dependences
among random variables (r.v.’s) X = {X1, . . . , Xp} indexed by the vertices in V whose values
occur on equal footing. Stepwise data generating processes can be represented by directed
graphs. In the context of GMMs one may also consider so-called marked graphs, which are
graphs with marked vertices grouped into two subsets, one associated to discrete variables
and another to continuous ones. A graph with a single type of vertices, i.e., that is not
marked, it is also called pure. Diferent types of graphs determine different GMM classes. For
a comprehensive description of different GMM classes and more elaborate descriptions of the
terminology and notation used in this vignette the reader may consult the book of Lauritzen
(1996).

http://bioconductor.org/packages/qpgraph
http://bioconductor.org/packages/qpgraph
http://bioconductor.org/packages/qpgraph
https://CRAN.R-project.org/package=stats

Simulating networks using qpgraph

The first step to simulate a GMM consists of simulating its associated graph. While there
are many R packages that provide procedures to simulate graphs, qpgraph provides its own
minimal functionality for this purpose tailored to ease the downstream simulation of GMMs.
This functionality allows the user to simulate undirected graphs according to two main criteria,
the type of graph (pure or marked) and the type of model to simulate the random graph.
The simplest type of model to simulate random undirected graphs is the so-called Erdős-
Rényi which is generated by either including an edge between every pair of vertices with a
pre-specified probability or drawing a graph uniformly at random among those with a pre-
specified number of edges. In the context of exploring the performance of GMM structure
estimation procedures under different degrees of sparseness of the underlying graph, it is
handy to work with the so-called d-regular graphs (Harary, 1969). These are graphs with
a constant degree vertex d which, in one hand, make the graph density a linear function of
d and, on the other hand, bound the smallest minimal separator between any two vertices
(Castelo and Roverato, 2006, see pg. 2646).
To specify the parameters that define one specific type of graph we want to simulate qpgraph
provides the following functions that build parameter objects which can be used afterwards
to simulate graphs through a single call to the function rgraphBAM():
> library(qpgraph)

> args(erGraphParam)

function (p = 4L, m = 4L, prob = NA_real_, labels = as.character(1:p))

NULL

> args(erMarkedGraphParam)

function (pI = 1L, pY = 3L, m = 4L, prob = NA_real_, Ilabels = paste0("I",

1:pI), Ylabels = paste0("Y", 1:pY))

NULL

> args(dRegularGraphParam)

function (p = 4L, d = 2L, exclude = as.integer(NULL), labels = as.character(1:p))

NULL

> args(dRegularMarkedGraphParam)

function (pI = 1L, pY = 3L, d = 2L, exclude = as.integer(NULL),

Ilabels = paste0("I", 1:pI), Ylabels = paste0("Y", 1:pY))

NULL

As we can see from their default values, a single call without arguments already define some
small graphs on 5 vertices:
> erGraphParam()

Erdos-Renyi pure graph parameter object

No. of pure vertices: 4

No. of edges: 4

Vertex labels: 1, 2, 3, 4

> erMarkedGraphParam()

Erdos-Renyi marked graph parameter object

No. of marked vertices: 4

No. of dot (I) vertices: 1

2

http://bioconductor.org/packages/qpgraph
http://bioconductor.org/packages/qpgraph
http://bioconductor.org/packages/qpgraph

Simulating networks using qpgraph

No. of circle (Y) vertices: 3

No. of edges: 4

Dot (I) vertex labels: I1

Circle (Y) vertex labels: Y1, Y2, Y3

> dRegularGraphParam()

d-regular pure graph parameter object

No. of pure vertices: 4

Constant degree: 2

Vertex labels: 1, 2, 3, 4

> dRegularMarkedGraphParam()

d-regular marked graph parameter object

No. of marked vertices: 4

No. of dot (I) vertices: 1

No. of circle (Y) vertices: 3

Constant degree: 2

Dot (I) vertex labels: I1

Circle (Y) vertex labels: Y1, Y2, Y3

The objects returned by these functions belong to different S4 classes derived from the
following two main ones, graphParam and markedGraphParam:
> showClass("graphParam")

Class "graphParam" [package "qpgraph"]

Slots:

Name: p labels

Class: integer character

Known Subclasses:

Class "erGraphParam", directly

Class "dRegularGraphParam", directly

Class "erMarkedGraphParam", by class "erGraphParam", distance 2

Class "dRegularMarkedGraphParam", by class "dRegularGraphParam", distance 2

> showClass("markedGraphParam")

Class "markedGraphParam" [package "qpgraph"]

Slots:

Name: pI pY Ilabels Ylabels

Class: integer integer character character

Known Subclasses: "erMarkedGraphParam", "dRegularMarkedGraphParam"

While this level of detail is not crucial for the end-user, knowing the distinction between these
two main types of graph parameter objects, graphParam and markedGraphParam, may help
to get more quickly acquainted with the type of arguments we need in calls described below
to simulate GMMs.

3

http://bioconductor.org/packages/qpgraph

Simulating networks using qpgraph

Finally, the function rgraphBAM() simulates one or more random graphs as objects of the
class graphBAM defined in the graph package. Its arguments are:
> args(rgraphBAM)

function (n, param, ...)

