Design Primers that Yield Group-Specific Signatures

Erik S. Wright
April 15, 2025

Contents
I Introductionl 1

2 Getting Started|

Z. | Startup ...
ZZ Egreatmg adSequence Database] Lo o
23 Delning Groups|. v o o v e e e e

|3 Designing primers with diverse signatures|
[3.1 Adjusting Input Parameters| L
[3.2 Select Restriction Enzymes|
(3.3 Designing Primers| e

NN N

AW W

|4 Assessing the Results|
@.1 View the Target Sites| oL

5
5
4.2 Plotthe Signatures| 6
A3 Finishing Up| o o e e 10

s Scssion Inf - 11

1 Introduction

The DECIPHER function DesignSignatures was created to perform the most common primer design task: to
efficiently amplify a shared region of DNA that will produce maximal amplicon diversity. This goal is independent of
the method being used to differentiate amplicons, although some of the design details may depend on the technique
being employed. DesignSignatures supports three common methods for distinguishing amplicons: sequencing,
High Resolution Melting (HRM) analysis, and Fragment Length Polymorphism (FLP) analysis. As a case study,
this tutorial focuses on designing primers to differentiate SNP alleles using HRM analysis. However, the methods
described here can easily be adjusted to the other experimental techniques.

As input, we will use known sequence variants of the Isocitrate Dehydrogenase 2 (/DH2) gene that have been
implicated in human gliomas. First, a database is constructed where the variants are identified by their unique name.
Next, this database is used to design primers that will yield maximal amplicon diversity. The top scoring primers
are further investigated to determine whether they can easily be distinguished experimentally. Finally, the process is
repeated using a restriction enzyme to further diversify the amplicons’ signatures. Note that much of the functionality
described here is accessible via a web tool at http://DECIPHER. codesl

https://en.wikipedia.org/wiki/IDH2
http://DECIPHER.codes

2 Getting Started
2.1 Startup

To get started we need to load the DECIPHER package, which automatically loads several other required packages.
> library (DECIPHER)
Help for the DesignSignatures function can be accessed through:
> ? DesignSignatures
If DECIPHER is installed on your system, the code in each example can be obtained via:

> browseVignettes ("DECIPHER")

2.2 Creating a Sequence Database

We begin with a set of IDH2 sequences in a FASTA file that is included as part of the DECIPHER package. The
file contains the common IDH?2 allele, and three alleles with single nucleotide polymorphisms (SNPs). Our goal is
to design primers that can distinguish all four variants of the IDH2 gene. If you wish to follow along with your own
FASTA file of unaligned sequences, be sure to change the path names to those on your system by replacing all of the
text inside quotes labeled “< <path to ...>>>"" with the actual path on your system.

> # specify the path to your sequence file:

> fas <- "<<path to FASTA file>>"

> # OR find the example sequence file used in this tutorial:

> fas <- system.file("extdata", "IDH2.fas", package="DECIPHER")

Next, there are two options for importing the sequences into a database: either save a database file or maintain the
database in memory. Here we will build the database in memory because it is a small set of sequences and we do not
intend to use the database later:

> # specify a path for where to write the sequence database

> dbConn <- "<<path to write sequence database>>"
> # OR create the sequence database in memory
> dbConn <- dbConnect (dbDriver ("SQLite"), ":memory:")

> N <- Seqgs2DB(fas, "FASTA", dbConn, "")
> N # number of sequences in the database

2.3 Defining Groups

At this point it is necessary to define groups of related sequences in the database we have just created. Ideally, groups
should designate the different variants (i.e., strains or alleles) that we hope to distinguish.

In this example, we will define groups based on the allele’s name, which was included in the description of each
FASTA record that we imported. This is the most common case, and simply uses each sequence’s name as its group
name.

To assign group names directly from the sequence names (FASTA identifiers), simply run the code shown below. In
more complex cases, we could use the functions Ident i fyByRank, FormGroups, Clusterize,or Treeline
to define groups.

>
>
>
>
>
>
>

if each sequence belongs to its own group,

then identify the sequences with a number:

desc <- as.character(seg_len(N)) # N is the number of sequences

OR get the FASTA record description:

desc <- dbGetQuery (dbConn, "select description from Seqgs") $description
show the unique descriptors:

unique (desc)

Now that we have unique names for our four variants, we must add them to the database as the identifier of each
sequence.

