
diffuStats: an R package to compute
diffusion-based scores on biological
networks

Sergio Picart-Armada ∗1,2, Wesley K. Thompson 3,4,
Alfonso Buil 3, and Alexandre Perera-Lluna 1,2

1B2SLab, Departament d’Enginyeria de Sistemes, Automàtica i Informàtica In-
dustrial, Universitat Politècnica de Catalunya, CIBER-BBN, Barcelona, 08028,
Spain
2Institut de Recerca Pediàtrica Hospital Sant Joan de Déu, Esplugues de Llo-
bregat, Barcelona, 08950, Spain
3Mental Health Center Sct. Hans, 4000 Roskilde, Denmark
4Department of Family Medicine and Public Health, University of California,
San Diego, La Jolla, California, USA
∗sergi.picart@upc.edu

April 15, 2025

1 Abstract
Label propagation approaches are a standard and ubiquitous procedure in com-
putational biology for giving context to molecular entities. Node labels, which
can derive from gene expression, genome-wide association studies, protein do-
mains or metabolomics profiling, are propagated to their neighbours, effectively
smoothing the scores through prior annotated knowledge and prioritising novel
candidates. However, there are several settings to tune when defining the dif-
fusion process, including the diffusion kernel, the numeric codification of the
labels and a choice of statistical normalisation of the scores. These settings can
have a large impact on results, and there is currently no software implementing
many of them in one place to screen their performance in the application of
interest. This vignette presents diffuStats, an R package with a collection of
diffusion kernels and scores, as well as a parallel permutation analysis for the
normalised scores, that eases the analysis of several sets of molecular entities
at once.

mailto:sergi.picart@upc.edu


The diffuStats R package

2 Introduction
The application of label propagation algorithms [1] is based on the guilt by as-
sociation principle [2], which can be rephrased in the protein-protein interaction
context as “proteins that interact are more likely to share biological functions”.
However, this principle is extremely general and has experienced success in nu-
merous applications in bioinformatics.
HotNet [3] uses a diffusion process with mutated genes as seed nodes to find
modules with a statistically high number of mutated genes in cancer. Another
attempt to find relevant modules from gene expression and mutation data can
be found in [4], where the authors propose a diffusion process followed by a
statistical normalisation and an automatic process to extract a subnetwork.
TieDIE [5] runs two diffusion processes to link perturbation in the genome with
changes in the transcriptome, effectively linking two sets of genes. GeneMANIA
[6] is a web server that predicts gene function using label propagation with a
bias on the unlabelled nodes. Network-based learning sharing a background with
diffusion has been also applied to protein classification using multiple networks
[7]. Label propagation using graph kernels has been proven successful in gene-
disease association [8, 9]. Equivalent formulations can be found under different
terminology, like the electrical model applied to prioritise candidate genes in
eQTL in [10].
The heterogeneity of applications hinders comparisons among approaches, there-
fore tools gathering the state of the art are highly needed. An existing solution
is RANKS, an R package that contains a variety of diffusion kernels and ker-
nelised scores for label propagation using a binary input vector. RANKS eases
kernelised scores benchmarking and models it as a “one-class” classification
semi-supervised learning problem, in which only some members of the class
(positives) are known. Another possibility is to divide nodes into labelled posi-
tive, negative and unlabelled, like in [6], which poses questions like the effect of
unlabelled nodes and possible numeric codifications of the labels, or the option
to include quantitative data in the labels. In addition, statistical normalisations
such as in [4] remove the effect of network structures like hubs and should be
taken into account when choosing a diffusion scoring method. This motivates
the introduction of our diffuStats R package, which collects widely adopted
input codifications and explicitly accounts for unlabelled nodes. It also includes
three statistically normalised scores, which can be obtained through Monte Carlo
trials or a parametric alternative. The diffuStats package uses existent classes
and provides high-level functions to screen the performance of several diffusion
scores, in order to facilitate their integration in any computational biology study.

2



The diffuStats R package

3 Methodology
One of the main purposes of diffuStats is to offer a battery of approaches to
compute and compare diffusion scores. The diffusion scores f using an input
vector y and a diffusion kernel K are generally computed as

f = K · y
possibly followed by further adjustments or a statistical normalisation.
The decisions taken in the definition of K, y and the posterior normalisation
generally give rise to different priorisations due to a different treatment of the
balance between positive and negative examples, the unlabelled data and the
network structure. The following sections cover the implemented choices for
the kernel K and the initial labels y.

3.1 Diffusion kernels and regularisation
The representation of any kind of data in a network model allows the definition
of notions like distance or similarity based on the links in the network. This
section will follow the notation in [11] and summarise the kernels proposed by
the authors. In general, an undirected graph G = (V,E) consists of a set of n
nodes V and a set of edges E of unordered pairs of nodes. This can be extended
to weighted, undirected graphs, where each edge i ∼ j has a weight attribute
Wij ∈ [0,∞). The degree matrix of G is defined as the n× n diagonal matrix
so that Dii =

∑n
j=1Wij. The (unnormalised) Laplacian of G is defined as the

n×n matrix L = D−W , whereas its normalised version is L̃ = D− 1
2 ·L ·D− 1

2 .
The graph Laplacian is diagonalisable and can be written in terms of its eigen-
values vj and eigenvectors λj, as L =

∑n
j=1 λjvjv

T
j . The proposed kernels

stem from a family of regularisation functions r(λ) on the spectrum of the
graph Laplacian:

K =
n∑

j=1

r−1(λj)vjv
T
j

Well known graph kernels belong to this family because they can be written as
transformations on the Laplacian spectrum. Table 1 summarises them, assuming
the usage of the normalised Laplacian - the unnormalised Laplacian can also be
used as long as the resulting kernel is still positive semidefinite. Further details
about this family of kernels, all available in our package diffuStats, can be found
in the original manuscript [11].
Additionally, the diffuStats package includes the commute time kernel, intro-
duced in [12]. This kernel, also writable in terms of a regularisation function, is
simply the pseudoinverse of the graph Laplacian, K = L+.