NULL

where n is the number of graphs to simulate (default n=1) and param is an object generated
by one of the previous parameter functions. A couple of minimal examples are:
> rgraphBAM(erGraphParam())

A graphBAM graph with undirected edges

Number of Nodes = 4

Number of Edges = 4

> rgraphBAM(n=2, dRegularGraphParam())

[[1]]

A graphBAM graph with undirected edges

Number of Nodes = 4

Number of Edges = 4

[[2]]

A graphBAM graph with undirected edges

Number of Nodes = 4

Number of Edges = 4

In a slightly more ellaborate example, if we would like to simulate a d-regular graph on 2
discrete vertices and 5 continuous ones with a constant degree d = 3, we would make the
following call to rgraphBAM(), which we previously seed to enable the reader reproducing the
same graph shown here:
> set.seed(1234)

> g <- rgraphBAM(dRegularMarkedGraphParam(pI=2, pY=10, d=3))

> plot(g)

where the last plot function call is defined (overloaded) in the qpgraph package to ease
plotting the graph which is displayed in Figure 1. This function uses the plotting capabilities
from the Rgraphviz package and further arguments, such as layoutType, can be passed
downstream to the Rgraphviz plotting function to fine tune the display of the graph.

I1 I2

Y1

Y2 Y3Y4

Y5

Y6

Y7

Y8

Y9

Y10

Figure 1: A random 3-regular marked undirected graph.

4

http://bioconductor.org/packages/qpgraph
http://bioconductor.org/packages/graph
http://bioconductor.org/packages/qpgraph
http://bioconductor.org/packages/Rgraphviz
http://bioconductor.org/packages/Rgraphviz

Simulating networks using qpgraph

3 Simulation of undirected Gaussian GMMs
Undirected Gaussian GMMs are multivariate normal models on continuous r.v.’s XV =
{X1, . . . , Xp} determined by an undirected graph G = (V,E) with V = {1, . . . , p} and
E ⊆ (V ×V). In particular, the zero-pattern of the inverse covariance matrix corresponds to
the missing edges in G (Lauritzen, 1996). Therefore, simulating this type of GMM amounts
to simulate a covariance matrix whose inverse matches the missing edges of a given, or sim-
ulated, undirected graph in its zero pattern and whose scaled covariance matches a given
marginal correlation on the cells corresponding to present edges. This can be easily accom-
plished with qpgraph using the function rUGgmm:
> args(rUGgmm)

function (n, g, ...)

NULL

where n corresponds to the number of undirected Gaussian GMMs we want to simulate
(default n=1 and g corresponds to either a graphParam object, a graphBAM object or a
matrix. This depends on whether we want to simulate both the graph and the covariance
matrix underlying the GMM, by providing a graphParam object, or we just want to simulate
the covariance matrix given a graph specified as either a graphBAM object, an squared and
symmetric adjacency matrix or a two-column matrix describing an edge set. Examples of
these are the following:
> rUGgmm(dRegularGraphParam(p=4, d=2))

Undirected Gaussian graphical Markov model

with 4 r.v. and 4 edges.

> rUGgmm(matrix(c(0, 1, 0, 1,

+ 1, 0, 1, 0,

+ 0, 1, 0, 1,

+ 1, 0, 1, 0), nrow=4, byrow=TRUE))

Undirected Gaussian graphical Markov model

with 4 r.v. and 4 edges.

> rUGgmm(matrix(c(1, 2,

+ 2, 3,

+ 3, 4,

+ 4, 1), ncol=2, byrow=TRUE))

Undirected Gaussian graphical Markov model

with 4 r.v. and 4 edges.

These three calls to rUGgmm() return objects of class UGgmm containing undirected Gaussian
GMMs with an underlying graph structure formed by a single undirected cycle on four vertices.
The elements of an UGgmm object can be quickly explored with the summary() function call:
> set.seed(12345)

> gmm <- rUGgmm(dRegularGraphParam(p=4, d=2))

> summary(gmm)

Undirected Gaussian graphical Markov model

with 4 r.v. and 4 edges.

5

http://bioconductor.org/packages/qpgraph
http://bioconductor.org/packages/qpgraph

Simulating networks using qpgraph

Graph density: 67%

Degree distribution of the undirected graph:

Min. 1st Qu. Median Mean 3rd Qu. Max.

2 2 2 2 2 2

Distribution of marginal correlations for present edges:

Min. 1st Qu. Median Mean 3rd Qu. Max.

0.3352 0.5963 0.7587 0.6958 0.8582 0.9305

Distribution of partial correlations for present edges:

Min. 1st Qu. Median Mean 3rd Qu. Max.

-0.8236 -0.6656 -0.5352 -0.4232 -0.2928 0.2014

and the individual elements that are available to the user can be accessed as if it were a list
object:
> class(gmm)

[1] "UGgmm"

attr(,"package")

[1] "qpgraph"

> names(gmm)

[1] "X" "p" "g" "mean" "sigma"

> gmm$X

[1] "1" "2" "3" "4"

> gmm$p

[1] 4

> gmm$g

A graphBAM graph with undirected edges

Number of Nodes = 4

Number of Edges = 4

> gmm$mean

[1] 0 0 0 0

> gmm$sigma

4 x 4 Matrix of class "dspMatrix"

1 2 3 4

1 1.1854830 0.8687971 1.0001179 0.4717917

2 0.8687971 0.9152916 0.7026960 0.6299566

3 1.0001179 0.7026960 0.9745280 0.3188662

4 0.4717917 0.6299566 0.3188662 0.9285910

We can also directly plot the UGgmm object to see the underlying undirected graph and,
in this particular example, note how the zeroes of the inverse covariance match the missing
edges shown in Figure 2.