>

Add2DB (data.frame (identifier=desc, stringsAsFactors=FALSE), dbConn)

3 Designing primers with diverse signatures

3.1 Adjusting Input Parameters

Before using our database to design primers, we must carefully consider the inputs that will be used. These inputs can
have a large impact on the outcome, and therefore should be tailored to the experimental goal. Below are recommended
inputs for sequencing, FLP, and HRM:

>
>
>
>
>
>

V V.V V V V V V VYV

\4

vV V.V V V VvV V

Designing primers for sequencing experiments:
TYPE <- "sequence"

MIN_SIZE <- 300 # base pairs

MAX_SIZE <- 700

RESOLUTION <- 5 # k-mer signature

LEVELS <- 5 # max number of each k-mer

Designing primers for community fingerprinting (FLP):
TYPE <- "length"
it is important to have a width range of lengths
MIN_SIZE <- 200 # base pairs
MAX_SIZE <- 1400
define bin boundaries for distinguishing length,
the values below require high-resolution, but
the bin boundaries can be redefined for lower
resolution experiments such as gel runs
RESOLUTION <- c(seq (200, 700, 3),

seq (705, 1000, 5),

seq (1010, 1400, 10))
LEVELS <- 2 # presence/absence of the length

Designing primers for high resolution melting (HRM) :
TYPE <— "melt"

MIN_SIZE <- 55 # base pairs

MAX_SIZE <- 400

the recommended values for resolution

RESOLUTION <- seq (75, 100, 0.25) # degrees Celsius
LEVELS <- 10

3.2 Select Restriction Enzymes

The following step is not applicable to sequencing experiments (i.e., the TYPE above is "sequence"), and is op-
tional for other types of experiments. If using HRM or FLP analysis to differentiate amplicon signatures, a digestion
step following PCR amplification may generate fragments with widely different signatures. This is especially useful
when trying to distinguish a large number of different groups based on small variations. Potential enzymes can be
selected from the built-in RESTRICTION_ENZYMES dataset, which includes all of the standard enzymes sold by
New England BioLabs.

> ENZYMES <- NULL # required for sequencing

> # OR select restriction enzymes to consider

> data (RESTRICTION_ENZYMES) # load available enzymes
> # for this tutorial we will use the enzyme MslI

> ENZYMES <- RESTRICTION_ENZYMES["Ms1lI"]

> ENZYMES

3.3 Designing Primers

Now we can design primers that target all of the groups and result in maximal amplicon diversity:

> primers <- DesignSignatures (dbConn,
type=TYPE,
minProductSize=MIN_SIZE,
maxProductSize=MAX_SIZE,
resolution=RESOLUTION,
levels=LEVELS,
enzymes=ENZYMES)

Tallying 8-mers for 4 groups:

Time difference of 0.49 secs

Designing primer sequences based on the group 'IDH2':

Time difference of 123.6 secs

Selecting the most common primer sequences:

Time difference of 15.89 secs

Determining PCR products from each group:

Time difference of 131.86 secs

Scoring primer pair combinations:

100%

100%

100%

100%

100%

https://www.neb.com/

Time difference of 1.76 secs

Choosing optimal forward and reverse pairs:

| === = == = = == ====| 100%
Time difference of 2.27 secs
Finding the best restriction enzyme:

=== = == = == ====| 100%

Time difference of 8.69 secs

The output data . frame is sorted by the sum of "score" and "digest_score". However, we can sepa-
rately look at the top scoring primers with and without using restriction enzymes.

> primers[which.max (primers$score),] # best primers without digestion

forward_primer reverse_primer score coverage products

70 TGGCTGGACCAAGCCCAT GCCTTGTACTGGTCGCCATG 0.049074.... 1 4
similar_signatures missing_signatures enzyme digest_score fragments
70 MslI 0 2

> primers[which.max (primers$digest_score),] # best primers with digestion

forward_primer reverse_primer score coverage products

1 AGTCCCTGGCTGGACCAAG CTGTGGCCTTGTACTGGTCG 0.037037.... 1 4
similar_ signatures missing_signatures enzyme digest_score fragments
1 MslT 0.1618056 13

The PCR products digested with MslI are substantially higher scoring (digest_score) than the undigested
primers (score). Note that the columns "similar_signatures" and "missing_signatures" are both
empty for this primer set, indicating that all of the groups have distinct signatures after digestion with the restriction
enzyme.

4 Assessing the Results

4.1 View the Target Sites

We can now look at the target sites of the top scoring primers and restriction enzyme.