3



The diffuStats R package

Kernel Function
Regularised Laplacian r(λ) = 1 + σ2λ

Diffusion process r(λ) = exp(σ
2

2
λ)

p-Step random walk r(λ) = (a− λ)−p with a ≥ 2, p ≥ 1
Inverse cosine r(λ) = (cos(λπ

4
))−1

Table 1: Implemented diffusion kernels from [11]

Score y+ y− yu Normalised Stochastic Quantitative Reference
raw 1 0 0 No No Yes [3]
ml 1 -1 0 No No No [7, 1]
gm 1 -1 k No No No [6]
bers 1 0 0 No No Yes [4]
berp 1 0 0* Yes Yes Yes [4]
mc 1 0 0* Yes Yes Yes [4]
z 1 0 0* Yes No Yes [13]

Table 2: Implemented diffusion scores

The default option in the diffuStats package is the regularised Laplacian kernel,
as it is widely adopted and describes many physical models, for instance in
[3, 5, 10].

3.2 Diffusion scores
Besides choosing a graph kernel, the codification of the input and the presence
of a statistical normalisation can lead to important differences in the results.
Table 2 gives an overview of the implemented scores, which will be detailed
in the following sections. The argument method in the function diffuse can
be set to the desired scores in table 2, which are described in the following
sections. The numeric values of the positive, negative and unlabelled examples
are respectively y+, y− and yu. Column “normalised” refers to the application
of a statistical model involving permutations, whereas “stochastic” enumerates
the normalised scores that need actual Monte Carlo permutations. The scores
that also accept quantitative inputs instead of binary labels are listed in the
“quantitative” column.

3.2.1 Scores without statistical normalisation

The base diffusion score raw, which has been used in algorithms like HotNet [3]
and TieDIE [5], solves a diffusion problem in terms of the regularised Laplacian
kernel [11].

4



The diffuStats R package

fraw = K · yraw

K is the kernel matrix and yraw the vector of codified inputs. In general, the
i-th component of y equals y+ if node i is a positive, y− if i is a negative
and yu if i is unlabelled. In the particular case of yraw, the positively labelled
nodes introduce one flow unit in the network (y+raw = 1), whereas the negative
and unlabelled nodes are treated equivalently and do not introduce anything
(y−raw = yuraw = 0). In the physical model using the regularised Laplacian
kernel, the flow can be evacuated from the graph due to the presence of first-
order leaking in every node, see [3] for further details on this. This formulation
is proportional up to a scaling factor to the average score in RANKS.
On the other hand, the classical label propagation [1] treats positives as y+ml = 1
and negatives as y−ml = −1, while unlabelled nodes remain as yuml = 0, thus
making a distinction between the last two. A biological example can be found
in protein classification [7]. This option is available as ml, and intuitively scores
a node by counting if the majority of its neighbours vote positive or negative:

fml = K · yml

The authors of GeneMANIA [6] propose a modification on the ml input - they
adhere to y+gm = 1 and y−gm = −1, but introduce a bias term in the unlabelled
nodes

yugm =
n+ − n−

n+ + n− + nu

being n+, n− and nu the number of positives, negatives and unlabelled entities.
The gm score is then computed through

fgm = K · ygm

The last option in this part, named ber_s [4], is a quantification of the relative
change in the node score before and after the network smoothing. The score
for a particular node i can be written as

fbers,i =
fraw,i

yraw,i + ϵ

where ϵ > 0 is a parameter that regulates the importance of the relative change.

5



The diffuStats R package

3.2.2 Scores with statistical normalisation

Recently, the combination of a permutation analysis with diffusion processes
has been suggested [4]. This is a way to quantify how the diffusion score
of a certain node compares to its score if the input was randomised - nodes
that might have systematically high or low scores regardless of the input are
normalised accordingly.
The cornerstone of normalised scores is the empirical p-value [14] that indicates,
for a node i, the proportion of input permutations that led to a diffusion score as
high or higher than the original diffusion score. Specifically, fraw is compared
to scores from random trials j, fnull,j

raw = K · πj(yraw), where πj(yraw) is a
permutation of yraw on the labelled entities. The empirical p-value for node i
is therefore defined as in [14]:

pi =
ri + 1

n+ 1

being ri the number of trials j in which fnull,j
raw,i ≥ fraw,i, and n the total number

of trials.
To be consistent with the increasing direction of the scores, the mc scores are
defined as

fmc,i = 1− pi

Importantly, the permutation has been applied only to the observed nodes.
Therefore, any node outside the labelled background cannot receive a different
input score in a permuted input. This implies that even if both negatives and
unlabelled nodes are assigned the same input value (y− = yu = 0), the negatives
are actually permuted and eventually exchanged for a 1 in some permutations
provided that the number of runs is large enough. For this reason, negatives
and unlabelled nodes are not equivalent in these scores.
A parametric alternative to fmc, are z scores, where each node i is scored as:

fz,i =
fraw,i − E(fnull,j

raw,i )√
V (fnull,j

raw,i )