6

http://bioconductor.org/packages/qpgraph

Simulating networks using qpgraph

> plot(gmm)

> round(solve(gmm$sigma), digits=1)

1 2 3 4

1 9.5 -3.4 -7.2 0.0

2 -3.4 5.9 0.0 -2.3

3 -7.2 0.0 8.2 0.9

4 0.0 -2.3 0.9 2.3

1

2 3

4

Figure 2: A 4-cycle undirected graph.

Further arguments to rUGgmm() can be the desired mean marginal correlation derived from the
cells of the covariance matrix that match the present edges in the underlying graph (rho=0.5),
the minimum tolerance at which the iterative matrix completion algorithm that builds the
covariance matrix stops (tol=0.001) and whether the function should report progress on the
calculations (verbose=FALSE). It is important to set the latter argument verbose=TRUE when
we want to simulate an undirected Gaussian GMM with more than, let’s say, 200 vertices,
since around that number of vertices and beyond the simulation of the covariance matrix
becomes computationally demanding, specially when the underlying graph is not very sparse.
Further technical information on the algorithms employed to simulate the covariance matrix
can be found in the help pages of the qpgraph functions qpG2Sigma(), qpRndWishart(),
qpIPF() and qpHTF() which are called by the procedures described here.
Finally, to simulate multivariate normal observations from the undirected Gaussian GMM we
just need to use the rmvnorm() function from the mvtnorm package which is overloaded in
the qpgraph package to take directly an UGgmm object, as follows:
> rmvnorm(10, gmm)

1 2 3 4

[1,] 1.8203501 0.93389886 1.432134453 -0.1917191

[2,] 0.3276189 -0.04621885 0.004281742 0.8140006

[3,] 1.2455715 0.92583029 1.462412069 -0.1502647

[4,] -1.0649416 -1.43363508 0.025905355 -1.0810069

[5,] 0.8215409 0.92693851 0.457389128 1.0147731

[6,] 3.6015946 2.99690308 3.073395574 1.4028879

[7,] -0.3178426 0.04528419 -0.970752819 1.4148364

[8,] -0.9758867 -0.22685242 -1.549907669 -0.7448294

[9,] 1.6800263 0.99249248 1.773751270 -0.6969221

[10,] -0.0824054 0.09107758 -0.560575698 -0.2894250

Note that with sufficient data we can directly recover the zero-pattern of the inverse covari-
ance matrix:

7

http://bioconductor.org/packages/qpgraph
http://bioconductor.org/packages/qpgraph
http://bioconductor.org/packages/mvtnorm
http://bioconductor.org/packages/qpgraph

Simulating networks using qpgraph

> set.seed(123)

> X <- rmvnorm(10000, gmm)

> round(solve(cov(X)), digits=1)

1 2 3 4

1 9.6 -3.4 -7.3 0.0

2 -3.4 5.9 0.0 -2.2

3 -7.3 0.0 8.1 0.9

4 0.0 -2.2 0.9 2.3

> round(solve(gmm$sigma), digits=1)

1 2 3 4

1 9.5 -3.4 -7.2 0.0

2 -3.4 5.9 0.0 -2.3

3 -7.2 0.0 8.2 0.9

4 0.0 -2.3 0.9 2.3

However, such a sample size would be exceptional and for more limited sample size but still
with p < n the user may use the qpgraph function qpPAC() which performs zero-partial
correlation tests and when p ≫ n, then the user may estimate non-rejection rates Castelo
and Roverato (2006) with the qpNrr() function and simplify the saturated model such that
it may become possible to apply qpPAC().
Obviously, gene expression data, either from microarrays or log-transformed count data, are far
from being multivariate normal. However, many available methods for estimating molecular
regulatory networks from expression data, such as qpgraph, make such an assumption and
simulating data from undirected Gaussian GMMs can help us to test these methods under a
controlled experiment, learning their basic properties and obvious pitfalls with such a clean
data.

4 Simulation of homogeneous mixed GMMs
Mixed GMMs are GMMs for multivariate data defined by mixed discrete and continuous r.v.’s,
X = {I, Y } where I = {I1, . . . , IpI

} denote discrete r.v.’s and Y = {Y1, . . . , YpY
} denote

continuous ones. This class of GMMs are determined by marked graphs G = (V,E) with
p marked vertices V = ∆ ∪ Γ where ∆ = {1, . . . , pI} are plotted with dots and index the
discrete r.v.’s in I and Γ = {1, . . . , pY } are denoted by circles and index the continuous r.v.’s
in Y .
In the context of molecular regulatory networks and, particularly, of genetical genomics data
where we associate discrete r.v.’s to genotypes and continuous ones to expression profiles,
we make the assumption that discrete genotypes affect gene expression and not the other
way around. Under this assumption, we will consider the underlying graph G not only with
mixed vertices but also with mixed edges, where some are directed and represented by arrows
and some are undirected. More concretely G will be a partially-directed graph with arrows
pointing from discrete vertices to continuous ones and undirected edges between continuous
vertices. From this restricted definition of a partially-directed graph it follows inmediately
that there are no semi-directed (direction preserving) cycles and allows one to interpret these
GMMs also as chain graphs, which are graphs formed by undirected subgraphs connected
by directed edges (Lauritzen, 1996). Currently, the graph and Rgraphviz packages, in which