> PSET <- 1 # examine the top scoring primer set overall
> # select the first sequence from each group
> dna <- SearchDB (dbConn,
remove="all",
nameBy="identifier",
clause="row_names =
(select min(row_names) from Seqgs as S
where S.identifier = Segs.identifier)",
verbose=FALSE)
> f_primer <- DNAStringSet (primers$forward_primer [PSET])

[] [] [Em} file:// jvar(folders/qr/4756ImInBfnSyz76p i [l | @

ACCAGTACRAGGCCACAGLIS guNciReit e 1¢7: 1)

ATCCCACCCCTL G sesiveielsyelel Tauar W IECCCATCACCATTCGCRDC M s esl sl ol Ly ey ACCAGTACRAGGCCACAGLIS JUNeivele s 1e7:1a)

Figure 1: The forward (magenta) the reverse (green) primers situated around the SNP, with internal restriction site(s)
(blue)

\%

r_primer <- DNAStringSet (primers$Sreverse_primer [PSET])
patterns <- c(f_primer,
reverseComplement (r_primer),
DNAStringSet (gsub (" ["A-Z]", "", ENZYMES)))
BrowseSegs (dna,
patterns=patterns)

\

\%

We can see in Figure [T that the forward and reverse primers target sites on both sides of the SNP, which is located
approximately in the center of the amplicon. There are restriction sites next to the SNP, which will shorten the
amplicons and further spread their melting curves. Furthermore, the final allele has two adjacent restriction sites,
whereas the others all have one.

4.2 Plot the Signatures

Next we will compare the signatures of the top scoring primers with and without digestion. The simplest way to
accomplish this is to use the Biostrings function matchLRPatterns to find the amplicons. Refer to section [2.1
above for how to easily obtain the code shown below:

PSET <- which.max (primers$score) # top scoring without digestion
f_primer <- DNAString(primersS$forward_primer [PSET])
r_primer <- DNAString(primersSreverse_primer [PSET])
r_primer <- reverseComplement (r_primer)
ids <- dbGetQuery (dbConn, "select distinct identifier from Seqgs")
ids <—- ids$identifier
if (TYPE=="sequence") ({
signatures <- matrix (0, nrow=4"RESOLUTION, ncol=length(ids))
} else if (TYPE=="melt") {
signatures <- matrix (0, nrow=length (RESOLUTION), ncol=length (ids))
} else { # TYPE=="length"
signatures <- matrix (0, nrow=length (RESOLUTION) - 1, ncol=length(ids))

vV V.V V V V V

}
> colnames (signatures) <- abbreviate(ids, 15)
> for (i in seqg_along(ids)) {
dna <- SearchDB (dbConn, identifier=ids[i], remove="all", verbose=FALSE)
amplicons <- matchLRPatterns (f_primer, r_primer,
MAX_SIZE, unlist (dna),

max.Lmismatch=2, max.Rmismatch=2,
Lfixed="subject", Rfixed="subject")

amplicons <- as(amplicons, "DNAStringSet")
if (length(amplicons)==0)
next

if (TYPE=="sequence") {

signature <- oligonucleotideFrequency (amplicons, RESOLUTION)

signatures|[, i] <- colMeans (signature)
} else 1if (TYPE=="melt") {

signature <- MeltDNA (amplicons, "melt curves", RESOLUTION)

weight melting curves by their amlicon's width

signature <- t (signature) *width (amplicons)

signatures[, 1] <- colSums (signature)/sum(width (amplicons))
} else { # TYPE=="length"

signature <- .bincode (width (amplicons), RESOLUTION)

for (j in signature[which(!is.na(signature))])

signatures[]j, 1] <- signatures[j, 1] + 1/length(signature)

> if (TYPE=="sequence") {
d <- dist (t (signatures), "minkowski", p=1) # L1-Norm
Treeline (myDistMatrix=as.matrix(d), method="UPGMA", showPlot=TRUE)
mtext (paste (RESOLUTION, "-mer Profile Distance", sep=""),
side=2, padj=-4)
} else if (TYPE=="melt") {
matplot (RESOLUTION, signatures, type="1",
xlab="Temperature (degrees Celsius)", ylab="Average Helicity")
} else { # TYPE=="length"
if (length(ids) > 20) {
plot (NA,
x1lim=c (0.5, length(ids) + 0.5), ylim=range (RESOLUTION),
xlab="Group Index", ylab="Amplicon Length",
yaxs="i", xaxs="i")
axis (1, at=l:length(ids), labels=FALSE, tck=-0.01)
} else {
plot (NA,
x1lim=c (0.5, length(ids) + 0.5), ylim=range (RESOLUTION),
xlab="", ylab="Amplicon Length",
yaxs="1i", xaxs="i", xaxt="n")
axis (1, at=l:length(ids), labels=abbreviate(ids, 7), las=2)
}
xaxs <—- RESOLUTION[-1] - diff (RESOLUTION) /2 # average lengths
for (i in seqg_along(ids)) {
w <- which (signatures[, 1] > 0)
if (length(w) > 0)
segments (i - 0.45, xaxs([w], 1 + 0.45, xaxs[w], lwd=2)

}

Figure [2] shows that two alleles will be indistinguishable when using these primers because their melting curves

Average Helicity

0.8

0.6

0.4

0.2

0.0

80

85 90 95

Temperature (degrees Celsius)

Figure 2: Melting curves for the amplicons without digestion

100

are nearly overlapping. We will now compare the result after using a restriction enzyme. Note that this is only possible
because we previously specified a restriction enzyme in the input to DesignSignatures.