The expectation and variance are computed in a closed form and these scores
do not require running actual permutations, therefore saving on computational
time and avoiding stochastic models. The analytical expression proven below
also works for the general case when the input has quantitative labels.
First of all, note that all the unlabelled nodes will cancel out when substracting
the expected value, so they can be excluded without loss of generality. Thus, let
the row vector k̃i be the i-th row of the submatrix from K including the columns

6



The diffuStats R package

indexed by the labelled nodes only, and let nlab be the number of labelled nodes.
Analogously, let ỹ be the (quantitative or binary) inputs for the observed nodes,
with the same indexing as k̃i. Consider the following scalar quantities:

SkI
i =

nlab∑
j=1

(k̃i)j

SkII
i =

nlab∑
j=1

(k̃i)
2
j

SyI =

nlab∑
j=1

ỹj

SyII =

nlab∑
j=1

ỹ2j

Using these definitions and notation, the raw score for node i is

fi = k̃i · ỹ

Its null score using a permuted input score is the random variable

fnull
i = k̃i ·X

where X is the random variable that arises from permuting ỹ. In order to
compute the z-scores, the expected value and variance of fnull

i are needed.
Starting with its expected value,

EX(f
null
i ) = EX(k̃i ·X) = k̃i · EX(X) = k̃i ·

∑nlab

j=1 ỹj

nlab

· 1 =
SkI

i · SyI

nlab

where 1 is the nlab-th dimensional column vector full of ones. Regarding its
variance,

VX(f
null
i ) = VX(k̃i ·X) = k̃i · VX(X) · k̃T

i

The covariance of X can be written as

7



The diffuStats R package

VX(X) =

∑nlab

j=1 ỹ
2
j

nlab

−

(∑nlab

j=1 ỹj

nlab

)2
[ nlab

nlab − 1
Id− 1

nlab − 1
11T

]

being Id the nlab × nlab identity matrix. Operating, the variance of fnull
i can

be finally computed as

VX(f
null
i ) =

1

(nlab − 1)n2
lab

[
nlabSy

II − (SyI)2
] [
nlabSk

II
i − (SkI

i )
2
]

The z-score for node i is, in terms of the new notation:

fz,i =
fi − EX(f

null
i )√

VX(fnull
i )

This closes the z scoring option, which clearly does not require any actual
permutations but normalises through the theoretical first and second statistical
moments of the null distribution of the diffusion scores.
Finally, the authors in [4] also suggest a combination of a classical score with an
statistically normalised one. Available as ber_p, the score of node i is defined
as

fberp,i = − log10(pi) · fraw,i

This approach corrects the original diffusion scores by the effect of the network,
in order to mitigate the effect of structures like hubs.

3.2.3 Quantitative inputs

In its current release, diffuStats also accepts quantitative labels as input in
the following scores: raw, ber_s, z, ber_p and mc. The scores ml and gm are
naturally excluded from non-binary inputs due to their definitions. Currently
mc scores (and therefore ber_p scores as well) accept quantitative inputs that
are treated as sparse. Dense continuous inputs might take more time to com-
pute, but this will be extended in future versions. Beware that quantitative
inputs should be meaningful and one-tailed (monotonic) - the nature of diffu-
sion processes involves averaging and strong effects with opposing signs cancel
out instead of adding up.

8



The diffuStats R package

Figure 1: Overview of the main package functions.

3.3 Implementation, functions and classes
The package diffuStats is mainly implemented in R [15], but takes advantage
of existing classes in igraph [16] and basic data types, thus not introducing
any new data structure - this minimises the learning effort by the final user.
Inputs and outputs are conceived to require minimal formatting effort in the
whole analysis. The computationally intense stochastic part of the permutation
analysis is implemented in C++ through the packages Rcpp [17], RcppArmadillo
[18] and parallelised through RcppParallel [19]. Package diffuStats also contains
documented functions and unit testing with small cases to spot potential bugs.
Two vignettes facilitate the user experience: an introductory vignette showing
the basic usage of the functions on a synthetic example and this vignette, which
further describes the contents of the package and shows an application to real
data.
A diagram containing the main functions in the R package diffuStats can be
found in (Fig. 1). The main funcion is diffuse, a wrapper for computing
diffusion scores from several categories at once, stemming from possibly different
observed backgrounds. Function diffuse makes use of the deterministic dif

fuse_raw or the stochastic diffuse_mc implementations and combines them to
give the desired scores for all the nodes in each of the observed backgrounds.
The second wrapper perf compares the result of the diffusion scores to target
validation scores. Validation scores might include only part of the nodes of the
network and these nodes can be background-specific.

9



The diffuStats R package

0

5000

10000

15000

20000

0 5000 10000 15000 20000

n

C
o

m
p

u
ti
n

g
 t

im
e

 (
s
)

0

5000

10000

0 5000 10000 15000 20000

n

P
e

a
k
 m

e
m

o
ry

 u
s
a

g
e

 (
M

B
)

0

1000

2000

3000

0 5000 10000 15000 20000

n

K
e

rn
e

l 
s
iz

e
 i
n

 m
e

m
o

ry
 (

M
B

)

Figure 2: Profiling of the computation of the regularised Laplacian kernel on a synthetic
n-th order network. Undirected networks are generated through barabasi.game in igraph
using default parameters and m = 6 (each node adds 6 edges).