8

http://bioconductor.org/packages/qpgraph
http://bioconductor.org/packages/qpgraph
http://bioconductor.org/packages/qpgraph
http://bioconductor.org/packages/graph
http://bioconductor.org/packages/Rgraphviz

Simulating networks using qpgraph

qpgraph relies to handle and plot graph objects, do not directly allow one to define and work
with partially-directed graphs. However, in the functionality described below qpgraph tries
to hide to the user complications derived from this fact.
A second important assumption qpgraph makes is that the joint distribution of the r.v.’s in X
is a conditional Gaussian distribution (also known as CG-distribution) by which continuous
r.v.’s follow a multivariate normal distribution N|Γ|(µ(i),Σ(i)) conditioned on the joint levels
i ∈ I from the discrete variables in I.
A third and final assumption is that the conditional covariance matrix is constant across
i ∈ I, the joint levels of I, i.e., Σ(i) ≡ Σ. This implies that we are actually simulating
the so-called homogeneous mixed GMMs. In the context of genetical genomics data, this
assumption implies that genotype alleles affect only the mean expression level of genes and
not the correlations between them.
Two restrictions currently constain further the type of mixed GMMs we can simulate with
qpgraph. The first one is that discrete variables are simulated under marginal independence
between them and the second one is that every continuous variable cannot be associated to
more than one discrete variable. As we shall see below, the first restriction does not apply
when simulating expression quantitative trait loci data in experimental crosses, as genotype
marker data is simulated by another package, the qtl ackage (Broman et al., 2003). We are
working to remove the second restriction in the near future and enable multiple discrete
variables having linear additive effects and interaction effects, on a common continuous
variable.
Similarly to how we did it with undirected Gaussian GMMs, simulating mixed GMMs is done
with a call to the function rHMgmm():
> args(rHMgmm)

function (n, g, ...)

NULL

where n corresponds to the number of mixed GMMs we want to simulate (default n=1 and
g corresponds to either a markedGraphParam object, a graphBAM object or a matrix. Note
that the first assumption made before enables specifying the underlying partially-directed
graph just as we did for an undirected one, since directed edges are completely determined
by the vertex type at their endpoints (discrete to continuous). Examples of these are the
following:
> rHMgmm(dRegularMarkedGraphParam(pI=1, pY=3, d=2))

Homogeneous mixed graphical Markov model

with 1 discrete and 3 continuous r.v., and 4 edges.

> rHMgmm(matrix(c(0, 1, 0, 1,

+ 1, 0, 1, 0,

+ 0, 1, 0, 1,

+ 1, 0, 1, 0), nrow=4, byrow=TRUE), I=1)

Homogeneous mixed graphical Markov model

with 1 discrete and 3 continuous r.v., and 4 edges.

> rHMgmm(matrix(c(1, 2,

+ 2, 3,

+ 3, 4,

+ 4, 1), ncol=2, byrow=TRUE), I=1)

9

http://bioconductor.org/packages/qpgraph
http://bioconductor.org/packages/qpgraph
http://bioconductor.org/packages/qpgraph
http://bioconductor.org/packages/qpgraph
http://bioconductor.org/packages/qpgraph
https://CRAN.R-project.org/package=qtl

Simulating networks using qpgraph

Homogeneous mixed graphical Markov model

with 1 discrete and 3 continuous r.v., and 4 edges.

These three calls to rHMgmm() return objects of class HMgmm containing homogenous mixed
GMMs with an underlying graph structured formed by one discrete vertex pointing to two
continous ones which are themselves forming an undirected connected component with a
fourth vertex, all together forming an undirected cycle on four vertices. Just as with UGgmm
objects, the elements of an HMgmm object can be quickly explored with the summary()

function call:
> set.seed(12345)

> gmm <- rHMgmm(dRegularMarkedGraphParam(pI=1, pY=3, d=2))

> summary(gmm)

Homogeneous mixed graphical Markov model

with 1 discrete and 3 continuous r.v., and 2 edges.

Graph density: 33% (all edges) 33% (mixed edges) 67% (continuous edges)

Degree distribution of the vertices in the graph:

Min. 1st Qu. Median Mean 3rd Qu. Max.

2 2 2 2 2 2

Distribution of marginal correlations for present continuous edges:

Min. 1st Qu. Median Mean 3rd Qu. Max.

0.7822 0.8063 0.8304 0.8304 0.8545 0.8786

Distribution of partial correlations for present continuous edges:

Min. 1st Qu. Median Mean 3rd Qu. Max.

-0.7536 -0.6937 -0.6339 -0.6339 -0.5740 -0.5142

Distribution of additive linear effects for present mixed edges:

Min. 1st Qu. Median Mean 3rd Qu. Max.