> PSET <- which.max (primersS$digest_score) # top scoring with digestion
> f_primer <- DNAString (primers$forward_primer [PSET])

> r_primer <— DNAString(primersS$reverse_primer [PSET])

> r_primer <- reverseComplement (r_primer)

> enzyme <- RESTRICTION_ENZYMES [primers$enzyme [PSET]]

> signatures[] <- 0 # initialize the results matrix used previously

> for (i in seqg_along(ids)) {

dna <- SearchDB (dbConn, identifier=ids[i], remove="all", verbose=FALSE)
amplicons <- matchLRPatterns (f_primer, r_primer,
MAX_SIZE, unlist (dna),
max.Lmismatch=2, max.Rmismatch=2,
Lfixed="subject", Rfixed="subject")
amplicons <- as(amplicons, "DNAStringSet")
if (length(amplicons)==0)
next
digested <- DigestDNA (enzyme, amplicons, strand="top")
digested <- unlist (digested) # convert to DNAStringSet

if (TYPE=="melt") {
signature <- MeltDNA (digested, "melt curves", RESOLUTION)
weight melting curves by their fragment's width
signature <- t(signature)*width (digested)
signatures([, 1] <- colSums (signature)/sum(width (digested))
} else { # TYPE=="length"
signature <- .bincode (width (digested), RESOLUTION)
for (j in signature[which(!is.na(signature))])
signatures[]j, 1] <- signatures[]j, i] + 1/length(signature)

> if (TYPE=="melt") {
matplot (RESOLUTION, signatures, type="1",
xlab="Temperature (degrees Celsius)", ylab="Average Helicity")
} else { # TYPE=="length"
if (length(ids) > 20) {
plot (NA,
x1lim=c (0.5, length(ids) + 0.5), ylim=range (RESOLUTION),
xlab="Group Index", ylab="Amplicon Length",
yaxs="1", xaxs="i")
axis(l, at=l:length(ids), labels=FALSE, tck=-0.01)
} else {
plot (NA,
x1lim=c (0.5, length(ids) + 0.5), ylim=range (RESOLUTION),
xlab="", ylab="Amplicon Length",
yaxs="1i", xaxs="i", xaxt="n")
axis(l, at=l:length(ids), labels=abbreviate(ids, 7), las=2)
}
xaxs <— RESOLUTION[-1] - diff (RESOLUTION) /2 # average lengths
for (i in seg_along(ids)) {

©]
o
0
o
<
o

>

=

o

o)

T o |

» o

o

@

—

2

<
N
o
DI
o
e]
o

80 85 90 95 100

Temperature (degrees Celsius)

Figure 3: Melt curves for the amplicons after digestion

w <- which (signatures[, i] > 0)
if (length(w) > 0)
segments (i - 0.45, xaxs([w], 1 + 0.45, xaxs[w], lwd=2)

}

> zzz <- dbDisconnect (dbConn)

Figure [3] shows that the two amplicons which had nearly identical melt curves can be easily distinguished after
restriction digest.

4.3 Finishing Up

Finally, we can order the top scoring forward and reverse primers for synthesis and try them out in a PCR reaction!
The primers should be synthesized in the same orientation given in the output (primers).

10

S Session Information
All of the output in this vignette was produced under the following conditions:

¢ R version 4.5.0 RC (2025-04-04 r88126 ucrt), x86_64-w64-mingw32

* Running under: Windows Server 2022 x64 (build 20348)

¢ Matrix products: default

* Base packages: base, datasets, grDevices, graphics, methods, stats, stats4, utils

 Other packages: BiocGenerics 0.54.0, Biostrings 2.76.0, DECIPHER 3.4.0, GenomeInfoDb 1.44.0,
IRanges 2.42.0, S4Vectors 0.46.0, X Vector 0.48.0, generics 0.1.3

¢ Loaded via a namespace (and not attached): DBI 1.2.3, GenomelnfoDbData 1.2.14, KernSmooth 2.23-26,
R62.6.1, UCSC.utils 1.4.0, compiler 4.5.0, crayon 1.5.3, httr 1.4.7, jsonlite 2.0.0, tools 4.5.0

11

	Introduction
	Getting Started
	Startup
	Creating a Sequence Database
	Defining Groups

	Designing primers with diverse signatures
	Adjusting Input Parameters
	Select Restriction Enzymes
	Designing Primers

	Assessing the Results
	View the Target Sites
	Plot the Signatures
	Finishing Up

	Session Information