Regarding memory and processing power requirements, the analysis of networks
with more than 10,000 nodes might need additional RAM memory and pro-
cessing power. The main reason is the manipulation of dense graph kernel
matrices that scale quadratically with the network order. To give a reference,
a dense matrix of double-precision real numbers with 10,000 rows and columns
uses roughly 800MB of memory. Computing a graph kernel on a large network
can require -depending on the kernel- matrix diagonalisation, matrix products
and matrix inversion operations that are likely to use a considerable amount of
memory and time.

3.4 Limitations
The kernel framework is known to scale poorly with the number of nodes of the
network when the kernel is explicitly computed and dense. Therefore, diffuStats
is best suited for manipulating biological networks of a medium size - few tenths
of thousands of nodes. Protein-protein interaction networks can have around
20,000 nodes, which is also the limit of the capabilities diffuStats, as it is now,
in a standard workstation with 16GB of physical memory.
In particular, the explicit kernel computation is a demanding step, although it
only has to be performed once with a given network. Figure 2 contains a profiling
on the kernel computation using a Compaq q8100 workstation (intel core i5 650
@3.20GHz, 16GB physical memory). This should give an approximation of what
to expect in terms of time and memory consumption. The same figure contains
the memory usage of the kernel matrix per se.
On the other hand, the parallel implementation of the stochastic permutation
analysis is another demanding task. It has been optimised assuming that the
number of positives is usually low. Lists of scores with a very high amount of
positives might slow down the permutation analysis, but not the parametric z.

10

https://CRAN.R-project.org/package=igraph


The diffuStats R package

4 Getting started
This vignette contains a classical example of label propagation on a biological
network. The core tools for this analysis are the igraph R package [16] and
the diffuStats package, whereas ggplot2 [20] is a convenient tool to plot the
results.
The data for this example is the yeast interactome with functional annotations,
as found in the data package igraphdata [21].

> # Core

> library(igraph)

> library(diffuStats)

> # Plotting

> library(ggplot2)

> library(ggsci)

> # Data

> library(igraphdata)

> data(yeast)

> set.seed(1)

4.1 Data description
A summary of the network object can be obtained by just showing the object:

> summary(yeast)

IGRAPH 65c41bb UN-- 2617 11855 -- Yeast protein interactions, von Mering et al.

+ attr: name (g/c), Citation (g/c), Author (g/c), URL (g/c), Classes

| (g/x), name (v/c), Class (v/c), Description (v/c), Confidence (e/c)

For this analysis, only the largest connected component of this graph will be
used, although the algorithms can handle graphs with several connected com-
ponents.

> yeast <- diffuStats::largest_cc(yeast)

This yields to a graph with 2375 nodes and 11693 edges. There are several
attributes that can be of interest. First of all, the name of the protein nodes:

> head(V(yeast)$name)

[1] "YLR197W" "YOR039W" "YDR473C" "YOR332W" "YER090W" "YDR394W"

11



The diffuStats R package

Furthermore, the corresponding aliases and complete names can be found in
Description

> head(V(yeast)$Description)

[1] "SIK1 involved in pre-rRNA processing"

[2] "CKB2 casein kinase II beta' chain"

[3] "PRP3 essential splicing factor"

[4] "VMA4 H+-ATPase V1 domain 27 KD subunit, vacuolar"

[5] "TRP2 anthranilate synthase component I"

[6] "RPT3 26S proteasome regulatory subunit"

The labels to perform network propagation are MIPS categories [22], which
provide means to classify proteins regarding their function. These functions are
coded as characters in the yeast object, in the node attribute Class

> table_classes <- table(V(yeast)$Class, useNA = "always")

> table_classes

A B C D E F G M O P R T U <NA>

51 98 122 238 95 171 96 278 171 248 45 240 483 39

The graph attribute Classes maps these abbreviations to the actual category:

> head(yeast$Classes)

Category Description

1 E energy production

2 G aminoacid metabolism

3 M other metabolism

4 P translation

5 T transcription

6 B transcriptional control

Original.MIPS.category

1 energy

2 aminoacid metabolism

3 all remaining metabolism categories

4 protein synthesis

5 transcription, but without subcategory 'transcriptional control'

6 subcategory 'transcriptional control'

Finally, the graph edges have a Confidence attribute that assesses the amount
of evidence supporting the interaction. All the edges will be kept in this analysis,
but different confidences can be weighted to favour diffusion in high confidence
edges.

12



The diffuStats R package

> table(E(yeast)$Confidence)

high medium

2395 9298

More on the yeast object can be found through ?yeast.

4.2 First analysis: protein ranking
In this first case, the diffusion scores will be applied to the prediction of a single
protein function. Let’s assume that 50% of the labelled proteins in the graph
as transport and sensing (category A) are actually unlabelled. Now, using the
labels of the known positive and negative examples for transport and sensing,
can we correctly label the remaining 50%? First of all, the list of known and
unknown positives is generated. The function diffuse uses (row)names in the
input scores so that unlabelled nodes are accounted as so.