1 1 1 1 1 1

and again the individual elements that are available to the user can be accessed as if it were
a list object:
> class(gmm)

[1] "HMgmm"

attr(,"package")

[1] "qpgraph"

> names(gmm)

[1] "X" "I" "Y" "p" "pI" "pY" "g" "mean" "sigma"

[10] "a" "eta2"

> gmm$X

[1] "I1" "Y1" "Y2" "Y3"

> gmm$I

[1] "I1"

10

http://bioconductor.org/packages/qpgraph

Simulating networks using qpgraph

> gmm$Y

[1] "Y1" "Y2" "Y3"

> gmm$p

[1] 4

> gmm$pI

[1] 1

> gmm$pY

[1] 3

> gmm$g

A graphBAM graph with undirected edges

Number of Nodes = 4

Number of Edges = 4

> gmm$mean()

Y1 Y2 Y3

1 0.4720734 0.9669291 0.7242007

2 1.4720734 1.9669291 1.7934027

> gmm$sigma

3 x 3 Matrix of class "dspMatrix"

Y1 Y2 Y3

Y1 0.3986118 0.6302970 0.4720734

Y2 0.6302970 2.1100639 0.9669291

Y3 0.4720734 0.9669291 0.7242007

> gmm$a

Y1 Y2 Y3

1 1 NA

> gmm$eta2

Y1 Y2 Y3

0.35494969 0.09638361 NA

We can also directly plot the HMgmm object and qpgraph will use the necessary instructions
from the graph and Rgraphviz libraries to display a partially-directed graph as the one shown
in Figure 3.
> plot(gmm)

Further arguments to rHMgmm() are all we described previously for the rUGgmm() function plus
the desired additive linear effect (a=1) of the discrete levels (alleles in the genetics context) on
the continuous variables (genes in the genetics context). To simulate conditional multivariate
normal observations from the homogeneous mixed GMM we use the rcmvnorm() function,
which uses its pure continuous counterpart rmvnorm() from the mvtnorm package, but which
is defined in the qpgraph package as it needs to calculate the corresponding conditional mean
vectors µ(i):

11

http://bioconductor.org/packages/qpgraph
http://bioconductor.org/packages/qpgraph
http://bioconductor.org/packages/graph
http://bioconductor.org/packages/Rgraphviz
https://CRAN.R-project.org/package=mvtnorm
http://bioconductor.org/packages/qpgraph

Simulating networks using qpgraph

I1

Y1 Y2

Y3

Figure 3: Homogeneous mixed graphical (chain) model with one discrete variable and three continuous ones forming an
undirected cycle on four vertices.

> rcmvnorm(10, gmm)

I1 Y1 Y2 Y3

1 1 0.69288009 0.7820185 0.84474686

2 2 1.03144977 2.3542652 2.02401063

3 1 -0.07511924 -2.2511898 -0.07484308

4 2 0.65385038 1.1366509 0.61860504

5 2 1.17087970 1.1989066 1.74686418

6 1 0.30898513 2.1612901 0.45379595

7 2 1.32224897 1.0516423 2.16167628

8 2 1.45888312 1.5270236 1.81217248

9 1 0.44373890 1.7343895 0.69000584

10 2 1.39579255 0.6822368 1.48814816

Note that with sufficient data we can directly recover the zero-pattern of the inverse condi-
tional covariance matrix:
> set.seed(123)

> X <- rcmvnorm(10000, gmm)

> csigma <- (1/10000)*sum(X[, gmm$I] == 1)*cov(X[X[, gmm$I]==1, gmm$Y]) +

+ (1/10000)*sum(X[, gmm$I] == 2)*cov(X[X[, gmm$I]==2, gmm$Y])

> round(solve(csigma), digits=1)

Y1 Y2 Y3

Y1 11.1 0.0 -7.2

Y2 0.0 1.2 -1.6

Y3 -7.2 -1.6 8.3

> round(solve(gmm$sigma), digits=1)

Y1 Y2 Y3

Y1 11.0 0.0 -7.2

Y2 0.0 1.2 -1.6

Y3 -7.2 -1.6 8.2

and that the sample sample mean vectors and additive effects approach the ones specified in
the model according to the mixed associations between the discrete and continuous variables:
> smean <- apply(X[, gmm$Y], 2, function(x, i) tapply(x, i, mean), X[, gmm$I])

> smean

12

http://bioconductor.org/packages/qpgraph

Simulating networks using qpgraph

Y1 Y2 Y3

1 0.4645511 0.945362 0.7134776

2 1.4648747 1.982499 1.7938602

> gmm$mean()

Y1 Y2 Y3

1 0.4720734 0.9669291 0.7242007

2 1.4720734 1.9669291 1.7934027

> abs(smean[1,] - smean[2,])

Y1 Y2 Y3

1.000324 1.037137 1.080383

> gmm$a

Y1 Y2 Y3

1 1 NA

5 Simulation of eQTL models of experimental crosses
We illustrate in this section how we can use qpgraph in conjunction with the qtl package
(Broman et al., 2003) to simulate expression quantatitve trait loci (eQTL) models of ex-
perimental crosses and data from them. This functionality employs the previously described
procedures to simulate an homogeneous mixed GMM that represents the underlying model
of regulatory cis-eQTL, trans-eQTL and gene-gene associations, although this fact appears
hidden to the user.
More concretely, the qpgraph package defines an object class called eQTLcross which basi-
cally holds a genetic map of the genotype markers (as defined by the map class in the qtl
package from Broman et al., 2003) and an homogeneous mixed GMM defining the underly-
ing molecular regulatory network that connects genotypes with genes and genes themselves,
where we use the term gene to refer to a gene expression profile.
In a similar vein to the way we simulated before graphs and GMMs, we need to create a
parameter object that defines the main features of the eQTL model we want to simulate.
This is done through the function eQTLcrossParam() which by default defines some minimal
eQTL model:
> eQTLcrossParam()

eQTL backcross parameter object defining 20 markers,

20 genes, 20 cis-eQTL and 0 trans-eQTL.

cis-eQTL associations occur within 1.0 cM of a gene

and all eQTL are located at 0.0 cM from a marker.

Gene network parameters are defined by a

d-regular pure graph parameter object

No. of pure vertices: 20

Constant degree: 2

Vertex labels: g1, g2, g3, g4, g5, g6 ...

13

http://bioconductor.org/packages/qpgraph
http://bioconductor.org/packages/qpgraph
https://CRAN.R-project.org/package=qtl
http://bioconductor.org/packages/qpgraph
https://CRAN.R-project.org/package=qtl

Simulating networks using qpgraph

> args(eQTLcrossParam)

function (map = do.call("class<-", list(list(`1` = do.call("class<-",

list(do.call("names<-", list(seq(1, 100, length.out = 20),

paste0("m", 1:20))), "A"))), "map")), type = "bc", genes = 20,

cis = 1, trans = as.integer(NULL), cisr = 1, d2m = 0, networkParam = dRegularGraphParam())

NULL

To simulate an eQTLcross object qpgraph provides the function reQTLcross() giving as first
argument the number of eQTLcross objects we want to simulate and a eQTLcrossParam
object:
> reQTLcross(n=2, eQTLcrossParam())

[[1]]

eQTL backcross model with 20 markers, 20 genes,

20 eQTL and 20 gene-gene expression associations.

[[2]]

eQTL backcross model with 20 markers, 20 genes,

20 eQTL and 20 gene-gene expression associations.

When the first argument n is omitted, then n=1 is assumed by default. Other arguments to
reQTLcross() are the mean marginal correlation between genes (rho=0.5), the magnitude of
the linear additive effect of the simulated eQTL associations (a=1), the minimum tolerance
of the matrix completion algorithm that is involved in the construction of the conditional
covariance matrix (tol=0.001) and whether progress on the calculations should be shown
verbose=FALSE.
To simulate a larger eQTLcross object we need to simulate a genetic map using the sim.map()

function from the qtl package (Broman et al., 2003), which should be loaded first. Since
qpgraph overloads the qtl function sim.cross(), which will be used later to simulate data
from an eQTLcross object, we will detach qpgraph before loading qtl , and load qpgraph
again.
> detach("package:qpgraph")

> library(qtl)

> library(qpgraph)

> map <- sim.map(len=rep(100, times=20),

+ n.mar=rep(10, times=20),

+ anchor.tel=FALSE,

+ eq.spacing=FALSE,

+ include.x=TRUE)

and using it in combination with a larger number of genes (50) we can easily simulate this
larger eQTLcross object:
> eqtl <- reQTLcross(eQTLcrossParam(map=map, genes=50))

> class(eqtl)

[1] "eQTLcross"

14

http://bioconductor.org/packages/qpgraph
http://bioconductor.org/packages/qpgraph
https://CRAN.R-project.org/package=qtl
http://bioconductor.org/packages/qpgraph
https://CRAN.R-project.org/package=qtl
http://bioconductor.org/packages/qpgraph
https://CRAN.R-project.org/package=qtl
http://bioconductor.org/packages/qpgraph

Simulating networks using qpgraph

attr(,"package")

[1] "qpgraph"

> eqtl

eQTL backcross model with 200 markers, 50 genes,

50 eQTL and 50 gene-gene expression associations.

which, as we can see, it corresponds a backcross model with 50 genes each of them associated
to a cis-eQTL, and with a certain underlying gene network embedded into an homogeneous
mixed GMM that forms part of this object and which can be accessed as follows:
> eqtl$model

Homogeneous mixed graphical Markov model

with 50 discrete and 50 continuous r.v., and 100 edges.

A dot plot describing the eQTL associations along the given genetic map can be obtained by
calling the plot function with the eQTLcross object as argument. In Figure 4 we see on the
right panel such a plot, and on the left panel the genetic map plotted by the plot function
defined in the qtl package (Broman et al., 2003) to plot genetic maps.
> par(mfrow=c(1,2))

> plot(map)

> plot(eqtl, main="eQTL model with cis-associations only")

80

60

40

20

0

Chromosome

Lo
ca

tio
n

(c
M

)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 X

Genetic map eQTL model with cis−associations only

eQTL location

G
en

e
lo

ca
tio

n

1 3 5 7 8 9 11 13 15 17 19

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
X

Figure 4: A genetic map simulated with the qtl package (Broman et al., 2003) on the left, and on the right, an eQTL
model simulated using the genetic map with the qpgraph package.