> perc <- .5

> # Transport and sensing is class A

> nodes_A <- V(yeast)[Class %in% "A"]$name

> nodes_unlabelled <- V(yeast)[Class %in% c(NA, "U")]$name

> nodes_notA <- setdiff(V(yeast)$name, c(nodes_A, nodes_unlabelled))

> # Known labels

> known_A <- sample(nodes_A, perc*length(nodes_A))

> known_notA <- sample(nodes_notA, perc*length(nodes_notA))

> known <- c(known_A, known_notA)

> # Unknown target nodes

> target_A <- setdiff(nodes_A, known_A)

> target_notA <- setdiff(nodes_notA, known_notA)

> target <- c(target_A, target_notA)

> target_id <- V(yeast)$name %in% target

> # True scores

> scores_true <- V(yeast)$Class %in% "A"

Now that the input is ready, the diffusion algorithm can be applied to rank all
the proteins. As a first approach, the vanilla diffusion scores will be computed
through the raw method and the default regularised Laplacian kernel, which is
calculated on the fly.

> # Vector of scores

> scores_A <- setNames((known %in% known_A)*1, known)

> # Diffusion

> diff <- diffuStats::diffuse(

13



The diffuStats R package

+ yeast,

+ scores = scores_A,

+ method = "raw"

+ )

Diffusion scores are ready and in the same format they were introduced:

> head(diff)

YLR197W YOR039W YDR473C YOR332W YER090W YDR394W

0.004622066 0.003721601 0.003274780 0.085080780 0.009089522 0.006101765

Now, the scores obtained by the proteins actually belonging to transport and

sensing can be compared to proteins with other labels.

> # Compare scores

> df_plot <- data.frame(

+ Protein = V(yeast)$name,

+ Class = ifelse(scores_true, "Transport and sensing", "Other"),

+ DiffusionScore = diff,

+ Target = target_id,

+ Method = "raw",

+ stringsAsFactors = FALSE

+ )

> ggplot(subset(df_plot, Target), aes(x = Class, y = DiffusionScore)) +

+ geom_boxplot(aes(fill = Method)) +

+ theme_bw() +

+ scale_y_log10() +

+ xlab("Protein class") +

+ ylab("Diffusion score") +

+ ggtitle("Target proteins in 'transport and sensing'")

14



The diffuStats R package

1e−04

1e−03

1e−02

1e−01

Other Transport and sensing
Protein class

D
iff

us
io

n 
sc

or
e

Method

raw

Target proteins in 'transport and sensing'

The last plot justifies the usefulness of label propagation, as proteins in trans

port and sensing obtain higher diffusion scores than the rest. The network
analysis can be deepened by examining, for instance, the subnetwork containing
the proteins with the top 30 diffusion scores, highlighting with squares the ones
that were positive labels in the input. Notice the small clusters of proteins:

> # Top scores subnetwork

> vertex_ids <- head(order(df_plot$DiffusionScore, decreasing = TRUE), 30)

> yeast_top <- igraph::induced.subgraph(yeast, vertex_ids)

> # Overlay desired properties

> # use tkplot for interactive plotting

> igraph::plot.igraph(

+ yeast_top,

+ vertex.color = diffuStats::scores2colours(

+ df_plot$DiffusionScore[vertex_ids]),

15



The diffuStats R package

+ vertex.shape = diffuStats::scores2shapes(

+ df_plot$Protein[vertex_ids] %in% known_A),

+ vertex.label.color = "gray10",

+ main = "Top 30 proteins from diffusion scores"

+ )

Top 30 proteins from diffusion scores

YDR091C

YLR447C

YBR143C
YJR049C

YHR026W

YMR054W

YDR270W
YNL259C

YBR295W

YDR264C

YLR362W

YGL186C

YLR092W
YPL189W

YER060W−A

YJR137C

YMR177W

YCR059C

YKR050W
YDL177C

YER145C

YHL007C

YEL031W

YLR192C

YEL051W

YCL032W

YMR038C

YGL084C

YJL129C

YJL198W

4.3 Second example: comparing scores with single pro-
tein ranking
The proposed diffusion scores can be easily applied and compared. The regu-
larised Laplacian kernel will be used to compute all the implemented scores for
the target nodes in transport and sensing.

16



The diffuStats R package

> K_rl <- diffuStats::regularisedLaplacianKernel(yeast)

Functions diffuse and perf do accept, however, an igraph object as well,
and compute the kernel automatically. For medium networks (10,000 nodes or
more) the kernel computation can be computationally expensive in memory and
time, so precomputing it avoids unnecessary recalculations.
The diffusion scores can be computed over a list of methods or sets of parame-
ters. This can be achieved with instructions like lapply, but diffuStats contains
a wrapper to facilitate this task. The function diffuse_grid takes the specified
combinations of parameters -which can include the scoring method as well- and
computes the diffusion scores for each one. The results are concatenated in a
data frame that can be easily plotted:

> list_methods <- c("raw", "ml", "gm", "ber_s", "ber_p", "mc", "z")

> df_diff <- diffuse_grid(

+ K = K_rl,

+ scores = scores_A,

+ grid_param = expand.grid(method = list_methods),

+ n.perm = 1000

+ )

> df_diff$transport <- ifelse(

+ df_diff$node_id %in% nodes_A,

+ "Transport and sensing",

+ "Other"

+ )

The results can be directly plotted:

> df_plot <- subset(df_diff, node_id %in% target)

> ggplot(df_plot, aes(x = transport, y = node_score)) +

+ geom_boxplot(aes(fill = method)) +

+ scale_fill_npg() +

+ theme_bw() +

+ theme(axis.text.x = element_text(

+ angle = 45, vjust = 1, hjust = 1)) +

+ facet_wrap( ~ method, nrow = 1, scales = "free") +

+ xlab("Protein class") +

+ ylab("Diffusion score") +

+ ggtitle("Target proteins scores in 'transport and sensing'")

17



The diffuStats R package

raw ml gm ber_s ber_p mc z

Oth
er

Tra
ns

po
rt 

an
d 

se
ns

ing
Oth

er

Tra
ns

po
rt 

an
d 

se
ns

ing
Oth

er

Tra
ns

po
rt 

an
d 

se
ns

ing
Oth

er

Tra
ns

po
rt 

an
d 

se
ns

ing
Oth

er

Tra
ns

po
rt 

an
d 

se
ns

ing
Oth

er

Tra
ns

po
rt 

an
d 

se
ns

ing
Oth

er

Tra
ns

po
rt 

an
d 

se
ns

ing

0.0

2.5

5.0

7.5

0.00

0.25

0.50

0.75

1.00

0.0

0.2

0.4

0.6

0.00

0.05

0.10

0.15

0.20

−0.6

−0.4

−0.2

−0.6

−0.4

−0.2

0.0

0.00

0.05

0.10

0.15

0.20

Protein class

D
iff

us
io

n 
sc

or
e

method

raw

ml

gm

ber_s

ber_p

mc

z

Target proteins scores in 'transport and sensing'

As expected, all the diffusion scores qualitatively show differences between posi-
tive and negative labels, but the quality of class separation will generally depend
on the dataset and scoring method.

4.4 Third example: benchmarking scores with multiple
protein functions
The package diffuStats is able to perform several screenings at once. To show
its usefulness, we will generalise the procedure in the last section but screening
all the categories in the yeast graph.
First of all, the input data must meet an adequate format - a straightforward
approach is to populate a matrix with the input labels (one category per col-
umn).

18



The diffuStats R package

> # All classes except NA and unlabelled

> names_classes <- setdiff(names(table_classes), c("U", NA))

> # matrix format

> mat_classes <- sapply(

+ names_classes,

+ function(class) {

+ V(yeast)$Class %in% class

+ }

+ )*1

> rownames(mat_classes) <- V(yeast)$name

> colnames(mat_classes) <- names_classes

The former 50% known / 50% unknown approach will be kept with the same
split, although not all the 12 categories will be totally balanced in the splits
now. All the methods will be compared using the area under the ROC curve
(AUROC) as a performance index.
Please note that diffuStats is equipped with basic performance measures for
rankers: the AUROC, the area under the Precision-Recall curve, or AUPRC,
and their partial versions. These are available through the helper function met

ric_fun and can be passed in list format to perf. These measures are based on
the precrec R package - further detail can be found in the original manuscript
[23].

> list_methods <- c("raw", "ml", "gm", "ber_s", "ber_p", "mc", "z")

> df_methods <- perf(

+ K = K_rl,

+ scores = mat_classes[known, ],

+ validation = mat_classes[target, ],

+ grid_param = expand.grid(

+ method = list_methods,

+ stringsAsFactors = FALSE),

+ n.perm = 1000

+ )

This allows plotting of the AUCs over the categories for each method in one
step:

> ggplot(df_methods, aes(x = method, y = auc)) +

+ geom_boxplot(aes(fill = method)) +

+ scale_fill_npg() +

+ theme_bw() +

+ xlab("Method") +

19

https://CRAN.R-project.org/package=precrec


The diffuStats R package

+ ylab("Area under the curve") +

+ ggtitle("Methods performance in all categories")

0.6

0.7

0.8

0.9

ber_p ber_s gm mc ml raw z
Method

A
re

a 
un

de
r 

th
e 

cu
rv

e

method

ber_p

ber_s

gm

mc

ml

raw

z

Methods performance in all categories

Scaling up the analysis can be useful for assessing how adequate a diffusion score
is in the dataset of interest. These results suggest that, for the current yeast

interactome and protein functions, the best priorisations are those obtained
through a statistical normalisation, which might motivate its usage in other
biological networks.
The user can also statistically compare the performance metrics through the
function perf_wilcox. This generates a table with (i) the estimates on the dif-
ferences on performance between the methods in rows and columns, with their
confidence intervals and (ii) their associated p-value (Wilcoxon test). Posi-
tive and negative estimates respectively favour the method in the row and the
column.

20



The diffuStats R package

> # Format the data

> df_perf <- reshape2::acast(df_methods, Column~method, value.var = "auc")

> # Compute the comparison matrix

> df_test <- perf_wilcox(

+ df_perf,

+ digits_p = 1,

+ adjust = function(p) p.adjust(p, method = "fdr"),

+ scientific = FALSE)

> knitr::kable(df_test, format = "latex")

ber_p ber_s gm mc ml raw z
ber_p NA 0.023(0.0097,0.036) 0.02(-0.054,0.049) 0.0015(-0.0076,0.0071) 0.042(-0.047,0.095) 0.023(0.0097,0.036) -0.0055(-0.018,0.0079)
ber_s 0.03 NA -0.0084(-0.082,0.025) -0.022(-0.044,-0.0001) 0.018(-0.075,0.068) NA -0.027(-0.051,-0.0068)
gm 0.54 0.71 NA -0.02(-0.051,0.057) 0.025(0.013,0.047) 0.0084(-0.025,0.082) -0.017(-0.054,0.038)
mc 0.73 0.12 0.55 NA 0.047(-0.043,0.098) 0.022(0.0001,0.044) -0.0047(-0.014,0.0025)
ml 0.46 0.55 0.01 0.35 NA -0.018(-0.068,0.075) -0.044(-0.1,0.026)
raw 0.03 NA 0.71 0.12 0.55 NA -0.027(-0.051,-0.0068)
z 0.46 0.03 0.46 0.34 0.32 0.03 NA

5 Conclusions
The diffuStats package is a new computational tool to compute and compare
single-network diffusion scores that are object of active research in several bioin-
formatics areas. It is an effort to gather a collection of settings in the diffusion
process like the graph kernel, the label codification and the choice of a statistical
normalisation. The diffuStats package will help the end user in choosing and
computing the best performing diffusion scores in the application of interest.