A somewhat more complex eQTL model with trans associations can be simulated by using
the trans argument as follows:
> set.seed(123)

> eqtl <- reQTLcross(eQTLcrossParam(map=map, genes=50,

+ cis=0.5, trans=c(5, 5)), a=5)

15

http://bioconductor.org/packages/qpgraph
https://CRAN.R-project.org/package=qtl
https://CRAN.R-project.org/package=qtl
http://bioconductor.org/packages/qpgraph

Simulating networks using qpgraph

In this call, cis=0.5 indicates that 50% of the genes should have cis-eQTL associations and
among the remaining ones, 10 will be associated to two trans-eQTL affecting 5 genes each
of the two. We have also increased the default additive linear effect from the default value
a=1 to a=5 which corresponds to a very strong linear additive effect from genotype markers
on gene expression. We can examine the cis and trans associations of the eQTLcross object
with the ciseQTL() and transeQTL() functions:
> head(ciseQTL(eqtl))

chrom location QTL gene a

1 1 35.58299 QTL1 g1 5

2 2 28.81849 QTL2 g4 5

3 3 31.95427 QTL3 g5 5

9 5 26.32776 QTL5 g6 5

10 5 55.22582 QTL6 g8 5

16 8 21.68222 QTL8 g14 5

> transeQTL(eqtl)

chrom location QTL gene a

1 3 80.38975 QTL4 g7 5

2 3 80.38975 QTL4 g13 5

3 3 80.38975 QTL4 g23 5

4 3 80.38975 QTL4 g27 5

5 3 80.38975 QTL4 g37 5

6 7 53.36542 QTL7 g9 5

7 7 53.36542 QTL7 g26 5

8 7 53.36542 QTL7 g28 5

9 7 53.36542 QTL7 g30 5

10 7 53.36542 QTL7 g39 5

and examine where the eQTL associations occur and what genes map to trans-eQTL, as
shown in Figure 5.
> plot(eqtl, main="eQTL model with trans-eQTL")

eQTL model with trans−eQTL

eQTL location

G
en

e
lo

ca
tio

n

1 3 5 7 8 9 11 13 15 17 19

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
X

Figure 5: An eQTL model including trans-acting associations simulated using the genetic map from Fig. 4.

16

http://bioconductor.org/packages/qpgraph

Simulating networks using qpgraph

Using this eQTLcross object we can simulate data from the corresponding experimental
cross with the function sim.cross() from the qtl package (Broman et al., 2003) but which
is overloaded in qpgraph to plug the eQTL associations into the corresponding genetic loci:
> set.seed(123)

> cross <- sim.cross(map, eqtl)

> cross

This is an object of class "cross".

It is too complex to print, so we provide just this summary.

Backcross

No. individuals: 100

No. phenotypes: 50

Percent phenotyped: 100

No. chromosomes: 20

Autosomes: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

X chr: X

Total markers: 200

No. markers: 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10

10

Percent genotyped: 100

Genotypes (%):

Autosomes: AA:50.7 AB:49.3

X chromosome: AA:48.3 AB:51.7

Note that here, the genotype data is simulated by the procedures implemented in the qtl
package (Broman et al., 2003) and qpgraph adds to that simulation the eQTL and gene
network associations. Thus, while the rHMgmm() function described in the previous section,
does not simulate correlated discrete variables, here the genotypes will be correlated accord-
ing to the input arguments of the sim.cross() function in qtl (mainly, the map.function

argument that converts genetic distances into recombination fractions) and which can be
passed through the previous call to sim.cross().
Let’s focus on a specific simulated eQTL, concretely on the second one of the following list:
> allcis <- ciseQTL(eqtl)

> allcis[allcis$chrom==1,]

chrom location QTL gene a

1 1 35.58299 QTL1 g1 5

> gene <- allcis[2, "gene"]

> chrom <- allcis[2, "chrom"]

> location <- allcis[2, "location"]

Find out the genes connected to gene g4 in the underlying regulatory network:
> connectedGenes <- graph::inEdges(gene, eqtl$model$g)[[1]]

> connectedGenes <- connectedGenes[connectedGenes %in% eqtl$model$Y]

> connectedGenes

17

http://bioconductor.org/packages/qpgraph
https://CRAN.R-project.org/package=qtl
http://bioconductor.org/packages/qpgraph
https://CRAN.R-project.org/package=qtl
http://bioconductor.org/packages/qpgraph
https://CRAN.R-project.org/package=qtl

Simulating networks using qpgraph

[1] "g10" "g28"

Now, using the qtl package (Broman et al., 2003) and its scanone() function, we perform a
simple QTL analysis by single marker regression using the expression profiles from genes g4,
g10, g28 as phenotypes:
> out.mr <- scanone(cross, method="mr", pheno.col=c(gene, connectedGenes))

By using the plotting functionalities of the qtl package (Broman et al., 2003) we can examine
the LOD score profile of these three genes on chromosome 2 where the eQTL of gene g4 is
located:
> plot(out.mr, chr=chrom, ylab="LOD score", lodcolumn=1:3, col=c("black", "blue", "red"), lwd=2)

> abline(v=allcis[allcis$gene == gene, "location"])

> legend("topleft", names(out.mr)[3:5], col=c("black", "blue", "red"), lwd=2, inset=0.05)

0 10 20 30 40 50 60 70

0

5

10

15

20

Map position (cM)

LO
D

 s
co

re

g4
g10
g28

Figure 6: Profile of LOD scores for three genes with direct and indirect eQTL.