6 Funding
This work was supported by the Spanish Ministry of Economy and Compet-
itiveness (MINECO) [TEC2014-60337-R to A.P.] and the National Institutes
of Health (NIH) [R01GM104400 to W.T.]. AP. and S.P. thank for funding
the Spanish Biomedical Research Centre in Diabetes and Associated Metabolic
Disorders (CIBERDEM) and the Networking Biomedical Research Centre in the
subject area of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN),
both initiatives of Instituto de Investigación Carlos III (ISCIII). SP. thanks the
AGAUR FI-scholarship programme.

21



The diffuStats R package

References
[1] Olga Zoidi, Eftychia Fotiadou, Nikos Nikolaidis, and Ioannis Pitas.

Graph-Based Label Propagation in Digital Media: A Review. ACM
Computing Surveys, 47(3):48:1–48:35, 2015. doi:10.1145/2700381.

[2] Stephen Oliver. Guilt-by-association goes global. Nature,
403(February):601–603, 2000.

[3] Fabio Vandin, Eli Upfal, and Benjamin J. Raphael. Algorithms for
detecting significantly mutated pathways in cancer. Lect. Notes Comput.
Sci., 6044 LNBI(3):506–521, 2010.
doi:10.1007/978-3-642-12683-3_33.

[4] Matteo Bersanelli, Ettore Mosca, Daniel Remondini, Gastone Castellani,
and Luciano Milanesi. Network diffusion-based analysis of
high-throughput data for the detection of differentially enriched modules.
Scientific Reports, 6(August):34841, 2016. doi:10.1038/srep34841.

[5] Evan O. Paull, Daniel E. Carlin, Mario Niepel, Peter K. Sorger, David
Haussler, and Joshua M. Stuart. Discovering causal pathways linking
genomic events to transcriptional states using Tied Diffusion Through
Interacting Events (TieDIE). Bioinformatics, 29(21):2757–2764, 2013.
doi:10.1093/bioinformatics/btt471.

[6] Sara Mostafavi, Debajyoti Ray, David Warde-Farley, Chris Grouios, and
Quaid Morris. GeneMANIA: a real-time multiple association network
integration algorithm for predicting gene function. Genome Biology, 9
Suppl 1:S4, 2008. doi:10.1186/gb-2008-9-s1-s4.

[7] Koji Tsuda, HyunJung J. Shin, and Bernhard Schölkopf. Fast protein
classification with multiple networks. Bioinformatics, 21(SUPPL.
2):59–65, 2005. doi:10.1093/bioinformatics/bti1110.

[8] Giorgio Valentini, Alberto Paccanaro, Horacio Caniza, Alfonso E.
Romero, and Matteo Re. An extensive analysis of disease-gene
associations using network integration and fast kernel-based gene
prioritization methods. Artificial Intelligence in Medicine, 61(2):63–78,
2014. doi:10.1016/j.artmed.2014.03.003.

[9] Insuk Lee, U Martin Blom, Peggy I Wang, Jung Eun Shim, and
Edward M Marcotte. Prioritizing candidate disease genes by
network-based boosting of genome-wide association data. Genome
Research, 21(7):1109–1121, 2011. doi:10.1101/gr.118992.110.

22

http://dx.doi.org/10.1145/2700381
http://dx.doi.org/10.1007/978-3-642-12683-3_33
http://dx.doi.org/10.1038/srep34841
http://dx.doi.org/10.1093/bioinformatics/btt471
http://dx.doi.org/10.1186/gb-2008-9-s1-s4
http://dx.doi.org/10.1093/bioinformatics/bti1110
http://dx.doi.org/10.1016/j.artmed.2014.03.003
http://dx.doi.org/10.1101/gr.118992.110


The diffuStats R package

[10] Silpa Suthram, Andreas Beyer, Richard M Karp, Yonina Eldar, and Trey
Ideker. eqed: an efficient method for interpreting eqtl associations using
protein networks. Molecular systems biology, 4(1):162, 2008.

[11] Alexander J Smola and Risi Kondor. Kernels and regularization on
graphs. pages 144–158, 2003. doi:10.1007/978-3-540-45167-9_12.

[12] Luh Yen, Francois Fouss, and Christine Decaestecker. Graph nodes
clustering based on the commute-time kernel. Advances in Knowledge
Discovery and Data Mining, pages 1037–1045, 2007.
doi:10.1007/978-3-540-71701-0_117.

[13] Zaid Harchaoui, Francis Bach, Olivier Cappe, and Eric Moulines.
Kernel-based methods for hypothesis testing: A unified view. IEEE Signal
Processing Magazine, 30(4):87–97, 2013.

[14] Bernard V North, David Curtis, and Pak C Sham. A note on the
calculation of empirical p values from monte carlo procedures. The
American Journal of Human Genetics, 71(2):439–441, 2002.

[15] R Core Team. R: A Language and Environment for Statistical
Computing. R Foundation for Statistical Computing, Vienna, Austria,
2017. URL: https://www.R-project.org/.

[16] Gabor Csardi and Tamas Nepusz. The igraph software package for
complex network research. InterJournal, Complex Systems:1695, 2006.
URL: http://igraph.org.

[17] Dirk Eddelbuettel. Seamless R and C++ integration with Rcpp.
Springer, 2013.

[18] Dirk Eddelbuettel and Conrad Sanderson. Rcpparmadillo: Accelerating r
with high-performance c++ linear algebra. Computational Statistics and
Data Analysis, 71:1054–1063, March 2014.
doi:10.1016/j.csda.2013.02.005.

[19] JJ Allaire, Romain Francois, Kevin Ushey, Gregory Vandenbrouck,
Marcus Geelnard, and Intel. RcppParallel: Parallel Programming Tools
for ’Rcpp’, 2016. R package version 4.3.20. URL:
https://CRAN.R-project.org/package=RcppParallel.

[20] Hadley Wickham. ggplot2: Elegant Graphics for Data Analysis.
Springer-Verlag New York, 2009. URL: http://ggplot2.org.

[21] Gabor Csardi. igraphdata: A Collection of Network Data Sets for the
’igraph’ Package. 2015. R package version 1.0.1. URL:
https://CRAN.R-project.org/package=igraphdata.

23

http://dx.doi.org/10.1007/978-3-540-45167-9_12
http://dx.doi.org/10.1007/978-3-540-71701-0_117
https://www.R-project.org/
http://igraph.org
http://dx.doi.org/10.1016/j.csda.2013.02.005
https://CRAN.R-project.org/package=RcppParallel
http://ggplot2.org
https://CRAN.R-project.org/package=igraphdata


The diffuStats R package

[22] Hans-Werner Mewes, Dmitrij Frishman, Christian Gruber, Birgitta Geier,
Dirk Haase, Andreas Kaps, Kai Lemcke, Gertrud Mannhaupt, Friedhelm
Pfeiffer, C Schüller, et al. MIPS: a database for genomes and protein
sequences. Nucleic acids research, 28(1):37–40, 2000.

[23] Takaya Saito and Marc Rehmsmeier. Precrec: fast and accurate
precision–recall and roc curve calculations in r. Bioinformatics,
33(1):145–147, 2017.

24



The diffuStats R package

A Session info
Here is the output of sessionInfo() on the system that compiled this vignette:

• R version 4.5.0 RC (2025-04-04 r88126 ucrt), x86_64-w64-mingw32
• Locale: LC_COLLATE=C, LC_CTYPE=English_United States.utf8,

LC_MONETARY=English_United States.utf8, LC_NUMERIC=C,
LC_TIME=English_United States.utf8

• Time zone: America/New_York

• TZcode source: internal

• Running under: Windows Server 2022 x64 (build 20348)

• Matrix products: default
• Base packages: base, datasets, grDevices, graphics, methods, stats, utils
• Other packages: BiocStyle 2.36.0, diffuStats 1.28.0, ggplot2 3.5.2,

ggsci 3.2.0, igraph 2.1.4, igraphdata 1.0.1
• Loaded via a namespace (and not attached): BiocManager 1.30.25,

MASS 7.3-65, Matrix 1.7-3, R6 2.6.1, Rcpp 1.0.14,
RcppArmadillo 14.4.1-1, RcppParallel 5.1.10, assertthat 0.2.1,
backports 1.5.0, bookdown 0.43, bslib 0.9.0, cachem 1.1.0,
checkmate 2.3.2, cli 3.6.4, colorspace 2.1-1, compiler 4.5.0,
data.table 1.17.0, digest 0.6.37, dplyr 1.1.4, evaluate 1.0.3, expm 1.0-0,
farver 2.1.2, fastmap 1.2.0, generics 0.1.3, glue 1.8.0, grid 4.5.0,
gtable 0.3.6, htmltools 0.5.8.1, jquerylib 0.1.4, jsonlite 2.0.0, knitr 1.50,
labeling 0.4.3, lattice 0.22-7, lifecycle 1.0.4, magick 2.8.6,
magrittr 2.0.3, munsell 0.5.1, pillar 1.10.2, pkgconfig 2.0.3, plyr 1.8.9,
precrec 0.14.4, reshape2 1.4.4, rlang 1.1.6, rmarkdown 2.29, sass 0.4.10,
scales 1.3.0, stringi 1.8.7, stringr 1.5.1, tibble 3.2.1, tidyselect 1.2.1,
tinytex 0.57, tools 4.5.0, vctrs 0.6.5, withr 3.0.2, xfun 0.52, yaml 2.3.10

25


	1 Abstract
	2 Introduction
	3 Methodology
	3.1 Diffusion kernels and regularisation
	3.2 Diffusion scores
	3.2.1 Scores without statistical normalisation
	3.2.2 Scores with statistical normalisation
	3.2.3 Quantitative inputs

	3.3 Implementation, functions and classes
	3.4 Limitations

	4 Getting started
	4.1 Data description
	4.2 First analysis: protein ranking
	4.3 Second example: comparing scores with single protein ranking
	4.4 Third example: benchmarking scores with multiple protein functions

	5 Conclusions
	6 Funding
	A Session info