We can observe in Figure 6 that not only the directly associated gene g4 seems to have an
eQTL at position 28.8 cM, but also the genes g10, g28 connected to g4 in the underlying
gene network. Using a permutation procedure implemented in qtl , we calculate LOD score
threholds that yield genome-wide statistical significant eQTL associations:
> out.perm <- scanone(cross, method="mr", pheno.col=c(gene, connectedGenes),

+ n.perm=100, verbose=FALSE)

> summary(out.perm, alpha=c(0.05, 0.10))

LOD thresholds (100 permutations)

g4 g10 g28

5% 2.70 2.84 2.75

10% 2.52 2.54 2.41

and examine which genotype markers yield such significant associations to these the expression
profiles of these genes:

18

http://bioconductor.org/packages/qpgraph
https://CRAN.R-project.org/package=qtl
https://CRAN.R-project.org/package=qtl
https://CRAN.R-project.org/package=qtl

Simulating networks using qpgraph

> summary(out.mr, perms=out.perm, alpha=0.05)

chr pos g4 g10 g28

D2M4 2 28.8 23.3 6.27 0.707

Notice that the directly associated gene g4 as well as the indirectly associated ones g10,
g28 have genome-wide significant LOD scores on the same eQTL located at 28.8 cM in
chromosome 2.

6 Session information

> toLatex(sessionInfo())

• R Under development (unstable) (2023-10-22 r85388), x86_64-pc-linux-gnu
• Locale: LC_CTYPE=en_US.UTF-8, LC_NUMERIC=C, LC_TIME=en_GB, LC_COLLATE=C,

LC_MONETARY=en_US.UTF-8, LC_MESSAGES=en_US.UTF-8, LC_PAPER=en_US.UTF-8,
LC_NAME=C, LC_ADDRESS=C, LC_TELEPHONE=C, LC_MEASUREMENT=en_US.UTF-8,
LC_IDENTIFICATION=C

• Time zone: America/New_York

• TZcode source: system (glibc)

• Running under: Ubuntu 22.04.3 LTS

• Matrix products: default
• BLAS: /home/biocbuild/bbs-3.19-bioc/R/lib/libRblas.so
• LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.10.0
• Base packages: base, datasets, grDevices, graphics, grid, methods, stats, stats4, utils
• Other packages: AnnotationDbi 1.65.0, Biobase 2.63.0, BiocGenerics 0.49.0,

GenomeInfoDb 1.39.0, GenomicRanges 1.55.0, IRanges 2.37.0, Rgraphviz 2.47.0,
S4Vectors 0.41.0, XML 3.99-0.14, annotate 1.81.0, genefilter 1.85.0, graph 1.81.0,
org.EcK12.eg.db 3.18.0, qpgraph 2.37.0, qtl 1.60

• Loaded via a namespace (and not attached): BiocFileCache 2.11.0, BiocIO 1.13.0,
BiocManager 1.30.22, BiocParallel 1.37.0, BiocStyle 2.31.0, Biostrings 2.71.1,
DBI 1.1.3, DelayedArray 0.29.0, GenomeInfoDbData 1.2.11,
GenomicAlignments 1.39.0, GenomicFeatures 1.55.0, KEGGREST 1.43.0,
Matrix 1.6-1.1, MatrixGenerics 1.15.0, R6 2.5.1, RCurl 1.98-1.12, RSQLite 2.3.1,
Rsamtools 2.19.0, S4Arrays 1.3.0, SparseArray 1.3.0, SummarizedExperiment 1.33.0,
XVector 0.43.0, abind 1.4-5, biomaRt 2.59.0, bit 4.0.5, bit64 4.0.5, bitops 1.0-7,
blob 1.2.4, cachem 1.0.8, cli 3.6.1, codetools 0.2-19, compiler 4.4.0, crayon 1.5.2,
curl 5.1.0, dbplyr 2.3.4, digest 0.6.33, dplyr 1.1.3, evaluate 0.22, fansi 1.0.5,
fastmap 1.1.1, filelock 1.0.2, generics 0.1.3, glue 1.6.2, hms 1.1.3, htmltools 0.5.6.1,
httr 1.4.7, knitr 1.44, lattice 0.22-5, lifecycle 1.0.3, magrittr 2.0.3, matrixStats 1.0.0,
memoise 2.0.1, mvtnorm 1.2-3, parallel 4.4.0, pillar 1.9.0, pkgconfig 2.0.3, png 0.1-8,
prettyunits 1.2.0, progress 1.2.2, rappdirs 0.3.3, restfulr 0.0.15, rjson 0.2.21,
rlang 1.1.1, rmarkdown 2.25, rtracklayer 1.63.0, splines 4.4.0, stringi 1.7.12,
stringr 1.5.0, survival 3.5-7, tibble 3.2.1, tidyselect 1.2.0, tools 4.4.0, utf8 1.2.4,
vctrs 0.6.4, xfun 0.40, xml2 1.3.5, xtable 1.8-4, yaml 2.3.7, zlibbioc 1.49.0

19

http://bioconductor.org/packages/qpgraph

Simulating networks using qpgraph

References
Broman, K. W., Wu, H., Sen, S., and Churchill, G. A. (2003). R/qtl: Qtl mapping in

experimental crosses. Bioinformatics, 19(7):889–90.
Castelo, R. and Roverato, A. (2006). A robust procedure for gaussian graphical model search

from microarray data with p larger than n. J Mach Learn Res, 7:2621–2650.
Harary, F. (1969). Graph theory. Addison-Wesley.
Lauritzen, S. (1996). Graphical models. Oxford University Press.

20

http://bioconductor.org/packages/qpgraph

	1 Introduction
	2 Simulation of graphs
	3 Simulation of undirected Gaussian GMMs
	4 Simulation of homogeneous mixed GMMs
	5 Simulation of eQTL models of experimental crosses
	6 Session information

